//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass which converts floating point instructions from // pseudo registers into register stack instructions. This pass uses live // variable information to indicate where the FPn registers are used and their // lifetimes. // // The x87 hardware tracks liveness of the stack registers, so it is necessary // to implement exact liveness tracking between basic blocks. The CFG edges are // partitioned into bundles where the same FP registers must be live in // identical stack positions. Instructions are inserted at the end of each basic // block to rearrange the live registers to match the outgoing bundle. // // This approach avoids splitting critical edges at the potential cost of more // live register shuffling instructions when critical edges are present. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-codegen" #include "X86.h" #include "X86InstrInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/EdgeBundles.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; STATISTIC(NumFXCH, "Number of fxch instructions inserted"); STATISTIC(NumFP , "Number of floating point instructions"); namespace { struct FPS : public MachineFunctionPass { static char ID; FPS() : MachineFunctionPass(ID) { initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); // This is really only to keep valgrind quiet. // The logic in isLive() is too much for it. memset(Stack, 0, sizeof(Stack)); memset(RegMap, 0, sizeof(RegMap)); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 FP Stackifier"; } private: const TargetInstrInfo *TII; // Machine instruction info. // Two CFG edges are related if they leave the same block, or enter the same // block. The transitive closure of an edge under this relation is a // LiveBundle. It represents a set of CFG edges where the live FP stack // registers must be allocated identically in the x87 stack. // // A LiveBundle is usually all the edges leaving a block, or all the edges // entering a block, but it can contain more edges if critical edges are // present. // // The set of live FP registers in a LiveBundle is calculated by bundleCFG, // but the exact mapping of FP registers to stack slots is fixed later. struct LiveBundle { // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. unsigned Mask; // Number of pre-assigned live registers in FixStack. This is 0 when the // stack order has not yet been fixed. unsigned FixCount; // Assigned stack order for live-in registers. // FixStack[i] == getStackEntry(i) for all i < FixCount. unsigned char FixStack[8]; LiveBundle() : Mask(0), FixCount(0) {} // Have the live registers been assigned a stack order yet? bool isFixed() const { return !Mask || FixCount; } }; // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges // with no live FP registers. SmallVector LiveBundles; // The edge bundle analysis provides indices into the LiveBundles vector. EdgeBundles *Bundles; // Return a bitmask of FP registers in block's live-in list. static unsigned calcLiveInMask(MachineBasicBlock *MBB) { unsigned Mask = 0; for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) { unsigned Reg = *I - X86::FP0; if (Reg < 8) Mask |= 1 << Reg; } return Mask; } // Partition all the CFG edges into LiveBundles. void bundleCFG(MachineFunction &MF); MachineBasicBlock *MBB; // Current basic block // The hardware keeps track of how many FP registers are live, so we have // to model that exactly. Usually, each live register corresponds to an // FP register, but when dealing with calls, returns, and inline // assembly, it is sometimes necessary to have live scratch registers. unsigned Stack[8]; // FP Registers in each stack slot... unsigned StackTop; // The current top of the FP stack. enum { NumFPRegs = 16 // Including scratch pseudo-registers. }; // For each live FP register, point to its Stack[] entry. // The first entries correspond to FP0-FP6, the rest are scratch registers // used when we need slightly different live registers than what the // register allocator thinks. unsigned RegMap[NumFPRegs]; // Pending fixed registers - Inline assembly needs FP registers to appear // in fixed stack slot positions. This is handled by copying FP registers // to ST registers before the instruction, and copying back after the // instruction. // // This is modeled with pending ST registers. NumPendingSTs is the number // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP // register that holds the ST value. The ST registers are not moved into // place until immediately before the instruction that needs them. // // It can happen that we need an ST register to be live when no FP register // holds the value: // // %ST0 = COPY %FP4 // // When that happens, we allocate a scratch FP register to hold the ST // value. That means every register in PendingST must be live. unsigned NumPendingSTs; unsigned char PendingST[8]; // Set up our stack model to match the incoming registers to MBB. void setupBlockStack(); // Shuffle live registers to match the expectations of successor blocks. void finishBlockStack(); #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void dumpStack() const { dbgs() << "Stack contents:"; for (unsigned i = 0; i != StackTop; ++i) { dbgs() << " FP" << Stack[i]; assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); } for (unsigned i = 0; i != NumPendingSTs; ++i) dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]); dbgs() << "\n"; } #endif /// getSlot - Return the stack slot number a particular register number is /// in. unsigned getSlot(unsigned RegNo) const { assert(RegNo < NumFPRegs && "Regno out of range!"); return RegMap[RegNo]; } /// isLive - Is RegNo currently live in the stack? bool isLive(unsigned RegNo) const { unsigned Slot = getSlot(RegNo); return Slot < StackTop && Stack[Slot] == RegNo; } /// getScratchReg - Return an FP register that is not currently in use. unsigned getScratchReg() const { for (int i = NumFPRegs - 1; i >= 8; --i) if (!isLive(i)) return i; llvm_unreachable("Ran out of scratch FP registers"); } /// isScratchReg - Returns trus if RegNo is a scratch FP register. static bool isScratchReg(unsigned RegNo) { return RegNo > 8 && RegNo < NumFPRegs; } /// getStackEntry - Return the X86::FP register in register ST(i). unsigned getStackEntry(unsigned STi) const { if (STi >= StackTop) report_fatal_error("Access past stack top!"); return Stack[StackTop-1-STi]; } /// getSTReg - Return the X86::ST(i) register which contains the specified /// FP register. unsigned getSTReg(unsigned RegNo) const { return StackTop - 1 - getSlot(RegNo) + X86::ST0; } // pushReg - Push the specified FP register onto the stack. void pushReg(unsigned Reg) { assert(Reg < NumFPRegs && "Register number out of range!"); if (StackTop >= 8) report_fatal_error("Stack overflow!"); Stack[StackTop] = Reg; RegMap[Reg] = StackTop++; } bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); if (isAtTop(RegNo)) return; unsigned STReg = getSTReg(RegNo); unsigned RegOnTop = getStackEntry(0); // Swap the slots the regs are in. std::swap(RegMap[RegNo], RegMap[RegOnTop]); // Swap stack slot contents. if (RegMap[RegOnTop] >= StackTop) report_fatal_error("Access past stack top!"); std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); // Emit an fxch to update the runtime processors version of the state. BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); ++NumFXCH; } void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); unsigned STReg = getSTReg(RegNo); pushReg(AsReg); // New register on top of stack BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); } /// duplicatePendingSTBeforeKill - The instruction at I is about to kill /// RegNo. If any PendingST registers still need the RegNo value, duplicate /// them to new scratch registers. void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) { for (unsigned i = 0; i != NumPendingSTs; ++i) { if (PendingST[i] != RegNo) continue; unsigned SR = getScratchReg(); DEBUG(dbgs() << "Duplicating pending ST" << i << " in FP" << RegNo << " to FP" << SR << '\n'); duplicateToTop(RegNo, SR, I); PendingST[i] = SR; } } /// popStackAfter - Pop the current value off of the top of the FP stack /// after the specified instruction. void popStackAfter(MachineBasicBlock::iterator &I); /// freeStackSlotAfter - Free the specified register from the register /// stack, so that it is no longer in a register. If the register is /// currently at the top of the stack, we just pop the current instruction, /// otherwise we store the current top-of-stack into the specified slot, /// then pop the top of stack. void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); /// freeStackSlotBefore - Just the pop, no folding. Return the inserted /// instruction. MachineBasicBlock::iterator freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); /// Adjust the live registers to be the set in Mask. void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is /// st(0), FP reg FixStack[1] is st(1) etc. void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, MachineBasicBlock::iterator I); bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); void handleZeroArgFP(MachineBasicBlock::iterator &I); void handleOneArgFP(MachineBasicBlock::iterator &I); void handleOneArgFPRW(MachineBasicBlock::iterator &I); void handleTwoArgFP(MachineBasicBlock::iterator &I); void handleCompareFP(MachineBasicBlock::iterator &I); void handleCondMovFP(MachineBasicBlock::iterator &I); void handleSpecialFP(MachineBasicBlock::iterator &I); // Check if a COPY instruction is using FP registers. static bool isFPCopy(MachineInstr *MI) { unsigned DstReg = MI->getOperand(0).getReg(); unsigned SrcReg = MI->getOperand(1).getReg(); return X86::RFP80RegClass.contains(DstReg) || X86::RFP80RegClass.contains(SrcReg); } }; char FPS::ID = 0; } FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } /// getFPReg - Return the X86::FPx register number for the specified operand. /// For example, this returns 3 for X86::FP3. static unsigned getFPReg(const MachineOperand &MO) { assert(MO.isReg() && "Expected an FP register!"); unsigned Reg = MO.getReg(); assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); return Reg - X86::FP0; } /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP /// register references into FP stack references. /// bool FPS::runOnMachineFunction(MachineFunction &MF) { // We only need to run this pass if there are any FP registers used in this // function. If it is all integer, there is nothing for us to do! bool FPIsUsed = false; assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); for (unsigned i = 0; i <= 6; ++i) if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { FPIsUsed = true; break; } // Early exit. if (!FPIsUsed) return false; Bundles = &getAnalysis(); TII = MF.getTarget().getInstrInfo(); // Prepare cross-MBB liveness. bundleCFG(MF); StackTop = 0; // Process the function in depth first order so that we process at least one // of the predecessors for every reachable block in the function. SmallPtrSet Processed; MachineBasicBlock *Entry = MF.begin(); bool Changed = false; for (df_ext_iterator > I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); I != E; ++I) Changed |= processBasicBlock(MF, **I); // Process any unreachable blocks in arbitrary order now. if (MF.size() != Processed.size()) for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) if (Processed.insert(BB)) Changed |= processBasicBlock(MF, *BB); LiveBundles.clear(); return Changed; } /// bundleCFG - Scan all the basic blocks to determine consistent live-in and /// live-out sets for the FP registers. Consistent means that the set of /// registers live-out from a block is identical to the live-in set of all /// successors. This is not enforced by the normal live-in lists since /// registers may be implicitly defined, or not used by all successors. void FPS::bundleCFG(MachineFunction &MF) { assert(LiveBundles.empty() && "Stale data in LiveBundles"); LiveBundles.resize(Bundles->getNumBundles()); // Gather the actual live-in masks for all MBBs. for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = I; const unsigned Mask = calcLiveInMask(MBB); if (!Mask) continue; // Update MBB ingoing bundle mask. LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask; } } /// processBasicBlock - Loop over all of the instructions in the basic block, /// transforming FP instructions into their stack form. /// bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { bool Changed = false; MBB = &BB; NumPendingSTs = 0; setupBlockStack(); for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { MachineInstr *MI = I; uint64_t Flags = MI->getDesc().TSFlags; unsigned FPInstClass = Flags & X86II::FPTypeMask; if (MI->isInlineAsm()) FPInstClass = X86II::SpecialFP; if (MI->isCopy() && isFPCopy(MI)) FPInstClass = X86II::SpecialFP; if (MI->isImplicitDef() && X86::RFP80RegClass.contains(MI->getOperand(0).getReg())) FPInstClass = X86II::SpecialFP; if (FPInstClass == X86II::NotFP) continue; // Efficiently ignore non-fp insts! MachineInstr *PrevMI = 0; if (I != BB.begin()) PrevMI = prior(I); ++NumFP; // Keep track of # of pseudo instrs DEBUG(dbgs() << "\nFPInst:\t" << *MI); // Get dead variables list now because the MI pointer may be deleted as part // of processing! SmallVector DeadRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDead()) DeadRegs.push_back(MO.getReg()); } switch (FPInstClass) { case X86II::ZeroArgFP: handleZeroArgFP(I); break; case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) case X86II::TwoArgFP: handleTwoArgFP(I); break; case X86II::CompareFP: handleCompareFP(I); break; case X86II::CondMovFP: handleCondMovFP(I); break; case X86II::SpecialFP: handleSpecialFP(I); break; default: llvm_unreachable("Unknown FP Type!"); } // Check to see if any of the values defined by this instruction are dead // after definition. If so, pop them. for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { unsigned Reg = DeadRegs[i]; if (Reg >= X86::FP0 && Reg <= X86::FP6) { DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); freeStackSlotAfter(I, Reg-X86::FP0); } } // Print out all of the instructions expanded to if -debug DEBUG( MachineBasicBlock::iterator PrevI(PrevMI); if (I == PrevI) { dbgs() << "Just deleted pseudo instruction\n"; } else { MachineBasicBlock::iterator Start = I; // Rewind to first instruction newly inserted. while (Start != BB.begin() && prior(Start) != PrevI) --Start; dbgs() << "Inserted instructions:\n\t"; Start->print(dbgs(), &MF.getTarget()); while (++Start != llvm::next(I)) {} } dumpStack(); ); (void)PrevMI; Changed = true; } finishBlockStack(); return Changed; } /// setupBlockStack - Use the live bundles to set up our model of the stack /// to match predecessors' live out stack. void FPS::setupBlockStack() { DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber() << " derived from " << MBB->getName() << ".\n"); StackTop = 0; // Get the live-in bundle for MBB. const LiveBundle &Bundle = LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; if (!Bundle.Mask) { DEBUG(dbgs() << "Block has no FP live-ins.\n"); return; } // Depth-first iteration should ensure that we always have an assigned stack. assert(Bundle.isFixed() && "Reached block before any predecessors"); // Push the fixed live-in registers. for (unsigned i = Bundle.FixCount; i > 0; --i) { MBB->addLiveIn(X86::ST0+i-1); DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP" << unsigned(Bundle.FixStack[i-1]) << '\n'); pushReg(Bundle.FixStack[i-1]); } // Kill off unwanted live-ins. This can happen with a critical edge. // FIXME: We could keep these live registers around as zombies. They may need // to be revived at the end of a short block. It might save a few instrs. adjustLiveRegs(calcLiveInMask(MBB), MBB->begin()); DEBUG(MBB->dump()); } /// finishBlockStack - Revive live-outs that are implicitly defined out of /// MBB. Shuffle live registers to match the expected fixed stack of any /// predecessors, and ensure that all predecessors are expecting the same /// stack. void FPS::finishBlockStack() { // The RET handling below takes care of return blocks for us. if (MBB->succ_empty()) return; DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber() << " derived from " << MBB->getName() << ".\n"); // Get MBB's live-out bundle. unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); LiveBundle &Bundle = LiveBundles[BundleIdx]; // We may need to kill and define some registers to match successors. // FIXME: This can probably be combined with the shuffle below. MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); adjustLiveRegs(Bundle.Mask, Term); if (!Bundle.Mask) { DEBUG(dbgs() << "No live-outs.\n"); return; } // Has the stack order been fixed yet? DEBUG(dbgs() << "LB#" << BundleIdx << ": "); if (Bundle.isFixed()) { DEBUG(dbgs() << "Shuffling stack to match.\n"); shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); } else { // Not fixed yet, we get to choose. DEBUG(dbgs() << "Fixing stack order now.\n"); Bundle.FixCount = StackTop; for (unsigned i = 0; i < StackTop; ++i) Bundle.FixStack[i] = getStackEntry(i); } } //===----------------------------------------------------------------------===// // Efficient Lookup Table Support //===----------------------------------------------------------------------===// namespace { struct TableEntry { uint16_t from; uint16_t to; bool operator<(const TableEntry &TE) const { return from < TE.from; } friend bool operator<(const TableEntry &TE, unsigned V) { return TE.from < V; } friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, const TableEntry &TE) { return V < TE.from; } }; } #ifndef NDEBUG static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { for (unsigned i = 0; i != NumEntries-1; ++i) if (!(Table[i] < Table[i+1])) return false; return true; } #endif static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); if (I != Table+N && I->from == Opcode) return I->to; return -1; } #ifdef NDEBUG #define ASSERT_SORTED(TABLE) #else #define ASSERT_SORTED(TABLE) \ { static bool TABLE##Checked = false; \ if (!TABLE##Checked) { \ assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ "All lookup tables must be sorted for efficient access!"); \ TABLE##Checked = true; \ } \ } #endif //===----------------------------------------------------------------------===// // Register File -> Register Stack Mapping Methods //===----------------------------------------------------------------------===// // OpcodeTable - Sorted map of register instructions to their stack version. // The first element is an register file pseudo instruction, the second is the // concrete X86 instruction which uses the register stack. // static const TableEntry OpcodeTable[] = { { X86::ABS_Fp32 , X86::ABS_F }, { X86::ABS_Fp64 , X86::ABS_F }, { X86::ABS_Fp80 , X86::ABS_F }, { X86::ADD_Fp32m , X86::ADD_F32m }, { X86::ADD_Fp64m , X86::ADD_F64m }, { X86::ADD_Fp64m32 , X86::ADD_F32m }, { X86::ADD_Fp80m32 , X86::ADD_F32m }, { X86::ADD_Fp80m64 , X86::ADD_F64m }, { X86::ADD_FpI16m32 , X86::ADD_FI16m }, { X86::ADD_FpI16m64 , X86::ADD_FI16m }, { X86::ADD_FpI16m80 , X86::ADD_FI16m }, { X86::ADD_FpI32m32 , X86::ADD_FI32m }, { X86::ADD_FpI32m64 , X86::ADD_FI32m }, { X86::ADD_FpI32m80 , X86::ADD_FI32m }, { X86::CHS_Fp32 , X86::CHS_F }, { X86::CHS_Fp64 , X86::CHS_F }, { X86::CHS_Fp80 , X86::CHS_F }, { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, { X86::CMOVB_Fp32 , X86::CMOVB_F }, { X86::CMOVB_Fp64 , X86::CMOVB_F }, { X86::CMOVB_Fp80 , X86::CMOVB_F }, { X86::CMOVE_Fp32 , X86::CMOVE_F }, { X86::CMOVE_Fp64 , X86::CMOVE_F }, { X86::CMOVE_Fp80 , X86::CMOVE_F }, { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, { X86::CMOVP_Fp32 , X86::CMOVP_F }, { X86::CMOVP_Fp64 , X86::CMOVP_F }, { X86::CMOVP_Fp80 , X86::CMOVP_F }, { X86::COS_Fp32 , X86::COS_F }, { X86::COS_Fp64 , X86::COS_F }, { X86::COS_Fp80 , X86::COS_F }, { X86::DIVR_Fp32m , X86::DIVR_F32m }, { X86::DIVR_Fp64m , X86::DIVR_F64m }, { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, { X86::DIV_Fp32m , X86::DIV_F32m }, { X86::DIV_Fp64m , X86::DIV_F64m }, { X86::DIV_Fp64m32 , X86::DIV_F32m }, { X86::DIV_Fp80m32 , X86::DIV_F32m }, { X86::DIV_Fp80m64 , X86::DIV_F64m }, { X86::DIV_FpI16m32 , X86::DIV_FI16m }, { X86::DIV_FpI16m64 , X86::DIV_FI16m }, { X86::DIV_FpI16m80 , X86::DIV_FI16m }, { X86::DIV_FpI32m32 , X86::DIV_FI32m }, { X86::DIV_FpI32m64 , X86::DIV_FI32m }, { X86::DIV_FpI32m80 , X86::DIV_FI32m }, { X86::ILD_Fp16m32 , X86::ILD_F16m }, { X86::ILD_Fp16m64 , X86::ILD_F16m }, { X86::ILD_Fp16m80 , X86::ILD_F16m }, { X86::ILD_Fp32m32 , X86::ILD_F32m }, { X86::ILD_Fp32m64 , X86::ILD_F32m }, { X86::ILD_Fp32m80 , X86::ILD_F32m }, { X86::ILD_Fp64m32 , X86::ILD_F64m }, { X86::ILD_Fp64m64 , X86::ILD_F64m }, { X86::ILD_Fp64m80 , X86::ILD_F64m }, { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, { X86::IST_Fp16m32 , X86::IST_F16m }, { X86::IST_Fp16m64 , X86::IST_F16m }, { X86::IST_Fp16m80 , X86::IST_F16m }, { X86::IST_Fp32m32 , X86::IST_F32m }, { X86::IST_Fp32m64 , X86::IST_F32m }, { X86::IST_Fp32m80 , X86::IST_F32m }, { X86::IST_Fp64m32 , X86::IST_FP64m }, { X86::IST_Fp64m64 , X86::IST_FP64m }, { X86::IST_Fp64m80 , X86::IST_FP64m }, { X86::LD_Fp032 , X86::LD_F0 }, { X86::LD_Fp064 , X86::LD_F0 }, { X86::LD_Fp080 , X86::LD_F0 }, { X86::LD_Fp132 , X86::LD_F1 }, { X86::LD_Fp164 , X86::LD_F1 }, { X86::LD_Fp180 , X86::LD_F1 }, { X86::LD_Fp32m , X86::LD_F32m }, { X86::LD_Fp32m64 , X86::LD_F32m }, { X86::LD_Fp32m80 , X86::LD_F32m }, { X86::LD_Fp64m , X86::LD_F64m }, { X86::LD_Fp64m80 , X86::LD_F64m }, { X86::LD_Fp80m , X86::LD_F80m }, { X86::MUL_Fp32m , X86::MUL_F32m }, { X86::MUL_Fp64m , X86::MUL_F64m }, { X86::MUL_Fp64m32 , X86::MUL_F32m }, { X86::MUL_Fp80m32 , X86::MUL_F32m }, { X86::MUL_Fp80m64 , X86::MUL_F64m }, { X86::MUL_FpI16m32 , X86::MUL_FI16m }, { X86::MUL_FpI16m64 , X86::MUL_FI16m }, { X86::MUL_FpI16m80 , X86::MUL_FI16m }, { X86::MUL_FpI32m32 , X86::MUL_FI32m }, { X86::MUL_FpI32m64 , X86::MUL_FI32m }, { X86::MUL_FpI32m80 , X86::MUL_FI32m }, { X86::SIN_Fp32 , X86::SIN_F }, { X86::SIN_Fp64 , X86::SIN_F }, { X86::SIN_Fp80 , X86::SIN_F }, { X86::SQRT_Fp32 , X86::SQRT_F }, { X86::SQRT_Fp64 , X86::SQRT_F }, { X86::SQRT_Fp80 , X86::SQRT_F }, { X86::ST_Fp32m , X86::ST_F32m }, { X86::ST_Fp64m , X86::ST_F64m }, { X86::ST_Fp64m32 , X86::ST_F32m }, { X86::ST_Fp80m32 , X86::ST_F32m }, { X86::ST_Fp80m64 , X86::ST_F64m }, { X86::ST_FpP80m , X86::ST_FP80m }, { X86::SUBR_Fp32m , X86::SUBR_F32m }, { X86::SUBR_Fp64m , X86::SUBR_F64m }, { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, { X86::SUB_Fp32m , X86::SUB_F32m }, { X86::SUB_Fp64m , X86::SUB_F64m }, { X86::SUB_Fp64m32 , X86::SUB_F32m }, { X86::SUB_Fp80m32 , X86::SUB_F32m }, { X86::SUB_Fp80m64 , X86::SUB_F64m }, { X86::SUB_FpI16m32 , X86::SUB_FI16m }, { X86::SUB_FpI16m64 , X86::SUB_FI16m }, { X86::SUB_FpI16m80 , X86::SUB_FI16m }, { X86::SUB_FpI32m32 , X86::SUB_FI32m }, { X86::SUB_FpI32m64 , X86::SUB_FI32m }, { X86::SUB_FpI32m80 , X86::SUB_FI32m }, { X86::TST_Fp32 , X86::TST_F }, { X86::TST_Fp64 , X86::TST_F }, { X86::TST_Fp80 , X86::TST_F }, { X86::UCOM_FpIr32 , X86::UCOM_FIr }, { X86::UCOM_FpIr64 , X86::UCOM_FIr }, { X86::UCOM_FpIr80 , X86::UCOM_FIr }, { X86::UCOM_Fpr32 , X86::UCOM_Fr }, { X86::UCOM_Fpr64 , X86::UCOM_Fr }, { X86::UCOM_Fpr80 , X86::UCOM_Fr }, }; static unsigned getConcreteOpcode(unsigned Opcode) { ASSERT_SORTED(OpcodeTable); int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); return Opc; } //===----------------------------------------------------------------------===// // Helper Methods //===----------------------------------------------------------------------===// // PopTable - Sorted map of instructions to their popping version. The first // element is an instruction, the second is the version which pops. // static const TableEntry PopTable[] = { { X86::ADD_FrST0 , X86::ADD_FPrST0 }, { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, { X86::DIV_FrST0 , X86::DIV_FPrST0 }, { X86::IST_F16m , X86::IST_FP16m }, { X86::IST_F32m , X86::IST_FP32m }, { X86::MUL_FrST0 , X86::MUL_FPrST0 }, { X86::ST_F32m , X86::ST_FP32m }, { X86::ST_F64m , X86::ST_FP64m }, { X86::ST_Frr , X86::ST_FPrr }, { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, { X86::SUB_FrST0 , X86::SUB_FPrST0 }, { X86::UCOM_FIr , X86::UCOM_FIPr }, { X86::UCOM_FPr , X86::UCOM_FPPr }, { X86::UCOM_Fr , X86::UCOM_FPr }, }; /// popStackAfter - Pop the current value off of the top of the FP stack after /// the specified instruction. This attempts to be sneaky and combine the pop /// into the instruction itself if possible. The iterator is left pointing to /// the last instruction, be it a new pop instruction inserted, or the old /// instruction if it was modified in place. /// void FPS::popStackAfter(MachineBasicBlock::iterator &I) { MachineInstr* MI = I; DebugLoc dl = MI->getDebugLoc(); ASSERT_SORTED(PopTable); if (StackTop == 0) report_fatal_error("Cannot pop empty stack!"); RegMap[Stack[--StackTop]] = ~0; // Update state // Check to see if there is a popping version of this instruction... int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); if (Opcode != -1) { I->setDesc(TII->get(Opcode)); if (Opcode == X86::UCOM_FPPr) I->RemoveOperand(0); } else { // Insert an explicit pop I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); } } /// freeStackSlotAfter - Free the specified register from the register stack, so /// that it is no longer in a register. If the register is currently at the top /// of the stack, we just pop the current instruction, otherwise we store the /// current top-of-stack into the specified slot, then pop the top of stack. void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. popStackAfter(I); return; } // Otherwise, store the top of stack into the dead slot, killing the operand // without having to add in an explicit xchg then pop. // I = freeStackSlotBefore(++I, FPRegNo); } /// freeStackSlotBefore - Free the specified register without trying any /// folding. MachineBasicBlock::iterator FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { unsigned STReg = getSTReg(FPRegNo); unsigned OldSlot = getSlot(FPRegNo); unsigned TopReg = Stack[StackTop-1]; Stack[OldSlot] = TopReg; RegMap[TopReg] = OldSlot; RegMap[FPRegNo] = ~0; Stack[--StackTop] = ~0; return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg); } /// adjustLiveRegs - Kill and revive registers such that exactly the FP /// registers with a bit in Mask are live. void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { unsigned Defs = Mask; unsigned Kills = 0; for (unsigned i = 0; i < StackTop; ++i) { unsigned RegNo = Stack[i]; if (!(Defs & (1 << RegNo))) // This register is live, but we don't want it. Kills |= (1 << RegNo); else // We don't need to imp-def this live register. Defs &= ~(1 << RegNo); } assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); // Produce implicit-defs for free by using killed registers. while (Kills && Defs) { unsigned KReg = CountTrailingZeros_32(Kills); unsigned DReg = CountTrailingZeros_32(Defs); DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n"); std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); std::swap(RegMap[KReg], RegMap[DReg]); Kills &= ~(1 << KReg); Defs &= ~(1 << DReg); } // Kill registers by popping. if (Kills && I != MBB->begin()) { MachineBasicBlock::iterator I2 = llvm::prior(I); while (StackTop) { unsigned KReg = getStackEntry(0); if (!(Kills & (1 << KReg))) break; DEBUG(dbgs() << "Popping %FP" << KReg << "\n"); popStackAfter(I2); Kills &= ~(1 << KReg); } } // Manually kill the rest. while (Kills) { unsigned KReg = CountTrailingZeros_32(Kills); DEBUG(dbgs() << "Killing %FP" << KReg << "\n"); freeStackSlotBefore(I, KReg); Kills &= ~(1 << KReg); } // Load zeros for all the imp-defs. while(Defs) { unsigned DReg = CountTrailingZeros_32(Defs); DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n"); BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); pushReg(DReg); Defs &= ~(1 << DReg); } // Now we should have the correct registers live. DEBUG(dumpStack()); assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch"); } /// shuffleStackTop - emit fxch instructions before I to shuffle the top /// FixCount entries into the order given by FixStack. /// FIXME: Is there a better algorithm than insertion sort? void FPS::shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, MachineBasicBlock::iterator I) { // Move items into place, starting from the desired stack bottom. while (FixCount--) { // Old register at position FixCount. unsigned OldReg = getStackEntry(FixCount); // Desired register at position FixCount. unsigned Reg = FixStack[FixCount]; if (Reg == OldReg) continue; // (Reg st0) (OldReg st0) = (Reg OldReg st0) moveToTop(Reg, I); if (FixCount > 0) moveToTop(OldReg, I); } DEBUG(dumpStack()); } //===----------------------------------------------------------------------===// // Instruction transformation implementation //===----------------------------------------------------------------------===// /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds /// void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned DestReg = getFPReg(MI->getOperand(0)); // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(0); // Remove the explicit ST(0) operand MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // Result gets pushed on the stack. pushReg(DestReg); } /// handleOneArgFP - fst , ST(0) /// void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned NumOps = MI->getDesc().getNumOperands(); assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && "Can only handle fst* & ftst instructions!"); // Is this the last use of the source register? unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); bool KillsSrc = MI->killsRegister(X86::FP0+Reg); if (KillsSrc) duplicatePendingSTBeforeKill(Reg, I); // FISTP64m is strange because there isn't a non-popping versions. // If we have one _and_ we don't want to pop the operand, duplicate the value // on the stack instead of moving it. This ensure that popping the value is // always ok. // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. // if (!KillsSrc && (MI->getOpcode() == X86::IST_Fp64m32 || MI->getOpcode() == X86::ISTT_Fp16m32 || MI->getOpcode() == X86::ISTT_Fp32m32 || MI->getOpcode() == X86::ISTT_Fp64m32 || MI->getOpcode() == X86::IST_Fp64m64 || MI->getOpcode() == X86::ISTT_Fp16m64 || MI->getOpcode() == X86::ISTT_Fp32m64 || MI->getOpcode() == X86::ISTT_Fp64m64 || MI->getOpcode() == X86::IST_Fp64m80 || MI->getOpcode() == X86::ISTT_Fp16m80 || MI->getOpcode() == X86::ISTT_Fp32m80 || MI->getOpcode() == X86::ISTT_Fp64m80 || MI->getOpcode() == X86::ST_FpP80m)) { duplicateToTop(Reg, getScratchReg(), I); } else { moveToTop(Reg, I); // Move to the top of the stack... } // Convert from the pseudo instruction to the concrete instruction. MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); if (MI->getOpcode() == X86::IST_FP64m || MI->getOpcode() == X86::ISTT_FP16m || MI->getOpcode() == X86::ISTT_FP32m || MI->getOpcode() == X86::ISTT_FP64m || MI->getOpcode() == X86::ST_FP80m) { if (StackTop == 0) report_fatal_error("Stack empty??"); --StackTop; } else if (KillsSrc) { // Last use of operand? popStackAfter(I); } } /// handleOneArgFPRW: Handle instructions that read from the top of stack and /// replace the value with a newly computed value. These instructions may have /// non-fp operands after their FP operands. /// /// Examples: /// R1 = fchs R2 /// R1 = fadd R2, [mem] /// void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; #ifndef NDEBUG unsigned NumOps = MI->getDesc().getNumOperands(); assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); #endif // Is this the last use of the source register? unsigned Reg = getFPReg(MI->getOperand(1)); bool KillsSrc = MI->killsRegister(X86::FP0+Reg); if (KillsSrc) { duplicatePendingSTBeforeKill(Reg, I); // If this is the last use of the source register, just make sure it's on // the top of the stack. moveToTop(Reg, I); if (StackTop == 0) report_fatal_error("Stack cannot be empty!"); --StackTop; pushReg(getFPReg(MI->getOperand(0))); } else { // If this is not the last use of the source register, _copy_ it to the top // of the stack. duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); } // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(1); // Drop the source operand. MI->RemoveOperand(0); // Drop the destination operand. MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); } //===----------------------------------------------------------------------===// // Define tables of various ways to map pseudo instructions // // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) static const TableEntry ForwardST0Table[] = { { X86::ADD_Fp32 , X86::ADD_FST0r }, { X86::ADD_Fp64 , X86::ADD_FST0r }, { X86::ADD_Fp80 , X86::ADD_FST0r }, { X86::DIV_Fp32 , X86::DIV_FST0r }, { X86::DIV_Fp64 , X86::DIV_FST0r }, { X86::DIV_Fp80 , X86::DIV_FST0r }, { X86::MUL_Fp32 , X86::MUL_FST0r }, { X86::MUL_Fp64 , X86::MUL_FST0r }, { X86::MUL_Fp80 , X86::MUL_FST0r }, { X86::SUB_Fp32 , X86::SUB_FST0r }, { X86::SUB_Fp64 , X86::SUB_FST0r }, { X86::SUB_Fp80 , X86::SUB_FST0r }, }; // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) static const TableEntry ReverseST0Table[] = { { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative { X86::DIV_Fp32 , X86::DIVR_FST0r }, { X86::DIV_Fp64 , X86::DIVR_FST0r }, { X86::DIV_Fp80 , X86::DIVR_FST0r }, { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative { X86::SUB_Fp32 , X86::SUBR_FST0r }, { X86::SUB_Fp64 , X86::SUBR_FST0r }, { X86::SUB_Fp80 , X86::SUBR_FST0r }, }; // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) static const TableEntry ForwardSTiTable[] = { { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative { X86::DIV_Fp32 , X86::DIVR_FrST0 }, { X86::DIV_Fp64 , X86::DIVR_FrST0 }, { X86::DIV_Fp80 , X86::DIVR_FrST0 }, { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative { X86::SUB_Fp32 , X86::SUBR_FrST0 }, { X86::SUB_Fp64 , X86::SUBR_FrST0 }, { X86::SUB_Fp80 , X86::SUBR_FrST0 }, }; // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) static const TableEntry ReverseSTiTable[] = { { X86::ADD_Fp32 , X86::ADD_FrST0 }, { X86::ADD_Fp64 , X86::ADD_FrST0 }, { X86::ADD_Fp80 , X86::ADD_FrST0 }, { X86::DIV_Fp32 , X86::DIV_FrST0 }, { X86::DIV_Fp64 , X86::DIV_FrST0 }, { X86::DIV_Fp80 , X86::DIV_FrST0 }, { X86::MUL_Fp32 , X86::MUL_FrST0 }, { X86::MUL_Fp64 , X86::MUL_FrST0 }, { X86::MUL_Fp80 , X86::MUL_FrST0 }, { X86::SUB_Fp32 , X86::SUB_FrST0 }, { X86::SUB_Fp64 , X86::SUB_FrST0 }, { X86::SUB_Fp80 , X86::SUB_FrST0 }, }; /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual /// instructions which need to be simplified and possibly transformed. /// /// Result: ST(0) = fsub ST(0), ST(i) /// ST(i) = fsub ST(0), ST(i) /// ST(0) = fsubr ST(0), ST(i) /// ST(i) = fsubr ST(0), ST(i) /// void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); MachineInstr *MI = I; unsigned NumOperands = MI->getDesc().getNumOperands(); assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); unsigned Dest = getFPReg(MI->getOperand(0)); unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); DebugLoc dl = MI->getDebugLoc(); unsigned TOS = getStackEntry(0); // One of our operands must be on the top of the stack. If neither is yet, we // need to move one. if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? // We can choose to move either operand to the top of the stack. If one of // the operands is killed by this instruction, we want that one so that we // can update right on top of the old version. if (KillsOp0) { moveToTop(Op0, I); // Move dead operand to TOS. TOS = Op0; } else if (KillsOp1) { moveToTop(Op1, I); TOS = Op1; } else { // All of the operands are live after this instruction executes, so we // cannot update on top of any operand. Because of this, we must // duplicate one of the stack elements to the top. It doesn't matter // which one we pick. // duplicateToTop(Op0, Dest, I); Op0 = TOS = Dest; KillsOp0 = true; } } else if (!KillsOp0 && !KillsOp1) { // If we DO have one of our operands at the top of the stack, but we don't // have a dead operand, we must duplicate one of the operands to a new slot // on the stack. duplicateToTop(Op0, Dest, I); Op0 = TOS = Dest; KillsOp0 = true; } // Now we know that one of our operands is on the top of the stack, and at // least one of our operands is killed by this instruction. assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && "Stack conditions not set up right!"); // We decide which form to use based on what is on the top of the stack, and // which operand is killed by this instruction. const TableEntry *InstTable; bool isForward = TOS == Op0; bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); if (updateST0) { if (isForward) InstTable = ForwardST0Table; else InstTable = ReverseST0Table; } else { if (isForward) InstTable = ForwardSTiTable; else InstTable = ReverseSTiTable; } int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), MI->getOpcode()); assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); // NotTOS - The register which is not on the top of stack... unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; // Replace the old instruction with a new instruction MBB->remove(I++); I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); // If both operands are killed, pop one off of the stack in addition to // overwriting the other one. if (KillsOp0 && KillsOp1 && Op0 != Op1) { assert(!updateST0 && "Should have updated other operand!"); popStackAfter(I); // Pop the top of stack } // Update stack information so that we know the destination register is now on // the stack. unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); assert(UpdatedSlot < StackTop && Dest < 7); Stack[UpdatedSlot] = Dest; RegMap[Dest] = UpdatedSlot; MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction } /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP /// register arguments and no explicit destinations. /// void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); MachineInstr *MI = I; unsigned NumOperands = MI->getDesc().getNumOperands(); assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); // Make sure the first operand is on the top of stack, the other one can be // anywhere. moveToTop(Op0, I); // Change from the pseudo instruction to the concrete instruction. MI->getOperand(0).setReg(getSTReg(Op1)); MI->RemoveOperand(1); MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // If any of the operands are killed by this instruction, free them. if (KillsOp0) freeStackSlotAfter(I, Op0); if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); } /// handleCondMovFP - Handle two address conditional move instructions. These /// instructions move a st(i) register to st(0) iff a condition is true. These /// instructions require that the first operand is at the top of the stack, but /// otherwise don't modify the stack at all. void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned Op0 = getFPReg(MI->getOperand(0)); unsigned Op1 = getFPReg(MI->getOperand(2)); bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); // The first operand *must* be on the top of the stack. moveToTop(Op0, I); // Change the second operand to the stack register that the operand is in. // Change from the pseudo instruction to the concrete instruction. MI->RemoveOperand(0); MI->RemoveOperand(1); MI->getOperand(0).setReg(getSTReg(Op1)); MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); // If we kill the second operand, make sure to pop it from the stack. if (Op0 != Op1 && KillsOp1) { // Get this value off of the register stack. freeStackSlotAfter(I, Op1); } } /// handleSpecialFP - Handle special instructions which behave unlike other /// floating point instructions. This is primarily intended for use by pseudo /// instructions. /// void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown SpecialFP instruction!"); case TargetOpcode::COPY: { // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. const MachineOperand &MO1 = MI->getOperand(1); const MachineOperand &MO0 = MI->getOperand(0); unsigned DstST = MO0.getReg() - X86::ST0; unsigned SrcST = MO1.getReg() - X86::ST0; bool KillsSrc = MI->killsRegister(MO1.getReg()); // ST = COPY FP. Set up a pending ST register. if (DstST < 8) { unsigned SrcFP = getFPReg(MO1); assert(isLive(SrcFP) && "Cannot copy dead register"); assert(!MO0.isDead() && "Cannot copy to dead ST register"); // Unallocated STs are marked as the nonexistent FP255. while (NumPendingSTs <= DstST) PendingST[NumPendingSTs++] = NumFPRegs; // STi could still be live from a previous inline asm. if (isScratchReg(PendingST[DstST])) { DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST]) << '\n'); freeStackSlotBefore(MI, PendingST[DstST]); } // When the source is killed, allocate a scratch FP register. if (KillsSrc) { duplicatePendingSTBeforeKill(SrcFP, I); unsigned Slot = getSlot(SrcFP); unsigned SR = getScratchReg(); PendingST[DstST] = SR; Stack[Slot] = SR; RegMap[SR] = Slot; } else PendingST[DstST] = SrcFP; break; } // FP = COPY ST. Extract fixed stack value. // Any instruction defining ST registers must have assigned them to a // scratch register. if (SrcST < 8) { unsigned DstFP = getFPReg(MO0); assert(!isLive(DstFP) && "Cannot copy ST to live FP register"); assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register"); unsigned SrcFP = PendingST[SrcST]; assert(isScratchReg(SrcFP) && "Expected ST in a scratch register"); assert(isLive(SrcFP) && "Scratch holding ST is dead"); // DstFP steals the stack slot from SrcFP. unsigned Slot = getSlot(SrcFP); Stack[Slot] = DstFP; RegMap[DstFP] = Slot; // Always treat the ST as killed. PendingST[SrcST] = NumFPRegs; while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) --NumPendingSTs; break; } // FP <- FP copy. unsigned DstFP = getFPReg(MO0); unsigned SrcFP = getFPReg(MO1); assert(isLive(SrcFP) && "Cannot copy dead register"); if (KillsSrc) { // If the input operand is killed, we can just change the owner of the // incoming stack slot into the result. unsigned Slot = getSlot(SrcFP); Stack[Slot] = DstFP; RegMap[DstFP] = Slot; } else { // For COPY we just duplicate the specified value to a new stack slot. // This could be made better, but would require substantial changes. duplicateToTop(SrcFP, DstFP, I); } break; } case TargetOpcode::IMPLICIT_DEF: { // All FP registers must be explicitly defined, so load a 0 instead. unsigned Reg = MI->getOperand(0).getReg() - X86::FP0; DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); pushReg(Reg); break; } case X86::FpPOP_RETVAL: { // The FpPOP_RETVAL instruction is used after calls that return a value on // the floating point stack. We cannot model this with ST defs since CALL // instructions have fixed clobber lists. This instruction is interpreted // to mean that there is one more live register on the stack than we // thought. // // This means that StackTop does not match the hardware stack between a // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions // between CALL and FpPOP_RETVAL as long as they don't overflow the // hardware stack. unsigned DstFP = getFPReg(MI->getOperand(0)); // Move existing stack elements up to reflect reality. assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL"); if (StackTop) { std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1); for (unsigned i = 0; i != NumFPRegs; ++i) ++RegMap[i]; } ++StackTop; // DstFP is the new bottom of the stack. Stack[0] = DstFP; RegMap[DstFP] = 0; // DstFP will be killed by processBasicBlock if this was a dead def. break; } case TargetOpcode::INLINEASM: { // The inline asm MachineInstr currently only *uses* FP registers for the // 'f' constraint. These should be turned into the current ST(x) register // in the machine instr. // // There are special rules for x87 inline assembly. The compiler must know // exactly how many registers are popped and pushed implicitly by the asm. // Otherwise it is not possible to restore the stack state after the inline // asm. // // There are 3 kinds of input operands: // // 1. Popped inputs. These must appear at the stack top in ST0-STn. A // popped input operand must be in a fixed stack slot, and it is either // tied to an output operand, or in the clobber list. The MI has ST use // and def operands for these inputs. // // 2. Fixed inputs. These inputs appear in fixed stack slots, but are // preserved by the inline asm. The fixed stack slots must be STn-STm // following the popped inputs. A fixed input operand cannot be tied to // an output or appear in the clobber list. The MI has ST use operands // and no defs for these inputs. // // 3. Preserved inputs. These inputs use the "f" constraint which is // represented as an FP register. The inline asm won't change these // stack slots. // // Outputs must be in ST registers, FP outputs are not allowed. Clobbered // registers do not count as output operands. The inline asm changes the // stack as if it popped all the popped inputs and then pushed all the // output operands. // Scan the assembly for ST registers used, defined and clobbered. We can // only tell clobbers from defs by looking at the asm descriptor. unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; unsigned NumOps = 0; for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) { unsigned Flags = MI->getOperand(i).getImm(); NumOps = InlineAsm::getNumOperandRegisters(Flags); if (NumOps != 1) continue; const MachineOperand &MO = MI->getOperand(i + 1); if (!MO.isReg()) continue; unsigned STReg = MO.getReg() - X86::ST0; if (STReg >= 8) continue; switch (InlineAsm::getKind(Flags)) { case InlineAsm::Kind_RegUse: STUses |= (1u << STReg); break; case InlineAsm::Kind_RegDef: case InlineAsm::Kind_RegDefEarlyClobber: STDefs |= (1u << STReg); if (MO.isDead()) STDeadDefs |= (1u << STReg); break; case InlineAsm::Kind_Clobber: STClobbers |= (1u << STReg); break; default: break; } } if (STUses && !isMask_32(STUses)) MI->emitError("fixed input regs must be last on the x87 stack"); unsigned NumSTUses = CountTrailingOnes_32(STUses); // Defs must be contiguous from the stack top. ST0-STn. if (STDefs && !isMask_32(STDefs)) { MI->emitError("output regs must be last on the x87 stack"); STDefs = NextPowerOf2(STDefs) - 1; } unsigned NumSTDefs = CountTrailingOnes_32(STDefs); // So must the clobbered stack slots. ST0-STm, m >= n. if (STClobbers && !isMask_32(STDefs | STClobbers)) MI->emitError("clobbers must be last on the x87 stack"); // Popped inputs are the ones that are also clobbered or defined. unsigned STPopped = STUses & (STDefs | STClobbers); if (STPopped && !isMask_32(STPopped)) MI->emitError("implicitly popped regs must be last on the x87 stack"); unsigned NumSTPopped = CountTrailingOnes_32(STPopped); DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n"); // Scan the instruction for FP uses corresponding to "f" constraints. // Collect FP registers to kill afer the instruction. // Always kill all the scratch regs. unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; unsigned FPUsed = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &Op = MI->getOperand(i); if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) continue; if (!Op.isUse()) MI->emitError("illegal \"f\" output constraint"); unsigned FPReg = getFPReg(Op); FPUsed |= 1U << FPReg; // If we kill this operand, make sure to pop it from the stack after the // asm. We just remember it for now, and pop them all off at the end in // a batch. if (Op.isKill()) FPKills |= 1U << FPReg; } // The popped inputs will be killed by the instruction, so duplicate them // if the FP register needs to be live after the instruction, or if it is // used in the instruction itself. We effectively treat the popped inputs // as early clobbers. for (unsigned i = 0; i < NumSTPopped; ++i) { if ((FPKills & ~FPUsed) & (1u << PendingST[i])) continue; unsigned SR = getScratchReg(); duplicateToTop(PendingST[i], SR, I); DEBUG(dbgs() << "Duplicating ST" << i << " in FP" << unsigned(PendingST[i]) << " to avoid clobbering it.\n"); PendingST[i] = SR; } // Make sure we have a unique live register for every fixed use. Some of // them could be undef uses, and we need to emit LD_F0 instructions. for (unsigned i = 0; i < NumSTUses; ++i) { if (i < NumPendingSTs && PendingST[i] < NumFPRegs) { // Check for shared assignments. for (unsigned j = 0; j < i; ++j) { if (PendingST[j] != PendingST[i]) continue; // STi and STj are inn the same register, create a copy. unsigned SR = getScratchReg(); duplicateToTop(PendingST[i], SR, I); DEBUG(dbgs() << "Duplicating ST" << i << " in FP" << unsigned(PendingST[i]) << " to avoid collision with ST" << j << '\n'); PendingST[i] = SR; } continue; } unsigned SR = getScratchReg(); DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n'); BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); pushReg(SR); PendingST[i] = SR; if (NumPendingSTs == i) ++NumPendingSTs; } assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned"); // Now we can rearrange the live registers to match what was requested. shuffleStackTop(PendingST, NumPendingSTs, I); DEBUG({dbgs() << "Before asm: "; dumpStack();}); // With the stack layout fixed, rewrite the FP registers. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &Op = MI->getOperand(i); if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) continue; unsigned FPReg = getFPReg(Op); Op.setReg(getSTReg(FPReg)); } // Simulate the inline asm popping its inputs and pushing its outputs. StackTop -= NumSTPopped; // Hold the fixed output registers in scratch FP registers. They will be // transferred to real FP registers by copies. NumPendingSTs = 0; for (unsigned i = 0; i < NumSTDefs; ++i) { unsigned SR = getScratchReg(); pushReg(SR); FPKills &= ~(1u << SR); } for (unsigned i = 0; i < NumSTDefs; ++i) PendingST[NumPendingSTs++] = getStackEntry(i); DEBUG({dbgs() << "After asm: "; dumpStack();}); // If any of the ST defs were dead, pop them immediately. Our caller only // handles dead FP defs. MachineBasicBlock::iterator InsertPt = MI; for (unsigned i = 0; STDefs & (1u << i); ++i) { if (!(STDeadDefs & (1u << i))) continue; freeStackSlotAfter(InsertPt, PendingST[i]); PendingST[i] = NumFPRegs; } while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) --NumPendingSTs; // If this asm kills any FP registers (is the last use of them) we must // explicitly emit pop instructions for them. Do this now after the asm has // executed so that the ST(x) numbers are not off (which would happen if we // did this inline with operand rewriting). // // Note: this might be a non-optimal pop sequence. We might be able to do // better by trying to pop in stack order or something. while (FPKills) { unsigned FPReg = CountTrailingZeros_32(FPKills); if (isLive(FPReg)) freeStackSlotAfter(InsertPt, FPReg); FPKills &= ~(1U << FPReg); } // Don't delete the inline asm! return; } case X86::WIN_FTOL_32: case X86::WIN_FTOL_64: { // Push the operand into ST0. MachineOperand &Op = MI->getOperand(0); assert(Op.isUse() && Op.isReg() && Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6); unsigned FPReg = getFPReg(Op); if (Op.isKill()) moveToTop(FPReg, I); else duplicateToTop(FPReg, FPReg, I); // Emit the call. This will pop the operand. BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32)) .addExternalSymbol("_ftol2") .addReg(X86::ST0, RegState::ImplicitKill) .addReg(X86::EAX, RegState::Define | RegState::Implicit) .addReg(X86::EDX, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); --StackTop; break; } case X86::RET: case X86::RETI: // If RET has an FP register use operand, pass the first one in ST(0) and // the second one in ST(1). // Find the register operands. unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; unsigned LiveMask = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &Op = MI->getOperand(i); if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) continue; // FP Register uses must be kills unless there are two uses of the same // register, in which case only one will be a kill. assert(Op.isUse() && (Op.isKill() || // Marked kill. getFPReg(Op) == FirstFPRegOp || // Second instance. MI->killsRegister(Op.getReg())) && // Later use is marked kill. "Ret only defs operands, and values aren't live beyond it"); if (FirstFPRegOp == ~0U) FirstFPRegOp = getFPReg(Op); else { assert(SecondFPRegOp == ~0U && "More than two fp operands!"); SecondFPRegOp = getFPReg(Op); } LiveMask |= (1 << getFPReg(Op)); // Remove the operand so that later passes don't see it. MI->RemoveOperand(i); --i, --e; } // We may have been carrying spurious live-ins, so make sure only the returned // registers are left live. adjustLiveRegs(LiveMask, MI); if (!LiveMask) return; // Quick check to see if any are possible. // There are only four possibilities here: // 1) we are returning a single FP value. In this case, it has to be in // ST(0) already, so just declare success by removing the value from the // FP Stack. if (SecondFPRegOp == ~0U) { // Assert that the top of stack contains the right FP register. assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && "Top of stack not the right register for RET!"); // Ok, everything is good, mark the value as not being on the stack // anymore so that our assertion about the stack being empty at end of // block doesn't fire. StackTop = 0; return; } // Otherwise, we are returning two values: // 2) If returning the same value for both, we only have one thing in the FP // stack. Consider: RET FP1, FP1 if (StackTop == 1) { assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& "Stack misconfiguration for RET!"); // Duplicate the TOS so that we return it twice. Just pick some other FPx // register to hold it. unsigned NewReg = getScratchReg(); duplicateToTop(FirstFPRegOp, NewReg, MI); FirstFPRegOp = NewReg; } /// Okay we know we have two different FPx operands now: assert(StackTop == 2 && "Must have two values live!"); /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently /// in ST(1). In this case, emit an fxch. if (getStackEntry(0) == SecondFPRegOp) { assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); moveToTop(FirstFPRegOp, MI); } /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in /// ST(1). Just remove both from our understanding of the stack and return. assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); StackTop = 0; return; } I = MBB->erase(I); // Remove the pseudo instruction // We want to leave I pointing to the previous instruction, but what if we // just erased the first instruction? if (I == MBB->begin()) { DEBUG(dbgs() << "Inserting dummy KILL\n"); I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL)); } else --I; }