//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass which will find instructions which // can be re-written as LEA instructions in order to reduce pipeline // delays for some models of the Intel Atom family. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-fixup-LEAs" #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; STATISTIC(NumLEAs, "Number of LEA instructions created"); namespace { class FixupLEAPass : public MachineFunctionPass { enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; static char ID; /// \brief Loop over all of the instructions in the basic block /// replacing applicable instructions with LEA instructions, /// where appropriate. bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI); virtual const char *getPassName() const { return "X86 Atom LEA Fixup";} /// \brief Given a machine register, look for the instruction /// which writes it in the current basic block. If found, /// try to replace it with an equivalent LEA instruction. /// If replacement succeeds, then also process the the newly created /// instruction. void seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I, MachineFunction::iterator MFI); /// \brief Given a memory access or LEA instruction /// whose address mode uses a base and/or index register, look for /// an opportunity to replace the instruction which sets the base or index /// register with an equivalent LEA instruction. void processInstruction(MachineBasicBlock::iterator& I, MachineFunction::iterator MFI); /// \brief Determine if an instruction references a machine register /// and, if so, whether it reads or writes the register. RegUsageState usesRegister(MachineOperand& p, MachineBasicBlock::iterator I); /// \brief Step backwards through a basic block, looking /// for an instruction which writes a register within /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. MachineBasicBlock::iterator searchBackwards(MachineOperand& p, MachineBasicBlock::iterator& I, MachineFunction::iterator MFI); /// \brief if an instruction can be converted to an /// equivalent LEA, insert the new instruction into the basic block /// and return a pointer to it. Otherwise, return zero. MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI) const; public: FixupLEAPass() : MachineFunctionPass(ID) {} /// \brief Loop over all of the basic blocks, /// replacing instructions by equivalent LEA instructions /// if needed and when possible. virtual bool runOnMachineFunction(MachineFunction &MF); private: MachineFunction *MF; const TargetMachine *TM; const TargetInstrInfo *TII; // Machine instruction info. }; char FixupLEAPass::ID = 0; } MachineInstr * FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI) const { MachineInstr* MI = MBBI; MachineInstr* NewMI; switch (MI->getOpcode()) { case X86::MOV32rr: case X86::MOV64rr: { const MachineOperand& Src = MI->getOperand(1); const MachineOperand& Dest = MI->getOperand(0); NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r)) .addOperand(Dest) .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0); MFI->insert(MBBI, NewMI); // Insert the new inst return NewMI; } case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64ri32_DB: case X86::ADD64ri8_DB: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri_DB: case X86::ADD32ri8_DB: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (!MI->getOperand(2).isImm()) { // convertToThreeAddress will call getImm() // which requires isImm() to be true return 0; } break; case X86::ADD16rr: case X86::ADD16rr_DB: if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) { // if src1 != src2, then convertToThreeAddress will // need to create a Virtual register, which we cannot do // after register allocation. return 0; } } return TII->convertToThreeAddress(MFI, MBBI, 0); } FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) { MF = &Func; TM = &MF->getTarget(); TII = TM->getInstrInfo(); DEBUG(dbgs() << "Start X86FixupLEAs\n";); // Process all basic blocks. for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I) processBasicBlock(Func, I); DEBUG(dbgs() << "End X86FixupLEAs\n";); return true; } FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p, MachineBasicBlock::iterator I) { RegUsageState RegUsage = RU_NotUsed; MachineInstr* MI = I; for (unsigned int i = 0; i < MI->getNumOperands(); ++i) { MachineOperand& opnd = MI->getOperand(i); if (opnd.isReg() && opnd.getReg() == p.getReg()){ if (opnd.isDef()) return RU_Write; RegUsage = RU_Read; } } return RegUsage; } /// getPreviousInstr - Given a reference to an instruction in a basic /// block, return a reference to the previous instruction in the block, /// wrapping around to the last instruction of the block if the block /// branches to itself. static inline bool getPreviousInstr(MachineBasicBlock::iterator& I, MachineFunction::iterator MFI) { if (I == MFI->begin()) { if (MFI->isPredecessor(MFI)) { I = --MFI->end(); return true; } else return false; } --I; return true; } MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p, MachineBasicBlock::iterator& I, MachineFunction::iterator MFI) { int InstrDistance = 1; MachineBasicBlock::iterator CurInst; static const int INSTR_DISTANCE_THRESHOLD = 5; CurInst = I; bool Found; Found = getPreviousInstr(CurInst, MFI); while( Found && I != CurInst) { if (CurInst->isCall() || CurInst->isInlineAsm()) break; if (InstrDistance > INSTR_DISTANCE_THRESHOLD) break; // too far back to make a difference if (usesRegister(p, CurInst) == RU_Write){ return CurInst; } InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst); Found = getPreviousInstr(CurInst, MFI); } return 0; } void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I, MachineFunction::iterator MFI) { // Process a load, store, or LEA instruction. MachineInstr *MI = I; int opcode = MI->getOpcode(); const MCInstrDesc& Desc = MI->getDesc(); int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode); if (AddrOffset >= 0) { AddrOffset += X86II::getOperandBias(Desc); MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg); if (p.isReg() && p.getReg() != X86::ESP) { seekLEAFixup(p, I, MFI); } MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg); if (q.isReg() && q.getReg() != X86::ESP) { seekLEAFixup(q, I, MFI); } } } void FixupLEAPass::seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I, MachineFunction::iterator MFI) { MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI); if (MBI) { MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI); if (NewMI) { ++NumLEAs; DEBUG(dbgs() << "Candidate to replace:"; MBI->dump();); // now to replace with an equivalent LEA... DEBUG(dbgs() << "Replaced by: "; NewMI->dump();); MFI->erase(MBI); MachineBasicBlock::iterator J = static_cast (NewMI); processInstruction(J, MFI); } } } bool FixupLEAPass::processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI) { for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) processInstruction(I, MFI); return false; }