//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86TargetMachine.h" #include "X86TargetObjectFile.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalAlias.h" #include "llvm/GlobalVariable.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX")); // Disable16Bit - 16-bit operations typically have a larger encoding than // corresponding 32-bit instructions, and 16-bit code is slow on some // processors. This is an experimental flag to disable 16-bit operations // (which forces them to be Legalized to 32-bit operations). static cl::opt Disable16Bit("disable-16bit", cl::Hidden, cl::desc("Disable use of 16-bit instructions")); // Forward declarations. static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2); static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { switch (TM.getSubtarget().TargetType) { default: llvm_unreachable("unknown subtarget type"); case X86Subtarget::isDarwin: if (TM.getSubtarget().is64Bit()) return new X8664_MachoTargetObjectFile(); return new X8632_MachoTargetObjectFile(); case X86Subtarget::isELF: return new TargetLoweringObjectFileELF(); case X86Subtarget::isMingw: case X86Subtarget::isCygwin: case X86Subtarget::isWindows: return new TargetLoweringObjectFileCOFF(); } } X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) : TargetLowering(TM, createTLOF(TM)) { Subtarget = &TM.getSubtarget(); X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; RegInfo = TM.getRegisterInfo(); TD = getTargetData(); // Set up the TargetLowering object. // X86 is weird, it always uses i8 for shift amounts and setcc results. setShiftAmountType(MVT::i8); setBooleanContents(ZeroOrOneBooleanContent); setSchedulingPreference(SchedulingForRegPressure); setStackPointerRegisterToSaveRestore(X86StackPtr); if (Subtarget->isTargetDarwin()) { // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(false); setUseUnderscoreLongJmp(false); } else if (Subtarget->isTargetMingw()) { // MS runtime is weird: it exports _setjmp, but longjmp! setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(false); } else { setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); } // Set up the register classes. addRegisterClass(MVT::i8, X86::GR8RegisterClass); if (!Disable16Bit) addRegisterClass(MVT::i16, X86::GR16RegisterClass); addRegisterClass(MVT::i32, X86::GR32RegisterClass); if (Subtarget->is64Bit()) addRegisterClass(MVT::i64, X86::GR64RegisterClass); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // We don't accept any truncstore of integer registers. setTruncStoreAction(MVT::i64, MVT::i32, Expand); if (!Disable16Bit) setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i8 , Expand); if (!Disable16Bit) setTruncStoreAction(MVT::i32, MVT::i16, Expand); setTruncStoreAction(MVT::i32, MVT::i8 , Expand); setTruncStoreAction(MVT::i16, MVT::i8, Expand); // SETOEQ and SETUNE require checking two conditions. setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); } else if (!UseSoftFloat) { if (X86ScalarSSEf64) { // We have an impenetrably clever algorithm for ui64->double only. setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); } // We have an algorithm for SSE2, and we turn this into a 64-bit // FILD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); } // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); if (!UseSoftFloat) { // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSEf32) { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); } // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 // are Legal, f80 is custom lowered. setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSEf32) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (Subtarget->is64Bit()) { setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); } else if (!UseSoftFloat) { if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With SSE3 we can use fisttpll to convert to a signed i64; without // SSE, we're stuck with a fistpll. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); } // TODO: when we have SSE, these could be more efficient, by using movd/movq. if (!X86ScalarSSEf64) { setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); } // Scalar integer divide and remainder are lowered to use operations that // produce two results, to match the available instructions. This exposes // the two-result form to trivial CSE, which is able to combine x/y and x%y // into a single instruction. // // Scalar integer multiply-high is also lowered to use two-result // operations, to match the available instructions. However, plain multiply // (low) operations are left as Legal, as there are single-result // instructions for this in x86. Using the two-result multiply instructions // when both high and low results are needed must be arranged by dagcombine. setOperationAction(ISD::MULHS , MVT::i8 , Expand); setOperationAction(ISD::MULHU , MVT::i8 , Expand); setOperationAction(ISD::SDIV , MVT::i8 , Expand); setOperationAction(ISD::UDIV , MVT::i8 , Expand); setOperationAction(ISD::SREM , MVT::i8 , Expand); setOperationAction(ISD::UREM , MVT::i8 , Expand); setOperationAction(ISD::MULHS , MVT::i16 , Expand); setOperationAction(ISD::MULHU , MVT::i16 , Expand); setOperationAction(ISD::SDIV , MVT::i16 , Expand); setOperationAction(ISD::UDIV , MVT::i16 , Expand); setOperationAction(ISD::SREM , MVT::i16 , Expand); setOperationAction(ISD::UREM , MVT::i16 , Expand); setOperationAction(ISD::MULHS , MVT::i32 , Expand); setOperationAction(ISD::MULHU , MVT::i32 , Expand); setOperationAction(ISD::SDIV , MVT::i32 , Expand); setOperationAction(ISD::UDIV , MVT::i32 , Expand); setOperationAction(ISD::SREM , MVT::i32 , Expand); setOperationAction(ISD::UREM , MVT::i32 , Expand); setOperationAction(ISD::MULHS , MVT::i64 , Expand); setOperationAction(ISD::MULHU , MVT::i64 , Expand); setOperationAction(ISD::SDIV , MVT::i64 , Expand); setOperationAction(ISD::UDIV , MVT::i64 , Expand); setOperationAction(ISD::SREM , MVT::i64 , Expand); setOperationAction(ISD::UREM , MVT::i64 , Expand); setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::Other, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f32 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::FREM , MVT::f80 , Expand); setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTTZ , MVT::i8 , Custom); setOperationAction(ISD::CTLZ , MVT::i8 , Custom); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); if (Disable16Bit) { setOperationAction(ISD::CTTZ , MVT::i16 , Expand); setOperationAction(ISD::CTLZ , MVT::i16 , Expand); } else { setOperationAction(ISD::CTTZ , MVT::i16 , Custom); setOperationAction(ISD::CTLZ , MVT::i16 , Custom); } setOperationAction(ISD::CTPOP , MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Custom); setOperationAction(ISD::CTLZ , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::CTPOP , MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Custom); setOperationAction(ISD::CTLZ , MVT::i64 , Custom); } setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i8 , Custom); if (Disable16Bit) setOperationAction(ISD::SELECT , MVT::i16 , Expand); else setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SELECT , MVT::f80 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); if (Disable16Bit) setOperationAction(ISD::SETCC , MVT::i16 , Expand); else setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::f80 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SELECT , MVT::i64 , Custom); setOperationAction(ISD::SETCC , MVT::i64 , Custom); } setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); setOperationAction(ISD::JumpTable , MVT::i64 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); } // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); } if (Subtarget->hasSSE1()) setOperationAction(ISD::PREFETCH , MVT::Other, Legal); if (!Subtarget->hasSSE2()) setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); // Expand certain atomics setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); if (!Subtarget->is64Bit()) { setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); } // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && !Subtarget->isTargetCygMing()) { setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); } setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); if (Subtarget->is64Bit()) { setExceptionPointerRegister(X86::RAX); setExceptionSelectorRegister(X86::RDX); } else { setExceptionPointerRegister(X86::EAX); setExceptionSelectorRegister(X86::EDX); } setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); setOperationAction(ISD::VAEND , MVT::Other, Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::VAARG , MVT::Other, Custom); setOperationAction(ISD::VACOPY , MVT::Other, Custom); } else { setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); } setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); if (Subtarget->isTargetCygMing()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); else setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); if (!UseSoftFloat && X86ScalarSSEf64) { // f32 and f64 use SSE. // Set up the FP register classes. addRegisterClass(MVT::f32, X86::FR32RegisterClass); addRegisterClass(MVT::f64, X86::FR64RegisterClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // Use ANDPD and ORPD to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. addLegalFPImmediate(APFloat(+0.0)); // xorpd addLegalFPImmediate(APFloat(+0.0f)); // xorps } else if (!UseSoftFloat && X86ScalarSSEf32) { // Use SSE for f32, x87 for f64. // Set up the FP register classes. addRegisterClass(MVT::f32, X86::FR32RegisterClass); addRegisterClass(MVT::f64, X86::RFP64RegisterClass); // Use ANDPS to simulate FABS. setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f32, Custom); setOperationAction(ISD::UNDEF, MVT::f64, Expand); // Use ANDPS and ORPS to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); // Special cases we handle for FP constants. addLegalFPImmediate(APFloat(+0.0f)); // xorps addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64 , Expand); setOperationAction(ISD::FCOS , MVT::f64 , Expand); } } else if (!UseSoftFloat) { // f32 and f64 in x87. // Set up the FP register classes. addRegisterClass(MVT::f64, X86::RFP64RegisterClass); addRegisterClass(MVT::f32, X86::RFP32RegisterClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); setOperationAction(ISD::UNDEF, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64 , Expand); setOperationAction(ISD::FCOS , MVT::f64 , Expand); } addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS addLegalFPImmediate(APFloat(+0.0f)); // FLD0 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS } // Long double always uses X87. if (!UseSoftFloat) { addRegisterClass(MVT::f80, X86::RFP80RegisterClass); setOperationAction(ISD::UNDEF, MVT::f80, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); { bool ignored; APFloat TmpFlt(+0.0); TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &ignored); addLegalFPImmediate(TmpFlt); // FLD0 TmpFlt.changeSign(); addLegalFPImmediate(TmpFlt); // FLD0/FCHS APFloat TmpFlt2(+1.0); TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &ignored); addLegalFPImmediate(TmpFlt2); // FLD1 TmpFlt2.changeSign(); addLegalFPImmediate(TmpFlt2); // FLD1/FCHS } if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f80 , Expand); setOperationAction(ISD::FCOS , MVT::f80 , Expand); } } // Always use a library call for pow. setOperationAction(ISD::FPOW , MVT::f32 , Expand); setOperationAction(ISD::FPOW , MVT::f64 , Expand); setOperationAction(ISD::FPOW , MVT::f80 , Expand); setOperationAction(ISD::FLOG, MVT::f80, Expand); setOperationAction(ISD::FLOG2, MVT::f80, Expand); setOperationAction(ISD::FLOG10, MVT::f80, Expand); setOperationAction(ISD::FEXP, MVT::f80, Expand); setOperationAction(ISD::FEXP2, MVT::f80, Expand); // First set operation action for all vector types to either promote // (for widening) or expand (for scalarization). Then we will selectively // turn on ones that can be effectively codegen'd. for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) setTruncStoreAction((MVT::SimpleValueType)VT, (MVT::SimpleValueType)InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); } // FIXME: In order to prevent SSE instructions being expanded to MMX ones // with -msoft-float, disable use of MMX as well. if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) { addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); setOperationAction(ISD::ADD, MVT::v8i8, Legal); setOperationAction(ISD::ADD, MVT::v4i16, Legal); setOperationAction(ISD::ADD, MVT::v2i32, Legal); setOperationAction(ISD::ADD, MVT::v1i64, Legal); setOperationAction(ISD::SUB, MVT::v8i8, Legal); setOperationAction(ISD::SUB, MVT::v4i16, Legal); setOperationAction(ISD::SUB, MVT::v2i32, Legal); setOperationAction(ISD::SUB, MVT::v1i64, Legal); setOperationAction(ISD::MULHS, MVT::v4i16, Legal); setOperationAction(ISD::MUL, MVT::v4i16, Legal); setOperationAction(ISD::AND, MVT::v8i8, Promote); AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); setOperationAction(ISD::AND, MVT::v4i16, Promote); AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); setOperationAction(ISD::AND, MVT::v2i32, Promote); AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); setOperationAction(ISD::AND, MVT::v1i64, Legal); setOperationAction(ISD::OR, MVT::v8i8, Promote); AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); setOperationAction(ISD::OR, MVT::v4i16, Promote); AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); setOperationAction(ISD::OR, MVT::v2i32, Promote); AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); setOperationAction(ISD::OR, MVT::v1i64, Legal); setOperationAction(ISD::XOR, MVT::v8i8, Promote); AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); setOperationAction(ISD::XOR, MVT::v4i16, Promote); AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); setOperationAction(ISD::XOR, MVT::v2i32, Promote); AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); setOperationAction(ISD::XOR, MVT::v1i64, Legal); setOperationAction(ISD::LOAD, MVT::v8i8, Promote); AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v4i16, Promote); AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v2i32, Promote); AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v2f32, Promote); AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v1i64, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); setOperationAction(ISD::SELECT, MVT::v8i8, Promote); setOperationAction(ISD::SELECT, MVT::v4i16, Promote); setOperationAction(ISD::SELECT, MVT::v2i32, Promote); setOperationAction(ISD::SELECT, MVT::v1i64, Custom); setOperationAction(ISD::VSETCC, MVT::v8i8, Custom); setOperationAction(ISD::VSETCC, MVT::v4i16, Custom); setOperationAction(ISD::VSETCC, MVT::v2i32, Custom); } if (!UseSoftFloat && Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v4f32, Custom); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); } if (!UseSoftFloat && Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM // registers cannot be used even for integer operations. addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::ADD, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Custom); setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { EVT VT = (MVT::SimpleValueType)i; // Do not attempt to custom lower non-power-of-2 vectors if (!isPowerOf2_32(VT.getVectorNumElements())) continue; // Do not attempt to custom lower non-128-bit vectors if (!VT.is128BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT().SimpleTy, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT().SimpleTy, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT().SimpleTy, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { MVT::SimpleValueType SVT = (MVT::SimpleValueType)i; EVT VT = SVT; // Do not attempt to promote non-128-bit vectors if (!VT.is128BitVector()) { continue; } setOperationAction(ISD::AND, SVT, Promote); AddPromotedToType (ISD::AND, SVT, MVT::v2i64); setOperationAction(ISD::OR, SVT, Promote); AddPromotedToType (ISD::OR, SVT, MVT::v2i64); setOperationAction(ISD::XOR, SVT, Promote); AddPromotedToType (ISD::XOR, SVT, MVT::v2i64); setOperationAction(ISD::LOAD, SVT, Promote); AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64); setOperationAction(ISD::SELECT, SVT, Promote); AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64); } setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); if (!DisableMMX && Subtarget->hasMMX()) { setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); } } if (Subtarget->hasSSE41()) { // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); // i8 and i16 vectors are custom , because the source register and source // source memory operand types are not the same width. f32 vectors are // custom since the immediate controlling the insert encodes additional // information. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); } } if (Subtarget->hasSSE42()) { setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); } if (!UseSoftFloat && Subtarget->hasAVX()) { addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); setOperationAction(ISD::LOAD, MVT::v8f32, Legal); setOperationAction(ISD::LOAD, MVT::v8i32, Legal); setOperationAction(ISD::LOAD, MVT::v4f64, Legal); setOperationAction(ISD::LOAD, MVT::v4i64, Legal); setOperationAction(ISD::FADD, MVT::v8f32, Legal); setOperationAction(ISD::FSUB, MVT::v8f32, Legal); setOperationAction(ISD::FMUL, MVT::v8f32, Legal); setOperationAction(ISD::FDIV, MVT::v8f32, Legal); setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); setOperationAction(ISD::FNEG, MVT::v8f32, Custom); //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom); //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom); //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom); //setOperationAction(ISD::SELECT, MVT::v8f32, Custom); //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom); // Operations to consider commented out -v16i16 v32i8 //setOperationAction(ISD::ADD, MVT::v16i16, Legal); setOperationAction(ISD::ADD, MVT::v8i32, Custom); setOperationAction(ISD::ADD, MVT::v4i64, Custom); //setOperationAction(ISD::SUB, MVT::v32i8, Legal); //setOperationAction(ISD::SUB, MVT::v16i16, Legal); setOperationAction(ISD::SUB, MVT::v8i32, Custom); setOperationAction(ISD::SUB, MVT::v4i64, Custom); //setOperationAction(ISD::MUL, MVT::v16i16, Legal); setOperationAction(ISD::FADD, MVT::v4f64, Legal); setOperationAction(ISD::FSUB, MVT::v4f64, Legal); setOperationAction(ISD::FMUL, MVT::v4f64, Legal); setOperationAction(ISD::FDIV, MVT::v4f64, Legal); setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); setOperationAction(ISD::FNEG, MVT::v4f64, Custom); setOperationAction(ISD::VSETCC, MVT::v4f64, Custom); // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom); // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom); setOperationAction(ISD::VSETCC, MVT::v8i32, Custom); // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom); // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom); // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom); #if 0 // Not sure we want to do this since there are no 256-bit integer // operations in AVX // Custom lower build_vector, vector_shuffle, and extract_vector_elt. // This includes 256-bit vectors for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) { EVT VT = (MVT::SimpleValueType)i; // Do not attempt to custom lower non-power-of-2 vectors if (!isPowerOf2_32(VT.getVectorNumElements())) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); } if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom); } #endif #if 0 // Not sure we want to do this since there are no 256-bit integer // operations in AVX // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64. // Including 256-bit vectors for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) { EVT VT = (MVT::SimpleValueType)i; if (!VT.is256BitVector()) { continue; } setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v4i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v4i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v4i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); } setTruncStoreAction(MVT::f64, MVT::f32, Expand); #endif } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // Add/Sub/Mul with overflow operations are custom lowered. setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::SADDO, MVT::i64, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i64, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i64, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i32, Custom); setOperationAction(ISD::SMULO, MVT::i64, Custom); if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, 0); setLibcallName(RTLIB::SRL_I128, 0); setLibcallName(RTLIB::SRA_I128, 0); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::MEMBARRIER); setTargetDAGCombine(ISD::ZERO_EXTEND); if (Subtarget->is64Bit()) setTargetDAGCombine(ISD::MUL); computeRegisterProperties(); // Divide and reminder operations have no vector equivalent and can // trap. Do a custom widening for these operations in which we never // generate more divides/remainder than the original vector width. for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { if (!isTypeLegal((MVT::SimpleValueType)VT)) { setOperationAction(ISD::SDIV, (MVT::SimpleValueType) VT, Custom); setOperationAction(ISD::UDIV, (MVT::SimpleValueType) VT, Custom); setOperationAction(ISD::SREM, (MVT::SimpleValueType) VT, Custom); setOperationAction(ISD::UREM, (MVT::SimpleValueType) VT, Custom); } } // FIXME: These should be based on subtarget info. Plus, the values should // be smaller when we are in optimizing for size mode. maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores setPrefLoopAlignment(16); benefitFromCodePlacementOpt = true; } MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const { return MVT::i8; } /// getMaxByValAlign - Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { if (MaxAlign == 16) return; if (const VectorType *VTy = dyn_cast(Ty)) { if (VTy->getBitWidth() == 128) MaxAlign = 16; } else if (const ArrayType *ATy = dyn_cast(Ty)) { unsigned EltAlign = 0; getMaxByValAlign(ATy->getElementType(), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (const StructType *STy = dyn_cast(Ty)) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { unsigned EltAlign = 0; getMaxByValAlign(STy->getElementType(i), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == 16) break; } } return; } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contain SSE vectors are placed at 16-byte boundaries while the rest /// are at 4-byte boundaries. unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { if (Subtarget->is64Bit()) { // Max of 8 and alignment of type. unsigned TyAlign = TD->getABITypeAlignment(Ty); if (TyAlign > 8) return TyAlign; return 8; } unsigned Align = 4; if (Subtarget->hasSSE1()) getMaxByValAlign(Ty, Align); return Align; } /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for /// determining it. EVT X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, bool isSrcConst, bool isSrcStr, SelectionDAG &DAG) const { // FIXME: This turns off use of xmm stores for memset/memcpy on targets like // linux. This is because the stack realignment code can't handle certain // cases like PR2962. This should be removed when PR2962 is fixed. const Function *F = DAG.getMachineFunction().getFunction(); bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) { if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) return MVT::v4i32; if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) return MVT::v4f32; } if (Subtarget->is64Bit() && Size >= 8) return MVT::i64; return MVT::i32; } /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { if (usesGlobalOffsetTable()) return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); if (!Subtarget->is64Bit()) // This doesn't have DebugLoc associated with it, but is not really the // same as a Register. return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), getPointerTy()); return Table; } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// #include "X86GenCallingConv.inc" bool X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &OutTys, const SmallVectorImpl &ArgsFlags, SelectionDAG &DAG) { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86); } SDValue X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, DebugLoc dl, SelectionDAG &DAG) { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); // If this is the first return lowered for this function, add the regs to the // liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Operand #1 = Bytes To Pop RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16)); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue ValToCopy = Outs[i].Val; // Returns in ST0/ST1 are handled specially: these are pushed as operands to // the RET instruction and handled by the FP Stackifier. if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { // If this is a copy from an xmm register to ST(0), use an FPExtend to // change the value to the FP stack register class. if (isScalarFPTypeInSSEReg(VA.getValVT())) ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); RetOps.push_back(ValToCopy); // Don't emit a copytoreg. continue; } // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 // which is returned in RAX / RDX. if (Subtarget->is64Bit()) { EVT ValVT = ValToCopy.getValueType(); if (ValVT.isVector() && ValVT.getSizeInBits() == 64) { ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy); if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); } } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); Flag = Chain.getValue(1); } // The x86-64 ABI for returning structs by value requires that we copy // the sret argument into %rax for the return. We saved the argument into // a virtual register in the entry block, so now we copy the value out // and into %rax. if (Subtarget->is64Bit() && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); FuncInfo->setSRetReturnReg(Reg); } SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); Flag = Chain.getValue(1); // RAX now acts like a return value. MF.getRegInfo().addLiveOut(X86::RAX); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, &RetOps[0], RetOps.size()); } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// SDValue X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { // Assign locations to each value returned by this call. SmallVector RVLocs; bool Is64Bit = Subtarget->is64Bit(); CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getValVT(); // If this is x86-64, and we disabled SSE, we can't return FP values if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { llvm_report_error("SSE register return with SSE disabled"); } // If this is a call to a function that returns an fp value on the floating // point stack, but where we prefer to use the value in xmm registers, copy // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. if ((VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) && isScalarFPTypeInSSEReg(VA.getValVT())) { CopyVT = MVT::f80; } SDValue Val; if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::v2i64, InFlag).getValue(1); Val = Chain.getValue(0); Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Val, DAG.getConstant(0, MVT::i64)); } else { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i64, InFlag).getValue(1); Val = Chain.getValue(0); } Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val); } else { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag).getValue(1); Val = Chain.getValue(0); } InFlag = Chain.getValue(2); if (CopyVT != VA.getValVT()) { // Round the F80 the right size, which also moves to the appropriate xmm // register. Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, // This truncation won't change the value. DAG.getIntPtrConstant(1)); } InVals.push_back(Val); } return Chain; } //===----------------------------------------------------------------------===// // C & StdCall & Fast Calling Convention implementation //===----------------------------------------------------------------------===// // StdCall calling convention seems to be standard for many Windows' API // routines and around. It differs from C calling convention just a little: // callee should clean up the stack, not caller. Symbols should be also // decorated in some fancy way :) It doesn't support any vector arguments. // For info on fast calling convention see Fast Calling Convention (tail call) // implementation LowerX86_32FastCCCallTo. /// CallIsStructReturn - Determines whether a call uses struct return /// semantics. static bool CallIsStructReturn(const SmallVectorImpl &Outs) { if (Outs.empty()) return false; return Outs[0].Flags.isSRet(); } /// ArgsAreStructReturn - Determines whether a function uses struct /// return semantics. static bool ArgsAreStructReturn(const SmallVectorImpl &Ins) { if (Ins.empty()) return false; return Ins[0].Flags.isSRet(); } /// IsCalleePop - Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){ if (IsVarArg) return false; switch (CallingConv) { default: return false; case CallingConv::X86_StdCall: return !Subtarget->is64Bit(); case CallingConv::X86_FastCall: return !Subtarget->is64Bit(); case CallingConv::Fast: return PerformTailCallOpt; } } /// CCAssignFnForNode - Selects the correct CCAssignFn for a the /// given CallingConvention value. CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { if (Subtarget->is64Bit()) { if (Subtarget->isTargetWin64()) return CC_X86_Win64_C; else return CC_X86_64_C; } if (CC == CallingConv::X86_FastCall) return CC_X86_32_FastCall; else if (CC == CallingConv::Fast) return CC_X86_32_FastCC; else return CC_X86_32_C; } /// NameDecorationForCallConv - Selects the appropriate decoration to /// apply to a MachineFunction containing a given calling convention. NameDecorationStyle X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) { if (CallConv == CallingConv::X86_FastCall) return FastCall; else if (CallConv == CallingConv::X86_StdCall) return StdCall; return None; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" with size and alignment information specified by /// the specific parameter attribute. The copy will be passed as a byval /// function parameter. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, DebugLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*AlwaysInline=*/true, NULL, 0, NULL, 0); } SDValue X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) { // Create the nodes corresponding to a load from this parameter slot. ISD::ArgFlagsTy Flags = Ins[i].Flags; bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt; bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); EVT ValVT; // If value is passed by pointer we have address passed instead of the value // itself. if (VA.getLocInfo() == CCValAssign::Indirect) ValVT = VA.getLocVT(); else ValVT = VA.getValVT(); // FIXME: For now, all byval parameter objects are marked mutable. This can be // changed with more analysis. // In case of tail call optimization mark all arguments mutable. Since they // could be overwritten by lowering of arguments in case of a tail call. int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), isImmutable, false); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); if (Flags.isByVal()) return FIN; return DAG.getLoad(ValVT, dl, Chain, FIN, PseudoSourceValue::getFixedStack(FI), 0); } SDValue X86TargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); const Function* Fn = MF.getFunction(); if (Fn->hasExternalLinkage() && Subtarget->isTargetCygMing() && Fn->getName() == "main") FuncInfo->setForceFramePointer(true); // Decorate the function name. FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv)); MachineFrameInfo *MFI = MF.getFrameInfo(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isTargetWin64(); assert(!(isVarArg && CallConv == CallingConv::Fast) && "Var args not supported with calling convention fastcc"); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); unsigned LastVal = ~0U; SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // TODO: If an arg is passed in two places (e.g. reg and stack), skip later // places. assert(VA.getValNo() != LastVal && "Don't support value assigned to multiple locs yet"); LastVal = VA.getValNo(); if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); TargetRegisterClass *RC = NULL; if (RegVT == MVT::i32) RC = X86::GR32RegisterClass; else if (Is64Bit && RegVT == MVT::i64) RC = X86::GR64RegisterClass; else if (RegVT == MVT::f32) RC = X86::FR32RegisterClass; else if (RegVT == MVT::f64) RC = X86::FR64RegisterClass; else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) RC = X86::VR128RegisterClass; else if (RegVT.isVector() && RegVT.getSizeInBits() == 64) RC = X86::VR64RegisterClass; else llvm_unreachable("Unknown argument type!"); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::BCvt) ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); if (VA.isExtInLoc()) { // Handle MMX values passed in XMM regs. if (RegVT.isVector()) { ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, ArgValue, DAG.getConstant(0, MVT::i64)); ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); } else ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } } else { assert(VA.isMemLoc()); ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); } // If value is passed via pointer - do a load. if (VA.getLocInfo() == CCValAssign::Indirect) ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0); InVals.push_back(ArgValue); } // The x86-64 ABI for returning structs by value requires that we copy // the sret argument into %rax for the return. Save the argument into // a virtual register so that we can access it from the return points. if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { X86MachineFunctionInfo *FuncInfo = MF.getInfo(); unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); FuncInfo->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); } unsigned StackSize = CCInfo.getNextStackOffset(); // align stack specially for tail calls if (PerformTailCallOpt && CallConv == CallingConv::Fast) StackSize = GetAlignedArgumentStackSize(StackSize, DAG); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { if (Is64Bit || CallConv != CallingConv::X86_FastCall) { VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false); } if (Is64Bit) { unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; // FIXME: We should really autogenerate these arrays static const unsigned GPR64ArgRegsWin64[] = { X86::RCX, X86::RDX, X86::R8, X86::R9 }; static const unsigned XMMArgRegsWin64[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 }; static const unsigned GPR64ArgRegs64Bit[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; static const unsigned XMMArgRegs64Bit[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; const unsigned *GPR64ArgRegs, *XMMArgRegs; if (IsWin64) { TotalNumIntRegs = 4; TotalNumXMMRegs = 4; GPR64ArgRegs = GPR64ArgRegsWin64; XMMArgRegs = XMMArgRegsWin64; } else { TotalNumIntRegs = 6; TotalNumXMMRegs = 8; GPR64ArgRegs = GPR64ArgRegs64Bit; XMMArgRegs = XMMArgRegs64Bit; } unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, TotalNumIntRegs); unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, TotalNumXMMRegs); bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && "SSE register cannot be used when SSE is disabled!"); assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && "SSE register cannot be used when SSE is disabled!"); if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) // Kernel mode asks for SSE to be disabled, so don't push them // on the stack. TotalNumXMMRegs = 0; // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so they // may be loaded by deferencing the result of va_next. VarArgsGPOffset = NumIntRegs * 8; VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, false); // Store the integer parameter registers. SmallVector MemOps; SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); unsigned Offset = VarArgsGPOffset; for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, DAG.getIntPtrConstant(Offset)); unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], X86::GR64RegisterClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, PseudoSourceValue::getFixedStack(RegSaveFrameIndex), Offset); MemOps.push_back(Store); Offset += 8; } if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { // Now store the XMM (fp + vector) parameter registers. SmallVector SaveXMMOps; SaveXMMOps.push_back(Chain); unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass); SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); SaveXMMOps.push_back(ALVal); SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex)); SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset)); for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); SaveXMMOps.push_back(Val); } MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other, &SaveXMMOps[0], SaveXMMOps.size())); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); } } // Some CCs need callee pop. if (IsCalleePop(isVarArg, CallConv)) { BytesToPopOnReturn = StackSize; // Callee pops everything. BytesCallerReserves = 0; } else { BytesToPopOnReturn = 0; // Callee pops nothing. // If this is an sret function, the return should pop the hidden pointer. if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins)) BytesToPopOnReturn = 4; BytesCallerReserves = StackSize; } if (!Is64Bit) { RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. if (CallConv == CallingConv::X86_FastCall) VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. } FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); return Chain; } SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) { const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0); unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); if (Flags.isByVal()) { return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); } return DAG.getStore(Chain, dl, Arg, PtrOff, PseudoSourceValue::getStack(), LocMemOffset); } /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call /// optimization is performed and it is required. SDValue X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, DebugLoc dl) { if (!IsTailCall || FPDiff==0) return Chain; // Adjust the Return address stack slot. EVT VT = getPointerTy(); OutRetAddr = getReturnAddressFrameIndex(DAG); // Load the "old" Return address. OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0); return SDValue(OutRetAddr.getNode(), 1); } /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call /// optimization is performed and it is required (FPDiff!=0). static SDValue EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, SDValue Chain, SDValue RetAddrFrIdx, bool Is64Bit, int FPDiff, DebugLoc dl) { // Store the return address to the appropriate stack slot. if (!FPDiff) return Chain; // Calculate the new stack slot for the return address. int SlotSize = Is64Bit ? 8 : 4; int NewReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true, false); EVT VT = Is64Bit ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); return Chain; } SDValue X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { MachineFunction &MF = DAG.getMachineFunction(); bool Is64Bit = Subtarget->is64Bit(); bool IsStructRet = CallIsStructReturn(Outs); assert((!isTailCall || (CallConv == CallingConv::Fast && PerformTailCallOpt)) && "IsEligibleForTailCallOptimization missed a case!"); assert(!(isVarArg && CallConv == CallingConv::Fast) && "Var args not supported with calling convention fastcc"); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (PerformTailCallOpt && CallConv == CallingConv::Fast) NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); int FPDiff = 0; if (isTailCall) { // Lower arguments at fp - stackoffset + fpdiff. unsigned NumBytesCallerPushed = MF.getInfo()->getBytesToPopOnReturn(); FPDiff = NumBytesCallerPushed - NumBytes; // Set the delta of movement of the returnaddr stackslot. // But only set if delta is greater than previous delta. if (FPDiff < (MF.getInfo()->getTCReturnAddrDelta())) MF.getInfo()->setTCReturnAddrDelta(FPDiff); } Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue RetAddrFrIdx; // Load return adress for tail calls. Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit, FPDiff, dl); SmallVector, 8> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization arguments are handle later. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = Outs[i].Val; ISD::ArgFlagsTy Flags = Outs[i].Flags; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { // Special case: passing MMX values in XMM registers. Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); } else Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg); break; case CCValAssign::Indirect: { // Store the argument. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast(SpillSlot)->getIndex(); Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, PseudoSourceValue::getFixedStack(FI), 0); Arg = SpillSlot; break; } } if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { if (!isTailCall || (isTailCall && isByVal)) { assert(VA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDValue InFlag; // Tail call byval lowering might overwrite argument registers so in case of // tail call optimization the copies to registers are lowered later. if (!isTailCall) for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (Subtarget->isPICStyleGOT()) { // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (!isTailCall) { Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), getPointerTy()), InFlag); InFlag = Chain.getValue(1); } else { // If we are tail calling and generating PIC/GOT style code load the // address of the callee into ECX. The value in ecx is used as target of // the tail jump. This is done to circumvent the ebx/callee-saved problem // for tail calls on PIC/GOT architectures. Normally we would just put the // address of GOT into ebx and then call target@PLT. But for tail calls // ebx would be restored (since ebx is callee saved) before jumping to the // target@PLT. // Note: The actual moving to ECX is done further down. GlobalAddressSDNode *G = dyn_cast(Callee); if (G && !G->getGlobal()->hasHiddenVisibility() && !G->getGlobal()->hasProtectedVisibility()) Callee = LowerGlobalAddress(Callee, DAG); else if (isa(Callee)) Callee = LowerExternalSymbol(Callee, DAG); } } if (Is64Bit && isVarArg) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. // FIXME: Verify this on Win64 // Count the number of XMM registers allocated. static const unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); assert((Subtarget->hasSSE1() || !NumXMMRegs) && "SSE registers cannot be used when SSE is disabled"); Chain = DAG.getCopyToReg(Chain, dl, X86::AL, DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); InFlag = Chain.getValue(1); } // For tail calls lower the arguments to the 'real' stack slot. if (isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); SmallVector MemOpChains2; SDValue FIN; int FI = 0; // Do not flag preceeding copytoreg stuff together with the following stuff. InFlag = SDValue(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (!VA.isRegLoc()) { assert(VA.isMemLoc()); SDValue Arg = Outs[i].Val; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Create frame index. int32_t Offset = VA.getLocMemOffset()+FPDiff; uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false); FIN = DAG.getFrameIndex(FI, getPointerTy()); if (Flags.isByVal()) { // Copy relative to framepointer. SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, dl)); } else { // Store relative to framepointer. MemOpChains2.push_back( DAG.getStore(ArgChain, dl, Arg, FIN, PseudoSourceValue::getFixedStack(FI), 0)); } } } if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains2[0], MemOpChains2.size()); // Copy arguments to their registers. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } InFlag =SDValue(); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, FPDiff, dl); } bool WasGlobalOrExternal = false; if (getTargetMachine().getCodeModel() == CodeModel::Large) { assert(Is64Bit && "Large code model is only legal in 64-bit mode."); // In the 64-bit large code model, we have to make all calls // through a register, since the call instruction's 32-bit // pc-relative offset may not be large enough to hold the whole // address. } else if (GlobalAddressSDNode *G = dyn_cast(Callee)) { WasGlobalOrExternal = true; // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack // it. // We should use extra load for direct calls to dllimported functions in // non-JIT mode. GlobalValue *GV = G->getGlobal(); if (!GV->hasDLLImportLinkage()) { unsigned char OpFlags = 0; // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then // we don't need to use the PLT - we can directly call it. if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_ && GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && Subtarget->getDarwinVers() < 9) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(), G->getOffset(), OpFlags); } } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { WasGlobalOrExternal = true; unsigned char OpFlags = 0; // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external // symbols should go through the PLT. if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && Subtarget->getDarwinVers() < 9) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), OpFlags); } if (isTailCall && !WasGlobalOrExternal) { unsigned Opc = Is64Bit ? X86::R11 : X86::EAX; Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Opc, getPointerTy()), Callee,InFlag); Callee = DAG.getRegister(Opc, getPointerTy()); // Add register as live out. MF.getRegInfo().addLiveOut(Opc); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); SmallVector Ops; if (isTailCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); } Ops.push_back(Chain); Ops.push_back(Callee); if (isTailCall) Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add an implicit use GOT pointer in EBX. if (!isTailCall && Subtarget->isPICStyleGOT()) Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); // Add an implicit use of AL for x86 vararg functions. if (Is64Bit && isVarArg) Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); if (InFlag.getNode()) Ops.push_back(InFlag); if (isTailCall) { // If this is the first return lowered for this function, add the regs // to the liveout set for the function. if (MF.getRegInfo().liveout_empty()) { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } assert(((Callee.getOpcode() == ISD::Register && (cast(Callee)->getReg() == X86::EAX || cast(Callee)->getReg() == X86::R11)) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress) && "Expecting a global address, external symbol, or scratch register"); return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); } Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPush; if (IsCalleePop(isVarArg, CallConv)) NumBytesForCalleeToPush = NumBytes; // Callee pops everything else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet) // If this is is a call to a struct-return function, the callee // pops the hidden struct pointer, so we have to push it back. // This is common for Darwin/X86, Linux & Mingw32 targets. NumBytesForCalleeToPush = 4; else NumBytesForCalleeToPush = 0; // Callee pops nothing. // Returns a flag for retval copy to use. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(NumBytesForCalleeToPush, true), InFlag); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } //===----------------------------------------------------------------------===// // Fast Calling Convention (tail call) implementation //===----------------------------------------------------------------------===// // Like std call, callee cleans arguments, convention except that ECX is // reserved for storing the tail called function address. Only 2 registers are // free for argument passing (inreg). Tail call optimization is performed // provided: // * tailcallopt is enabled // * caller/callee are fastcc // On X86_64 architecture with GOT-style position independent code only local // (within module) calls are supported at the moment. // To keep the stack aligned according to platform abi the function // GetAlignedArgumentStackSize ensures that argument delta is always multiples // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) // If a tail called function callee has more arguments than the caller the // caller needs to make sure that there is room to move the RETADDR to. This is // achieved by reserving an area the size of the argument delta right after the // original REtADDR, but before the saved framepointer or the spilled registers // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) // stack layout: // arg1 // arg2 // RETADDR // [ new RETADDR // move area ] // (possible EBP) // ESI // EDI // local1 .. /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned /// for a 16 byte align requirement. unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG) { MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const TargetFrameInfo &TFI = *TM.getFrameInfo(); unsigned StackAlignment = TFI.getStackAlignment(); uint64_t AlignMask = StackAlignment - 1; int64_t Offset = StackSize; uint64_t SlotSize = TD->getPointerSize(); if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { // Number smaller than 12 so just add the difference. Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); } else { // Mask out lower bits, add stackalignment once plus the 12 bytes. Offset = ((~AlignMask) & Offset) + StackAlignment + (StackAlignment-SlotSize); } return Offset; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { MachineFunction &MF = DAG.getMachineFunction(); CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC; } FastISel * X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo, DwarfWriter *dw, DenseMap &vm, DenseMap &bm, DenseMap &am #ifndef NDEBUG , SmallSet &cil #endif ) { return X86::createFastISel(mf, mmo, dw, vm, bm, am #ifndef NDEBUG , cil #endif ); } //===----------------------------------------------------------------------===// // Other Lowering Hooks //===----------------------------------------------------------------------===// SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo(); int ReturnAddrIndex = FuncInfo->getRAIndex(); if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. uint64_t SlotSize = TD->getPointerSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, true, false); FuncInfo->setRAIndex(ReturnAddrIndex); } return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); } bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement) { // Offset should fit into 32 bit immediate field. if (!isInt32(Offset)) return false; // If we don't have a symbolic displacement - we don't have any extra // restrictions. if (!hasSymbolicDisplacement) return true; // FIXME: Some tweaks might be needed for medium code model. if (M != CodeModel::Small && M != CodeModel::Kernel) return false; // For small code model we assume that latest object is 16MB before end of 31 // bits boundary. We may also accept pretty large negative constants knowing // that all objects are in the positive half of address space. if (M == CodeModel::Small && Offset < 16*1024*1024) return true; // For kernel code model we know that all object resist in the negative half // of 32bits address space. We may not accept negative offsets, since they may // be just off and we may accept pretty large positive ones. if (M == CodeModel::Kernel && Offset > 0) return true; return false; } /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code, returning the condition code and the LHS/RHS of the /// comparison to make. static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { if (!isFP) { if (ConstantSDNode *RHSC = dyn_cast(RHS)) { if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { // X > -1 -> X == 0, jump !sign. RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_NS; } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { // X < 0 -> X == 0, jump on sign. return X86::COND_S; } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { // X < 1 -> X <= 0 RHS = DAG.getConstant(0, RHS.getValueType()); return X86::COND_LE; } } switch (SetCCOpcode) { default: llvm_unreachable("Invalid integer condition!"); case ISD::SETEQ: return X86::COND_E; case ISD::SETGT: return X86::COND_G; case ISD::SETGE: return X86::COND_GE; case ISD::SETLT: return X86::COND_L; case ISD::SETLE: return X86::COND_LE; case ISD::SETNE: return X86::COND_NE; case ISD::SETULT: return X86::COND_B; case ISD::SETUGT: return X86::COND_A; case ISD::SETULE: return X86::COND_BE; case ISD::SETUGE: return X86::COND_AE; } } // First determine if it is required or is profitable to flip the operands. // If LHS is a foldable load, but RHS is not, flip the condition. if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); std::swap(LHS, RHS); } switch (SetCCOpcode) { default: break; case ISD::SETOLT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETUGE: std::swap(LHS, RHS); break; } // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: llvm_unreachable("Condcode should be pre-legalized away"); case ISD::SETUEQ: case ISD::SETEQ: return X86::COND_E; case ISD::SETOLT: // flipped case ISD::SETOGT: case ISD::SETGT: return X86::COND_A; case ISD::SETOLE: // flipped case ISD::SETOGE: case ISD::SETGE: return X86::COND_AE; case ISD::SETUGT: // flipped case ISD::SETULT: case ISD::SETLT: return X86::COND_B; case ISD::SETUGE: // flipped case ISD::SETULE: case ISD::SETLE: return X86::COND_BE; case ISD::SETONE: case ISD::SETNE: return X86::COND_NE; case ISD::SETUO: return X86::COND_P; case ISD::SETO: return X86::COND_NP; case ISD::SETOEQ: case ISD::SETUNE: return X86::COND_INVALID; } } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86::COND_B: case X86::COND_BE: case X86::COND_E: case X86::COND_P: case X86::COND_A: case X86::COND_AE: case X86::COND_NE: case X86::COND_NP: return true; } } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) return true; } return false; } /// isUndefOrInRange - Return true if Val is undef or if its value falls within /// the specified range (L, H]. static bool isUndefOrInRange(int Val, int Low, int Hi) { return (Val < 0) || (Val >= Low && Val < Hi); } /// isUndefOrEqual - Val is either less than zero (undef) or equal to the /// specified value. static bool isUndefOrEqual(int Val, int CmpVal) { if (Val < 0 || Val == CmpVal) return true; return false; } /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference /// the second operand. static bool isPSHUFDMask(const SmallVectorImpl &Mask, EVT VT) { if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16) return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); if (VT == MVT::v2f64 || VT == MVT::v2i64) return (Mask[0] < 2 && Mask[1] < 2); return false; } bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isPSHUFDMask(M, N->getValueType(0)); } /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFHW. static bool isPSHUFHWMask(const SmallVectorImpl &Mask, EVT VT) { if (VT != MVT::v8i16) return false; // Lower quadword copied in order or undef. for (int i = 0; i != 4; ++i) if (Mask[i] >= 0 && Mask[i] != i) return false; // Upper quadword shuffled. for (int i = 4; i != 8; ++i) if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) return false; return true; } bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isPSHUFHWMask(M, N->getValueType(0)); } /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFLW. static bool isPSHUFLWMask(const SmallVectorImpl &Mask, EVT VT) { if (VT != MVT::v8i16) return false; // Upper quadword copied in order. for (int i = 4; i != 8; ++i) if (Mask[i] >= 0 && Mask[i] != i) return false; // Lower quadword shuffled. for (int i = 0; i != 4; ++i) if (Mask[i] >= 4) return false; return true; } bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isPSHUFLWMask(M, N->getValueType(0)); } /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PALIGNR. static bool isPALIGNRMask(const SmallVectorImpl &Mask, EVT VT, bool hasSSSE3) { int i, e = VT.getVectorNumElements(); // Do not handle v2i64 / v2f64 shuffles with palignr. if (e < 4 || !hasSSSE3) return false; for (i = 0; i != e; ++i) if (Mask[i] >= 0) break; // All undef, not a palignr. if (i == e) return false; // Determine if it's ok to perform a palignr with only the LHS, since we // don't have access to the actual shuffle elements to see if RHS is undef. bool Unary = Mask[i] < (int)e; bool NeedsUnary = false; int s = Mask[i] - i; // Check the rest of the elements to see if they are consecutive. for (++i; i != e; ++i) { int m = Mask[i]; if (m < 0) continue; Unary = Unary && (m < (int)e); NeedsUnary = NeedsUnary || (m < s); if (NeedsUnary && !Unary) return false; if (Unary && m != ((s+i) & (e-1))) return false; if (!Unary && m != (s+i)) return false; } return true; } bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isPALIGNRMask(M, N->getValueType(0), true); } /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to SHUFP*. static bool isSHUFPMask(const SmallVectorImpl &Mask, EVT VT) { int NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; int Half = NumElems / 2; for (int i = 0; i < Half; ++i) if (!isUndefOrInRange(Mask[i], 0, NumElems)) return false; for (int i = Half; i < NumElems; ++i) if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) return false; return true; } bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isSHUFPMask(M, N->getValueType(0)); } /// isCommutedSHUFP - Returns true if the shuffle mask is exactly /// the reverse of what x86 shuffles want. x86 shuffles requires the lower /// half elements to come from vector 1 (which would equal the dest.) and /// the upper half to come from vector 2. static bool isCommutedSHUFPMask(const SmallVectorImpl &Mask, EVT VT) { int NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; int Half = NumElems / 2; for (int i = 0; i < Half; ++i) if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) return false; for (int i = Half; i < NumElems; ++i) if (!isUndefOrInRange(Mask[i], 0, NumElems)) return false; return true; } static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return isCommutedSHUFPMask(M, N->getValueType(0)); } /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { if (N->getValueType(0).getVectorNumElements() != 4) return false; // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 return isUndefOrEqual(N->getMaskElt(0), 6) && isUndefOrEqual(N->getMaskElt(1), 7) && isUndefOrEqual(N->getMaskElt(2), 2) && isUndefOrEqual(N->getMaskElt(3), 3); } /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { unsigned NumElems = N->getValueType(0).getVectorNumElements(); if (NumElems != 4) return false; return isUndefOrEqual(N->getMaskElt(0), 2) && isUndefOrEqual(N->getMaskElt(1), 3) && isUndefOrEqual(N->getMaskElt(2), 2) && isUndefOrEqual(N->getMaskElt(3), 3); } /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { unsigned NumElems = N->getValueType(0).getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) return false; for (unsigned i = NumElems/2; i < NumElems; ++i) if (!isUndefOrEqual(N->getMaskElt(i), i)) return false; return true; } /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLHPS. bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { unsigned NumElems = N->getValueType(0).getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getMaskElt(i), i)) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) return false; return true; } /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. static bool isUNPCKLMask(const SmallVectorImpl &Mask, EVT VT, bool V2IsSplat = false) { int NumElts = VT.getVectorNumElements(); if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) return false; for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (!isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElts)) return false; } } return true; } bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { SmallVector M; N->getMask(M); return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); } /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. static bool isUNPCKHMask(const SmallVectorImpl &Mask, EVT VT, bool V2IsSplat = false) { int NumElts = VT.getVectorNumElements(); if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) return false; for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j + NumElts/2)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElts)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) return false; } } return true; } bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { SmallVector M; N->getMask(M); return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); } /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl &Mask, EVT VT) { int NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } return true; } bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); } /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, /// <2, 2, 3, 3> static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl &Mask, EVT VT) { int NumElems = VT.getVectorNumElements(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { int BitI = Mask[i]; int BitI1 = Mask[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } return true; } bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); } /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. static bool isMOVLMask(const SmallVectorImpl &Mask, EVT VT) { if (VT.getVectorElementType().getSizeInBits() < 32) return false; int NumElts = VT.getVectorNumElements(); if (!isUndefOrEqual(Mask[0], NumElts)) return false; for (int i = 1; i < NumElts; ++i) if (!isUndefOrEqual(Mask[i], i)) return false; return true; } bool X86::isMOVLMask(ShuffleVectorSDNode *N) { SmallVector M; N->getMask(M); return ::isMOVLMask(M, N->getValueType(0)); } /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse /// of what x86 movss want. X86 movs requires the lowest element to be lowest /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVLMask(const SmallVectorImpl &Mask, EVT VT, bool V2IsSplat = false, bool V2IsUndef = false) { int NumOps = VT.getVectorNumElements(); if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) return false; if (!isUndefOrEqual(Mask[0], 0)) return false; for (int i = 1; i < NumOps; ++i) if (!(isUndefOrEqual(Mask[i], i+NumOps) || (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) return false; return true; } static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, bool V2IsUndef = false) { SmallVector M; N->getMask(M); return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); } /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { if (N->getValueType(0).getVectorNumElements() != 4) return false; // Expect 1, 1, 3, 3 for (unsigned i = 0; i < 2; ++i) { int Elt = N->getMaskElt(i); if (Elt >= 0 && Elt != 1) return false; } bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { int Elt = N->getMaskElt(i); if (Elt >= 0 && Elt != 3) return false; if (Elt == 3) HasHi = true; } // Don't use movshdup if it can be done with a shufps. // FIXME: verify that matching u, u, 3, 3 is what we want. return HasHi; } /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { if (N->getValueType(0).getVectorNumElements() != 4) return false; // Expect 0, 0, 2, 2 for (unsigned i = 0; i < 2; ++i) if (N->getMaskElt(i) > 0) return false; bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { int Elt = N->getMaskElt(i); if (Elt >= 0 && Elt != 2) return false; if (Elt == 2) HasHi = true; } // Don't use movsldup if it can be done with a shufps. return HasHi; } /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVDDUP. bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { int e = N->getValueType(0).getVectorNumElements() / 2; for (int i = 0; i < e; ++i) if (!isUndefOrEqual(N->getMaskElt(i), i)) return false; for (int i = 0; i < e; ++i) if (!isUndefOrEqual(N->getMaskElt(e+i), i)) return false; return true; } /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. unsigned X86::getShuffleSHUFImmediate(SDNode *N) { ShuffleVectorSDNode *SVOp = cast(N); int NumOperands = SVOp->getValueType(0).getVectorNumElements(); unsigned Shift = (NumOperands == 4) ? 2 : 1; unsigned Mask = 0; for (int i = 0; i < NumOperands; ++i) { int Val = SVOp->getMaskElt(NumOperands-i-1); if (Val < 0) Val = 0; if (Val >= NumOperands) Val -= NumOperands; Mask |= Val; if (i != NumOperands - 1) Mask <<= Shift; } return Mask; } /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { ShuffleVectorSDNode *SVOp = cast(N); unsigned Mask = 0; // 8 nodes, but we only care about the last 4. for (unsigned i = 7; i >= 4; --i) { int Val = SVOp->getMaskElt(i); if (Val >= 0) Mask |= (Val - 4); if (i != 4) Mask <<= 2; } return Mask; } /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { ShuffleVectorSDNode *SVOp = cast(N); unsigned Mask = 0; // 8 nodes, but we only care about the first 4. for (int i = 3; i >= 0; --i) { int Val = SVOp->getMaskElt(i); if (Val >= 0) Mask |= Val; if (i != 0) Mask <<= 2; } return Mask; } /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { ShuffleVectorSDNode *SVOp = cast(N); EVT VVT = N->getValueType(0); unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3; int Val = 0; unsigned i, e; for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) { Val = SVOp->getMaskElt(i); if (Val >= 0) break; } return (Val - i) * EltSize; } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. bool X86::isZeroNode(SDValue Elt) { return ((isa(Elt) && cast(Elt)->getZExtValue() == 0) || (isa(Elt) && cast(Elt)->getValueAPF().isPosZero())); } /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in /// their permute mask. static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) { int idx = SVOp->getMaskElt(i); if (idx < 0) MaskVec.push_back(idx); else if (idx < (int)NumElems) MaskVec.push_back(idx + NumElems); else MaskVec.push_back(idx - NumElems); } return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), SVOp->getOperand(0), &MaskVec[0]); } /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming /// the two vector operands have swapped position. static void CommuteVectorShuffleMask(SmallVectorImpl &Mask, EVT VT) { unsigned NumElems = VT.getVectorNumElements(); for (unsigned i = 0; i != NumElems; ++i) { int idx = Mask[i]; if (idx < 0) continue; else if (idx < (int)NumElems) Mask[i] = idx + NumElems; else Mask[i] = idx - NumElems; } } /// ShouldXformToMOVHLPS - Return true if the node should be transformed to /// match movhlps. The lower half elements should come from upper half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { if (Op->getValueType(0).getVectorNumElements() != 4) return false; for (unsigned i = 0, e = 2; i != e; ++i) if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) return false; for (unsigned i = 2; i != 4; ++i) if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) return false; return true; } /// isScalarLoadToVector - Returns true if the node is a scalar load that /// is promoted to a vector. It also returns the LoadSDNode by reference if /// required. static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) return false; N = N->getOperand(0).getNode(); if (!ISD::isNON_EXTLoad(N)) return false; if (LD) *LD = cast(N); return true; } /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to /// match movlp{s|d}. The lower half elements should come from lower half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). And since V1 will become the source of the /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, ShuffleVectorSDNode *Op) { if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) return false; // Is V2 is a vector load, don't do this transformation. We will try to use // load folding shufps op. if (ISD::isNON_EXTLoad(V2)) return false; unsigned NumElems = Op->getValueType(0).getVectorNumElements(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Op->getMaskElt(i), i)) return false; for (unsigned i = NumElems/2; i != NumElems; ++i) if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) return false; return true; } /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are /// all the same. static bool isSplatVector(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; SDValue SplatValue = N->getOperand(0); for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i) != SplatValue) return false; return true; } /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved /// to an zero vector. /// FIXME: move to dag combiner / method on ShuffleVectorSDNode static bool isZeroShuffle(ShuffleVectorSDNode *N) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); unsigned NumElems = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i != NumElems; ++i) { int Idx = N->getMaskElt(i); if (Idx >= (int)NumElems) { unsigned Opc = V2.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V2.getOperand(Idx-NumElems))) return false; } else if (Idx >= 0) { unsigned Opc = V1.getOpcode(); if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) continue; if (Opc != ISD::BUILD_VECTOR || !X86::isZeroNode(V1.getOperand(Idx))) return false; } } return true; } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest // type. This ensures they get CSE'd. SDValue Vec; if (VT.getSizeInBits() == 64) { // MMX SDValue Cst = DAG.getTargetConstant(0, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); } else if (HasSSE2) { // SSE2 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else { // SSE1 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); } return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); } /// getOnesVector - Returns a vector of specified type with all bits set. /// static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest // type. This ensures they get CSE'd. SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); SDValue Vec; if (VT.getSizeInBits() == 64) // MMX Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); else // SSE Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); } /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements /// that point to V2 points to its first element. static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); bool Changed = false; SmallVector MaskVec; SVOp->getMask(MaskVec); for (unsigned i = 0; i != NumElems; ++i) { if (MaskVec[i] > (int)NumElems) { MaskVec[i] = NumElems; Changed = true; } } if (Changed) return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), SVOp->getOperand(1), &MaskVec[0]); return SDValue(SVOp, 0); } /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) Mask.push_back(i); return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector Mask; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { Mask.push_back(i); Mask.push_back(i + NumElems); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); unsigned Half = NumElems/2; SmallVector Mask; for (unsigned i = 0; i != Half; ++i) { Mask.push_back(i + Half); Mask.push_back(i + NumElems + Half); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG, bool HasSSE2) { if (SV->getValueType(0).getVectorNumElements() <= 4) return SDValue(SV, 0); EVT PVT = MVT::v4f32; EVT VT = SV->getValueType(0); DebugLoc dl = SV->getDebugLoc(); SDValue V1 = SV->getOperand(0); int NumElems = VT.getVectorNumElements(); int EltNo = SV->getSplatIndex(); // unpack elements to the correct location while (NumElems > 4) { if (EltNo < NumElems/2) { V1 = getUnpackl(DAG, dl, VT, V1, V1); } else { V1 = getUnpackh(DAG, dl, VT, V1, V1); EltNo -= NumElems/2; } NumElems >>= 1; } // Perform the splat. int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1); V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1); } /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified /// vector of zero or undef vector. This produces a shuffle where the low /// element of V2 is swizzled into the zero/undef vector, landing at element /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, bool isZero, bool HasSSE2, SelectionDAG &DAG) { EVT VT = V2.getValueType(); SDValue V1 = isZero ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); unsigned NumElems = VT.getVectorNumElements(); SmallVector MaskVec; for (unsigned i = 0; i != NumElems; ++i) // If this is the insertion idx, put the low elt of V2 here. MaskVec.push_back(i == Idx ? NumElems : i); return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); } /// getNumOfConsecutiveZeros - Return the number of elements in a result of /// a shuffle that is zero. static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems, bool Low, SelectionDAG &DAG) { unsigned NumZeros = 0; for (int i = 0; i < NumElems; ++i) { unsigned Index = Low ? i : NumElems-i-1; int Idx = SVOp->getMaskElt(Index); if (Idx < 0) { ++NumZeros; continue; } SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index); if (Elt.getNode() && X86::isZeroNode(Elt)) ++NumZeros; else break; } return NumZeros; } /// isVectorShift - Returns true if the shuffle can be implemented as a /// logical left or right shift of a vector. /// FIXME: split into pslldqi, psrldqi, palignr variants. static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { int NumElems = SVOp->getValueType(0).getVectorNumElements(); isLeft = true; unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG); if (!NumZeros) { isLeft = false; NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG); if (!NumZeros) return false; } bool SeenV1 = false; bool SeenV2 = false; for (int i = NumZeros; i < NumElems; ++i) { int Val = isLeft ? (i - NumZeros) : i; int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros)); if (Idx < 0) continue; if (Idx < NumElems) SeenV1 = true; else { Idx -= NumElems; SeenV2 = true; } if (Idx != Val) return false; } if (SeenV1 && SeenV2) return false; ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1); ShAmt = NumZeros; return true; } /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. /// static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, TargetLowering &TLI) { if (NumNonZero > 8) return SDValue(); DebugLoc dl = Op.getDebugLoc(); SDValue V(0, 0); bool First = true; for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, true, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } if ((i & 1) != 0) { SDValue ThisElt(0, 0), LastElt(0, 0); bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, DAG.getConstant(8, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.getNode()) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, DAG.getIntPtrConstant(i/2)); } } return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V); } /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. /// static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, TargetLowering &TLI) { if (NumNonZero > 4) return SDValue(); DebugLoc dl = Op.getDebugLoc(); SDValue V(0, 0); bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, true, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Op.getOperand(i), DAG.getIntPtrConstant(i)); } } return V; } /// getVShift - Return a vector logical shift node. /// static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, SelectionDAG &DAG, const TargetLowering &TLI, DebugLoc dl) { bool isMMX = VT.getSizeInBits() == 64; EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, DAG.getNode(Opc, dl, ShVT, SrcOp, DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); } SDValue X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, SelectionDAG &DAG) { // Check if the scalar load can be widened into a vector load. And if // the address is "base + cst" see if the cst can be "absorbed" into // the shuffle mask. if (LoadSDNode *LD = dyn_cast(SrcOp)) { SDValue Ptr = LD->getBasePtr(); if (!ISD::isNormalLoad(LD) || LD->isVolatile()) return SDValue(); EVT PVT = LD->getValueType(0); if (PVT != MVT::i32 && PVT != MVT::f32) return SDValue(); int FI = -1; int64_t Offset = 0; if (FrameIndexSDNode *FINode = dyn_cast(Ptr)) { FI = FINode->getIndex(); Offset = 0; } else if (Ptr.getOpcode() == ISD::ADD && isa(Ptr.getOperand(1)) && isa(Ptr.getOperand(0))) { FI = cast(Ptr.getOperand(0))->getIndex(); Offset = Ptr.getConstantOperandVal(1); Ptr = Ptr.getOperand(0); } else { return SDValue(); } SDValue Chain = LD->getChain(); // Make sure the stack object alignment is at least 16. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (DAG.InferPtrAlignment(Ptr) < 16) { if (MFI->isFixedObjectIndex(FI)) { // Can't change the alignment. FIXME: It's possible to compute // the exact stack offset and reference FI + adjust offset instead. // If someone *really* cares about this. That's the way to implement it. return SDValue(); } else { MFI->setObjectAlignment(FI, 16); } } // (Offset % 16) must be multiple of 4. Then address is then // Ptr + (Offset & ~15). if (Offset < 0) return SDValue(); if ((Offset % 16) & 3) return SDValue(); int64_t StartOffset = Offset & ~15; if (StartOffset) Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); int EltNo = (Offset - StartOffset) >> 2; int Mask[4] = { EltNo, EltNo, EltNo, EltNo }; EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32; SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0); // Canonicalize it to a v4i32 shuffle. V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, DAG.getVectorShuffle(MVT::v4i32, dl, V1, DAG.getUNDEF(MVT::v4i32), &Mask[0])); } return SDValue(); } SDValue X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); // All zero's are handled with pxor, all one's are handled with pcmpeqd. if (ISD::isBuildVectorAllZeros(Op.getNode()) || ISD::isBuildVectorAllOnes(Op.getNode())) { // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are // eliminated on x86-32 hosts. if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) return Op; if (ISD::isBuildVectorAllOnes(Op.getNode())) return getOnesVector(Op.getValueType(), DAG, dl); return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); } EVT VT = Op.getValueType(); EVT ExtVT = VT.getVectorElementType(); unsigned EVTBits = ExtVT.getSizeInBits(); unsigned NumElems = Op.getNumOperands(); unsigned NumZero = 0; unsigned NumNonZero = 0; unsigned NonZeros = 0; bool IsAllConstants = true; SmallSet Values; for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Op.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) continue; Values.insert(Elt); if (Elt.getOpcode() != ISD::Constant && Elt.getOpcode() != ISD::ConstantFP) IsAllConstants = false; if (X86::isZeroNode(Elt)) NumZero++; else { NonZeros |= (1 << i); NumNonZero++; } } if (NumNonZero == 0) { // All undef vector. Return an UNDEF. All zero vectors were handled above. return DAG.getUNDEF(VT); } // Special case for single non-zero, non-undef, element. if (NumNonZero == 1) { unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue Item = Op.getOperand(Idx); // If this is an insertion of an i64 value on x86-32, and if the top bits of // the value are obviously zero, truncate the value to i32 and do the // insertion that way. Only do this if the value is non-constant or if the // value is a constant being inserted into element 0. It is cheaper to do // a constant pool load than it is to do a movd + shuffle. if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && (!IsAllConstants || Idx == 0)) { if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { // Handle MMX and SSE both. EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; // Truncate the value (which may itself be a constant) to i32, and // convert it to a vector with movd (S2V+shuffle to zero extend). Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), DAG); // Now we have our 32-bit value zero extended in the low element of // a vector. If Idx != 0, swizzle it into place. if (Idx != 0) { SmallVector Mask; Mask.push_back(Idx); for (unsigned i = 1; i != VecElts; ++i) Mask.push_back(i); Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(Item.getValueType()), &Mask[0]); } return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item); } } // If we have a constant or non-constant insertion into the low element of // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into // the rest of the elements. This will be matched as movd/movq/movss/movsd // depending on what the source datatype is. if (Idx == 0) { if (NumZero == 0) { return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || (ExtVT == MVT::i64 && Subtarget->is64Bit())) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), DAG); } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32; Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), DAG); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item); } } // Is it a vector logical left shift? if (NumElems == 2 && Idx == 1 && X86::isZeroNode(Op.getOperand(0)) && !X86::isZeroNode(Op.getOperand(1))) { unsigned NumBits = VT.getSizeInBits(); return getVShift(true, VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(1)), NumBits/2, DAG, *this, dl); } if (IsAllConstants) // Otherwise, it's better to do a constpool load. return SDValue(); // Otherwise, if this is a vector with i32 or f32 elements, and the element // is a non-constant being inserted into an element other than the low one, // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka // movd/movss) to move this into the low element, then shuffle it into // place. if (EVTBits == 32) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a shuffle of zero and zero-extended scalar to vector. Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget->hasSSE2(), DAG); SmallVector MaskVec; for (unsigned i = 0; i < NumElems; i++) MaskVec.push_back(i == Idx ? 0 : 1); return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); } } // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) { if (EVTBits == 32) { // Instead of a shuffle like this: // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> // Check if it's possible to issue this instead. // shuffle (vload ptr)), undef, <1, 1, 1, 1> unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue Item = Op.getOperand(Idx); if (Op.getNode()->isOnlyUserOf(Item.getNode())) return LowerAsSplatVectorLoad(Item, VT, dl, DAG); } return SDValue(); } // A vector full of immediates; various special cases are already // handled, so this is best done with a single constant-pool load. if (IsAllConstants) return SDValue(); // Let legalizer expand 2-wide build_vectors. if (EVTBits == 64) { if (NumNonZero == 1) { // One half is zero or undef. unsigned Idx = CountTrailingZeros_32(NonZeros); SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(Idx)); return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget->hasSSE2(), DAG); } return SDValue(); } // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8 && NumElems == 16) { SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, *this); if (V.getNode()) return V; } if (EVTBits == 16 && NumElems == 8) { SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, *this); if (V.getNode()) return V; } // If element VT is == 32 bits, turn it into a number of shuffles. SmallVector V; V.resize(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1 << i)); if (isZero) V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); break; case 2: V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); break; case 3: V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); break; } } SmallVector MaskVec; bool Reverse = (NonZeros & 0x3) == 2; for (unsigned i = 0; i < 2; ++i) MaskVec.push_back(Reverse ? 1-i : i); Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; for (unsigned i = 0; i < 2; ++i) MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); } if (Values.size() > 2) { // If we have SSE 4.1, Expand into a number of inserts unless the number of // values to be inserted is equal to the number of elements, in which case // use the unpack code below in the hopes of matching the consecutive elts // load merge pattern for shuffles. // FIXME: We could probably just check that here directly. if (Values.size() < NumElems && VT.getSizeInBits() == 128 && getSubtarget()->hasSSE41()) { V[0] = DAG.getUNDEF(VT); for (unsigned i = 0; i < NumElems; ++i) if (Op.getOperand(i).getOpcode() != ISD::UNDEF) V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0], Op.getOperand(i), DAG.getIntPtrConstant(i)); return V[0]; } // Expand into a number of unpckl*. // e.g. for v4f32 // Step 1: unpcklps 0, 2 ==> X: // : unpcklps 1, 3 ==> Y: // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> for (unsigned i = 0; i < NumElems; ++i) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); NumElems >>= 1; while (NumElems != 0) { for (unsigned i = 0; i < NumElems; ++i) V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]); NumElems >>= 1; } return V[0]; } return SDValue(); } SDValue X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { // We support concatenate two MMX registers and place them in a MMX // register. This is better than doing a stack convert. DebugLoc dl = Op.getDebugLoc(); EVT ResVT = Op.getValueType(); assert(Op.getNumOperands() == 2); assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 || ResVT == MVT::v8i16 || ResVT == MVT::v16i8); int Mask[2]; SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0)); SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); InVec = Op.getOperand(1); if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { unsigned NumElts = ResVT.getVectorNumElements(); VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp, InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1)); } else { InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec); SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); Mask[0] = 0; Mask[1] = 2; VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask); } return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); } // v8i16 shuffles - Prefer shuffles in the following order: // 1. [all] pshuflw, pshufhw, optional move // 2. [ssse3] 1 x pshufb // 3. [ssse3] 2 x pshufb + 1 x por // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) static SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, X86TargetLowering &TLI) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); SmallVector MaskVals; // Determine if more than 1 of the words in each of the low and high quadwords // of the result come from the same quadword of one of the two inputs. Undef // mask values count as coming from any quadword, for better codegen. SmallVector LoQuad(4); SmallVector HiQuad(4); BitVector InputQuads(4); for (unsigned i = 0; i < 8; ++i) { SmallVectorImpl &Quad = i < 4 ? LoQuad : HiQuad; int EltIdx = SVOp->getMaskElt(i); MaskVals.push_back(EltIdx); if (EltIdx < 0) { ++Quad[0]; ++Quad[1]; ++Quad[2]; ++Quad[3]; continue; } ++Quad[EltIdx / 4]; InputQuads.set(EltIdx / 4); } int BestLoQuad = -1; unsigned MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (LoQuad[i] > MaxQuad) { BestLoQuad = i; MaxQuad = LoQuad[i]; } } int BestHiQuad = -1; MaxQuad = 1; for (unsigned i = 0; i < 4; ++i) { if (HiQuad[i] > MaxQuad) { BestHiQuad = i; MaxQuad = HiQuad[i]; } } // For SSSE3, If all 8 words of the result come from only 1 quadword of each // of the two input vectors, shuffle them into one input vector so only a // single pshufb instruction is necessary. If There are more than 2 input // quads, disable the next transformation since it does not help SSSE3. bool V1Used = InputQuads[0] || InputQuads[1]; bool V2Used = InputQuads[2] || InputQuads[3]; if (TLI.getSubtarget()->hasSSSE3()) { if (InputQuads.count() == 2 && V1Used && V2Used) { BestLoQuad = InputQuads.find_first(); BestHiQuad = InputQuads.find_next(BestLoQuad); } if (InputQuads.count() > 2) { BestLoQuad = -1; BestHiQuad = -1; } } // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update // the shuffle mask. If a quad is scored as -1, that means that it contains // words from all 4 input quadwords. SDValue NewV; if (BestLoQuad >= 0 || BestHiQuad >= 0) { SmallVector MaskV; MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); NewV = DAG.getVectorShuffle(MVT::v2i64, dl, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1), DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]); NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV); // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the // source words for the shuffle, to aid later transformations. bool AllWordsInNewV = true; bool InOrder[2] = { true, true }; for (unsigned i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx != (int)i) InOrder[i/4] = false; if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) continue; AllWordsInNewV = false; break; } bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; if (AllWordsInNewV) { for (int i = 0; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) continue; idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; if ((idx != i) && idx < 4) pshufhw = false; if ((idx != i) && idx > 3) pshuflw = false; } V1 = NewV; V2Used = false; BestLoQuad = 0; BestHiQuad = 1; } // If we've eliminated the use of V2, and the new mask is a pshuflw or // pshufhw, that's as cheap as it gets. Return the new shuffle. if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { return DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); } } // If we have SSSE3, and all words of the result are from 1 input vector, // case 2 is generated, otherwise case 3 is generated. If no SSSE3 // is present, fall back to case 4. if (TLI.getSubtarget()->hasSSSE3()) { SmallVector pshufbMask; // If we have elements from both input vectors, set the high bit of the // shuffle mask element to zero out elements that come from V2 in the V1 // mask, and elements that come from V1 in the V2 mask, so that the two // results can be OR'd together. bool TwoInputs = V1Used && V2Used; for (unsigned i = 0; i != 8; ++i) { int EltIdx = MaskVals[i] * 2; if (TwoInputs && (EltIdx >= 16)) { pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); continue; } pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); } V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1); V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); if (!TwoInputs) return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. pshufbMask.clear(); for (unsigned i = 0; i != 8; ++i) { int EltIdx = MaskVals[i] * 2; if (EltIdx < 16) { pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); continue; } pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); } V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2); V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); } // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, // and update MaskVals with new element order. BitVector InOrder(8); if (BestLoQuad >= 0) { SmallVector MaskV; for (int i = 0; i != 4; ++i) { int idx = MaskVals[i]; if (idx < 0) { MaskV.push_back(-1); InOrder.set(i); } else if ((idx / 4) == BestLoQuad) { MaskV.push_back(idx & 3); InOrder.set(i); } else { MaskV.push_back(-1); } } for (unsigned i = 4; i != 8; ++i) MaskV.push_back(i); NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); } // If BestHi >= 0, generate a pshufhw to put the high elements in order, // and update MaskVals with the new element order. if (BestHiQuad >= 0) { SmallVector MaskV; for (unsigned i = 0; i != 4; ++i) MaskV.push_back(i); for (unsigned i = 4; i != 8; ++i) { int idx = MaskVals[i]; if (idx < 0) { MaskV.push_back(-1); InOrder.set(i); } else if ((idx / 4) == BestHiQuad) { MaskV.push_back((idx & 3) + 4); InOrder.set(i); } else { MaskV.push_back(-1); } } NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), &MaskV[0]); } // In case BestHi & BestLo were both -1, which means each quadword has a word // from each of the four input quadwords, calculate the InOrder bitvector now // before falling through to the insert/extract cleanup. if (BestLoQuad == -1 && BestHiQuad == -1) { NewV = V1; for (int i = 0; i != 8; ++i) if (MaskVals[i] < 0 || MaskVals[i] == i) InOrder.set(i); } // The other elements are put in the right place using pextrw and pinsrw. for (unsigned i = 0; i != 8; ++i) { if (InOrder[i]) continue; int EltIdx = MaskVals[i]; if (EltIdx < 0) continue; SDValue ExtOp = (EltIdx < 8) ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, DAG.getIntPtrConstant(EltIdx)) : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, DAG.getIntPtrConstant(EltIdx - 8)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, DAG.getIntPtrConstant(i)); } return NewV; } // v16i8 shuffles - Prefer shuffles in the following order: // 1. [ssse3] 1 x pshufb // 2. [ssse3] 2 x pshufb + 1 x por // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, X86TargetLowering &TLI) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); SmallVector MaskVals; SVOp->getMask(MaskVals); // If we have SSSE3, case 1 is generated when all result bytes come from // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is // present, fall back to case 3. // FIXME: kill V2Only once shuffles are canonizalized by getNode. bool V1Only = true; bool V2Only = true; for (unsigned i = 0; i < 16; ++i) { int EltIdx = MaskVals[i]; if (EltIdx < 0) continue; if (EltIdx < 16) V2Only = false; else V1Only = false; } // If SSSE3, use 1 pshufb instruction per vector with elements in the result. if (TLI.getSubtarget()->hasSSSE3()) { SmallVector pshufbMask; // If all result elements are from one input vector, then only translate // undef mask values to 0x80 (zero out result) in the pshufb mask. // // Otherwise, we have elements from both input vectors, and must zero out // elements that come from V2 in the first mask, and V1 in the second mask // so that we can OR them together. bool TwoInputs = !(V1Only || V2Only); for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); continue; } pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); } // If all the elements are from V2, assign it to V1 and return after // building the first pshufb. if (V2Only) V1 = V2; V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); if (!TwoInputs) return V1; // Calculate the shuffle mask for the second input, shuffle it, and // OR it with the first shuffled input. pshufbMask.clear(); for (unsigned i = 0; i != 16; ++i) { int EltIdx = MaskVals[i]; if (EltIdx < 16) { pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); continue; } pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); } V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, &pshufbMask[0], 16)); return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); } // No SSSE3 - Calculate in place words and then fix all out of place words // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from // the 16 different words that comprise the two doublequadword input vectors. V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2); SDValue NewV = V2Only ? V2 : V1; for (int i = 0; i != 8; ++i) { int Elt0 = MaskVals[i*2]; int Elt1 = MaskVals[i*2+1]; // This word of the result is all undef, skip it. if (Elt0 < 0 && Elt1 < 0) continue; // This word of the result is already in the correct place, skip it. if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) continue; if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) continue; SDValue Elt0Src = Elt0 < 16 ? V1 : V2; SDValue Elt1Src = Elt1 < 16 ? V1 : V2; SDValue InsElt; // If Elt0 and Elt1 are defined, are consecutive, and can be load // using a single extract together, load it and store it. if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); continue; } // If Elt1 is defined, extract it from the appropriate source. If the // source byte is not also odd, shift the extracted word left 8 bits // otherwise clear the bottom 8 bits if we need to do an or. if (Elt1 >= 0) { InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, DAG.getIntPtrConstant(Elt1 / 2)); if ((Elt1 & 1) == 0) InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, DAG.getConstant(8, TLI.getShiftAmountTy())); else if (Elt0 >= 0) InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, DAG.getConstant(0xFF00, MVT::i16)); } // If Elt0 is defined, extract it from the appropriate source. If the // source byte is not also even, shift the extracted word right 8 bits. If // Elt1 was also defined, OR the extracted values together before // inserting them in the result. if (Elt0 >= 0) { SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); if ((Elt0 & 1) != 0) InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, DAG.getConstant(8, TLI.getShiftAmountTy())); else if (Elt1 >= 0) InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, DAG.getConstant(0x00FF, MVT::i16)); InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) : InsElt0; } NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, DAG.getIntPtrConstant(i)); } return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV); } /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be /// done when every pair / quad of shuffle mask elements point to elements in /// the right sequence. e.g. /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> static SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, TargetLowering &TLI, DebugLoc dl) { EVT VT = SVOp->getValueType(0); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); unsigned NumElems = VT.getVectorNumElements(); unsigned NewWidth = (NumElems == 4) ? 2 : 4; EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); EVT MaskEltVT = MaskVT.getVectorElementType(); EVT NewVT = MaskVT; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Unexpected!"); case MVT::v4f32: NewVT = MVT::v2f64; break; case MVT::v4i32: NewVT = MVT::v2i64; break; case MVT::v8i16: NewVT = MVT::v4i32; break; case MVT::v16i8: NewVT = MVT::v4i32; break; } if (NewWidth == 2) { if (VT.isInteger()) NewVT = MVT::v2i64; else NewVT = MVT::v2f64; } int Scale = NumElems / NewWidth; SmallVector MaskVec; for (unsigned i = 0; i < NumElems; i += Scale) { int StartIdx = -1; for (int j = 0; j < Scale; ++j) { int EltIdx = SVOp->getMaskElt(i+j); if (EltIdx < 0) continue; if (StartIdx == -1) StartIdx = EltIdx - (EltIdx % Scale); if (EltIdx != StartIdx + j) return SDValue(); } if (StartIdx == -1) MaskVec.push_back(-1); else MaskVec.push_back(StartIdx / Scale); } V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1); V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2); return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); } /// getVZextMovL - Return a zero-extending vector move low node. /// static SDValue getVZextMovL(EVT VT, EVT OpVT, SDValue SrcOp, SelectionDAG &DAG, const X86Subtarget *Subtarget, DebugLoc dl) { if (VT == MVT::v2f64 || VT == MVT::v4f32) { LoadSDNode *LD = NULL; if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) LD = dyn_cast(SrcOp); if (!LD) { // movssrr and movsdrr do not clear top bits. Try to use movd, movq // instead. MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) && SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { // PR2108 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; return DAG.getNode(ISD::BIT_CONVERT, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, OpVT, SrcOp.getOperand(0) .getOperand(0)))); } } } return DAG.getNode(ISD::BIT_CONVERT, dl, VT, DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, DAG.getNode(ISD::BIT_CONVERT, dl, OpVT, SrcOp))); } /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of /// shuffles. static SDValue LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); EVT VT = SVOp->getValueType(0); SmallVector, 8> Locs; Locs.resize(4); SmallVector Mask1(4U, -1); SmallVector PermMask; SVOp->getMask(PermMask); unsigned NumHi = 0; unsigned NumLo = 0; for (unsigned i = 0; i != 4; ++i) { int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else { assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); if (Idx < 4) { Locs[i] = std::make_pair(0, NumLo); Mask1[NumLo] = Idx; NumLo++; } else { Locs[i] = std::make_pair(1, NumHi); if (2+NumHi < 4) Mask1[2+NumHi] = Idx; NumHi++; } } } if (NumLo <= 2 && NumHi <= 2) { // If no more than two elements come from either vector. This can be // implemented with two shuffles. First shuffle gather the elements. // The second shuffle, which takes the first shuffle as both of its // vector operands, put the elements into the right order. V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); SmallVector Mask2(4U, -1); for (unsigned i = 0; i != 4; ++i) { if (Locs[i].first == -1) continue; else { unsigned Idx = (i < 2) ? 0 : 4; Idx += Locs[i].first * 2 + Locs[i].second; Mask2[i] = Idx; } } return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); } else if (NumLo == 3 || NumHi == 3) { // Otherwise, we must have three elements from one vector, call it X, and // one element from the other, call it Y. First, use a shufps to build an // intermediate vector with the one element from Y and the element from X // that will be in the same half in the final destination (the indexes don't // matter). Then, use a shufps to build the final vector, taking the half // containing the element from Y from the intermediate, and the other half // from X. if (NumHi == 3) { // Normalize it so the 3 elements come from V1. CommuteVectorShuffleMask(PermMask, VT); std::swap(V1, V2); } // Find the element from V2. unsigned HiIndex; for (HiIndex = 0; HiIndex < 3; ++HiIndex) { int Val = PermMask[HiIndex]; if (Val < 0) continue; if (Val >= 4) break; } Mask1[0] = PermMask[HiIndex]; Mask1[1] = -1; Mask1[2] = PermMask[HiIndex^1]; Mask1[3] = -1; V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); if (HiIndex >= 2) { Mask1[0] = PermMask[0]; Mask1[1] = PermMask[1]; Mask1[2] = HiIndex & 1 ? 6 : 4; Mask1[3] = HiIndex & 1 ? 4 : 6; return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); } else { Mask1[0] = HiIndex & 1 ? 2 : 0; Mask1[1] = HiIndex & 1 ? 0 : 2; Mask1[2] = PermMask[2]; Mask1[3] = PermMask[3]; if (Mask1[2] >= 0) Mask1[2] += 4; if (Mask1[3] >= 0) Mask1[3] += 4; return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); } } // Break it into (shuffle shuffle_hi, shuffle_lo). Locs.clear(); SmallVector LoMask(4U, -1); SmallVector HiMask(4U, -1); SmallVector *MaskPtr = &LoMask; unsigned MaskIdx = 0; unsigned LoIdx = 0; unsigned HiIdx = 2; for (unsigned i = 0; i != 4; ++i) { if (i == 2) { MaskPtr = &HiMask; MaskIdx = 1; LoIdx = 0; HiIdx = 2; } int Idx = PermMask[i]; if (Idx < 0) { Locs[i] = std::make_pair(-1, -1); } else if (Idx < 4) { Locs[i] = std::make_pair(MaskIdx, LoIdx); (*MaskPtr)[LoIdx] = Idx; LoIdx++; } else { Locs[i] = std::make_pair(MaskIdx, HiIdx); (*MaskPtr)[HiIdx] = Idx; HiIdx++; } } SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); SmallVector MaskOps; for (unsigned i = 0; i != 4; ++i) { if (Locs[i].first == -1) { MaskOps.push_back(-1); } else { unsigned Idx = Locs[i].first * 4 + Locs[i].second; MaskOps.push_back(Idx); } } return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); } SDValue X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned NumElems = VT.getVectorNumElements(); bool isMMX = VT.getSizeInBits() == 64; bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; bool V1IsSplat = false; bool V2IsSplat = false; if (isZeroShuffle(SVOp)) return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); // Promote splats to v4f32. if (SVOp->isSplat()) { if (isMMX || NumElems < 4) return Op; return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2()); } // If the shuffle can be profitably rewritten as a narrower shuffle, then // do it! if (VT == MVT::v8i16 || VT == MVT::v16i8) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); if (NewOp.getNode()) return DAG.getNode(ISD::BIT_CONVERT, dl, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { // FIXME: Figure out a cleaner way to do this. // Try to make use of movq to zero out the top part. if (ISD::isBuildVectorAllZeros(V2.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); if (NewOp.getNode()) { if (isCommutedMOVL(cast(NewOp), true, false)) return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), DAG, Subtarget, dl); } } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); if (NewOp.getNode() && X86::isMOVLMask(cast(NewOp))) return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), DAG, Subtarget, dl); } } if (X86::isPSHUFDMask(SVOp)) return Op; // Check if this can be converted into a logical shift. bool isLeft = false; unsigned ShAmt = 0; SDValue ShVal; bool isShift = getSubtarget()->hasSSE2() && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); if (isShift && ShVal.hasOneUse()) { // If the shifted value has multiple uses, it may be cheaper to use // v_set0 + movlhps or movhlps, etc. EVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } if (X86::isMOVLMask(SVOp)) { if (V1IsUndef) return V2; if (ISD::isBuildVectorAllZeros(V1.getNode())) return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); if (!isMMX) return Op; } // FIXME: fold these into legal mask. if (!isMMX && (X86::isMOVSHDUPMask(SVOp) || X86::isMOVSLDUPMask(SVOp) || X86::isMOVHLPSMask(SVOp) || X86::isMOVLHPSMask(SVOp) || X86::isMOVLPMask(SVOp))) return Op; if (ShouldXformToMOVHLPS(SVOp) || ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) return CommuteVectorShuffle(SVOp, DAG); if (isShift) { // No better options. Use a vshl / vsrl. EVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } bool Commuted = false; // FIXME: This should also accept a bitcast of a splat? Be careful, not // 1,1,1,1 -> v8i16 though. V1IsSplat = isSplatVector(V1.getNode()); V2IsSplat = isSplatVector(V2.getNode()); // Canonicalize the splat or undef, if present, to be on the RHS. if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { Op = CommuteVectorShuffle(SVOp, DAG); SVOp = cast(Op); V1 = SVOp->getOperand(0); V2 = SVOp->getOperand(1); std::swap(V1IsSplat, V2IsSplat); std::swap(V1IsUndef, V2IsUndef); Commuted = true; } if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { // Shuffling low element of v1 into undef, just return v1. if (V2IsUndef) return V1; // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which // the instruction selector will not match, so get a canonical MOVL with // swapped operands to undo the commute. return getMOVL(DAG, dl, VT, V2, V1); } if (X86::isUNPCKL_v_undef_Mask(SVOp) || X86::isUNPCKH_v_undef_Mask(SVOp) || X86::isUNPCKLMask(SVOp) || X86::isUNPCKHMask(SVOp)) return Op; if (V2IsSplat) { // Normalize mask so all entries that point to V2 points to its first // element then try to match unpck{h|l} again. If match, return a // new vector_shuffle with the corrected mask. SDValue NewMask = NormalizeMask(SVOp, DAG); ShuffleVectorSDNode *NSVOp = cast(NewMask); if (NSVOp != SVOp) { if (X86::isUNPCKLMask(NSVOp, true)) { return NewMask; } else if (X86::isUNPCKHMask(NSVOp, true)) { return NewMask; } } } if (Commuted) { // Commute is back and try unpck* again. // FIXME: this seems wrong. SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); ShuffleVectorSDNode *NewSVOp = cast(NewOp); if (X86::isUNPCKL_v_undef_Mask(NewSVOp) || X86::isUNPCKH_v_undef_Mask(NewSVOp) || X86::isUNPCKLMask(NewSVOp) || X86::isUNPCKHMask(NewSVOp)) return NewOp; } // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle. // Normalize the node to match x86 shuffle ops if needed if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) return CommuteVectorShuffle(SVOp, DAG); // Check for legal shuffle and return? SmallVector PermMask; SVOp->getMask(PermMask); if (isShuffleMaskLegal(PermMask, VT)) return Op; // Handle v8i16 specifically since SSE can do byte extraction and insertion. if (VT == MVT::v8i16) { SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this); if (NewOp.getNode()) return NewOp; } if (VT == MVT::v16i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); if (NewOp.getNode()) return NewOp; } // Handle all 4 wide cases with a number of shuffles except for MMX. if (NumElems == 4 && !isMMX) return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); return SDValue(); } SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); if (VT.getSizeInBits() == 8) { SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } else if (VT.getSizeInBits() == 16) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); // If Idx is 0, it's cheaper to do a move instead of a pextrw. if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1))); SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } else if (VT == MVT::f32) { // EXTRACTPS outputs to a GPR32 register which will require a movd to copy // the result back to FR32 register. It's only worth matching if the // result has a single use which is a store or a bitcast to i32. And in // the case of a store, it's not worth it if the index is a constant 0, // because a MOVSSmr can be used instead, which is smaller and faster. if (!Op.hasOneUse()) return SDValue(); SDNode *User = *Op.getNode()->use_begin(); if ((User->getOpcode() != ISD::STORE || (isa(Op.getOperand(1)) && cast(Op.getOperand(1))->isNullValue())) && (User->getOpcode() != ISD::BIT_CONVERT || User->getValueType(0) != MVT::i32)) return SDValue(); SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, Op.getOperand(0)), Op.getOperand(1)); return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract); } else if (VT == MVT::i32) { // ExtractPS works with constant index. if (isa(Op.getOperand(1))) return Op; } return SDValue(); } SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { if (!isa(Op.getOperand(1))) return SDValue(); if (Subtarget->hasSSE41()) { SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); if (Res.getNode()) return Res; } EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); // TODO: handle v16i8. if (VT.getSizeInBits() == 16) { SDValue Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, Vec), Op.getOperand(1))); // Transform it so it match pextrw which produces a 32-bit result. EVT EltVT = MVT::i32; SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } else if (VT.getSizeInBits() == 32) { unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. int Mask[4] = { Idx, -1, -1, -1 }; EVT VVT = Op.getOperand(0).getValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } else if (VT.getSizeInBits() == 64) { // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught // to match extract_elt for f64. unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. int Mask[2] = { 1, -1 }; EVT VVT = Op.getOperand(0).getValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0)); } return SDValue(); } SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ EVT VT = Op.getValueType(); EVT EltVT = VT.getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && isa(N2)) { unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB : X86ISD::PINSRW; // Transform it so it match pinsr{b,w} which expects a GR32 as its second // argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue()); return DAG.getNode(Opc, dl, VT, N0, N1, N2); } else if (EltVT == MVT::f32 && isa(N2)) { // Bits [7:6] of the constant are the source select. This will always be // zero here. The DAG Combiner may combine an extract_elt index into these // bits. For example (insert (extract, 3), 2) could be matched by putting // the '3' into bits [7:6] of X86ISD::INSERTPS. // Bits [5:4] of the constant are the destination select. This is the // value of the incoming immediate. // Bits [3:0] of the constant are the zero mask. The DAG Combiner may // combine either bitwise AND or insert of float 0.0 to set these bits. N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue() << 4); // Create this as a scalar to vector.. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); } else if (EltVT == MVT::i32 && isa(N2)) { // PINSR* works with constant index. return Op; } return SDValue(); } SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT EltVT = VT.getVectorElementType(); if (Subtarget->hasSSE41()) return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); if (EltVT == MVT::i8) return SDValue(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); if (EltVT.getSizeInBits() == 16 && isa(N2)) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(cast(N2)->getZExtValue()); return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); } return SDValue(); } SDValue X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); if (Op.getValueType() == MVT::v2f32) return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op.getOperand(0)))); if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); EVT VT = MVT::v2i32; switch (Op.getValueType().getSimpleVT().SimpleTy) { default: break; case MVT::v16i8: case MVT::v8i16: VT = MVT::v4i32; break; } return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt)); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDValue X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) { ConstantPoolSDNode *CP = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), CP->getAlignment(), CP->getOffset(), OpFlag); DebugLoc DL = CP->getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { JumpTableSDNode *JT = cast(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), OpFlag); DebugLoc DL = JT->getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (OpFlag) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) { const char *Sym = cast(Op)->getSymbol(); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = getTargetMachine().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); DebugLoc DL = Op.getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->is64Bit()) { Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) { // Create the TargetBlockAddressAddress node. unsigned char OpFlags = Subtarget->ClassifyBlockAddressReference(); CodeModel::Model M = getTargetMachine().getCodeModel(); BlockAddress *BA = cast(Op)->getBlockAddress(); DebugLoc dl = Op.getDebugLoc(); SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), /*isTarget=*/true, OpFlags); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } return Result; } SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, int64_t Offset, SelectionDAG &DAG) const { // Create the TargetGlobalAddress node, folding in the constant // offset if it is legal. unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); CodeModel::Model M = getTargetMachine().getCodeModel(); SDValue Result; if (OpFlags == X86II::MO_NO_FLAG && X86::isOffsetSuitableForCodeModel(Offset, M)) { // A direct static reference to a global. Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset); Offset = 0; } else { Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags); } if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), Result); } // For globals that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlags)) Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, PseudoSourceValue::getGOT(), 0); // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, DAG.getConstant(Offset, getPointerTy())); return Result; } SDValue X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) { const GlobalValue *GV = cast(Op)->getGlobal(); int64_t Offset = cast(Op)->getOffset(); return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); } static SDValue GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags) { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); DebugLoc dl = GA->getDebugLoc(); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), GA->getOffset(), OperandFlags); if (InFlag) { SDValue Ops[] = { Chain, TGA, *InFlag }; Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); } else { SDValue Ops[] = { Chain, TGA }; Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); } // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. MFI->setHasCalls(true); SDValue Flag = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit static SDValue LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { SDValue InFlag; DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit static SDValue LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or // "local exec" model. static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model, bool is64Bit) { DebugLoc dl = GA->getDebugLoc(); // Get the Thread Pointer SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress, DebugLoc::getUnknownLoc(), PtrVT, DAG.getRegister(is64Bit? X86::FS : X86::GS, MVT::i32)); SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base, NULL, 0); unsigned char OperandFlags = 0; // Most TLS accesses are not RIP relative, even on x86-64. One exception is // initialexec. unsigned WrapperKind = X86ISD::Wrapper; if (model == TLSModel::LocalExec) { OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; } else if (is64Bit) { assert(model == TLSModel::InitialExec); OperandFlags = X86II::MO_GOTTPOFF; WrapperKind = X86ISD::WrapperRIP; } else { assert(model == TLSModel::InitialExec); OperandFlags = X86II::MO_INDNTPOFF; } // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial // exec) SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); if (model == TLSModel::InitialExec) Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, PseudoSourceValue::getGOT(), 0); // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { // TODO: implement the "local dynamic" model // TODO: implement the "initial exec"model for pic executables assert(Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"); GlobalAddressSDNode *GA = cast(Op); const GlobalValue *GV = GA->getGlobal(); // If GV is an alias then use the aliasee for determining // thread-localness. if (const GlobalAlias *GA = dyn_cast(GV)) GV = GA->resolveAliasedGlobal(false); TLSModel::Model model = getTLSModel(GV, getTargetMachine().getRelocationModel()); switch (model) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: // not implemented if (Subtarget->is64Bit()) return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, Subtarget->is64Bit()); } llvm_unreachable("Unreachable"); return SDValue(); } /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and /// take a 2 x i32 value to shift plus a shift amount. SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : DAG.getConstant(0, VT); SDValue Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); } SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits, MVT::i8)); SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT, AndNode, DAG.getConstant(0, MVT::i8)); SDValue Hi, Lo; SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; if (Op.getOpcode() == ISD::SHL_PARTS) { Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); } else { Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); } SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { EVT SrcVT = Op.getOperand(0).getValueType(); if (SrcVT.isVector()) { if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) { return Op; } return SDValue(); } assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); // These are really Legal; return the operand so the caller accepts it as // Legal. if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) return Op; if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && Subtarget->is64Bit()) { return Op; } DebugLoc dl = Op.getDebugLoc(); unsigned Size = SrcVT.getSizeInBits()/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, PseudoSourceValue::getFixedStack(SSFI), 0); return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); } SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) { // Build the FILD DebugLoc dl = Op.getDebugLoc(); SDVTList Tys; bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); if (useSSE) Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); else Tys = DAG.getVTList(Op.getValueType(), MVT::Other); SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl, Tys, Ops, array_lengthof(Ops)); if (useSSE) { Chain = Result.getValue(1); SDValue InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = { Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag }; Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops)); Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot, PseudoSourceValue::getFixedStack(SSFI), 0); } return Result; } // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) { // This algorithm is not obvious. Here it is in C code, more or less: /* double uint64_to_double( uint32_t hi, uint32_t lo ) { static const __m128i exp = { 0x4330000045300000ULL, 0 }; static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; // Copy ints to xmm registers. __m128i xh = _mm_cvtsi32_si128( hi ); __m128i xl = _mm_cvtsi32_si128( lo ); // Combine into low half of a single xmm register. __m128i x = _mm_unpacklo_epi32( xh, xl ); __m128d d; double sd; // Merge in appropriate exponents to give the integer bits the right // magnitude. x = _mm_unpacklo_epi32( x, exp ); // Subtract away the biases to deal with the IEEE-754 double precision // implicit 1. d = _mm_sub_pd( (__m128d) x, bias ); // All conversions up to here are exact. The correctly rounded result is // calculated using the current rounding mode using the following // horizontal add. d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this // store doesn't really need to be here (except // maybe to zero the other double) return sd; } */ DebugLoc dl = Op.getDebugLoc(); LLVMContext *Context = DAG.getContext(); // Build some magic constants. std::vector CV0; CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); Constant *C0 = ConstantVector::get(CV0); SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); std::vector CV1; CV1.push_back( ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); CV1.push_back( ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); Constant *C1 = ConstantVector::get(CV1); SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(0), DAG.getIntPtrConstant(1))); SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(0), DAG.getIntPtrConstant(0))); SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, PseudoSourceValue::getConstantPool(), 0, false, 16); SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2); SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, PseudoSourceValue::getConstantPool(), 0, false, 16); SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); // Add the halves; easiest way is to swap them into another reg first. int ShufMask[2] = { 1, -1 }; SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, DAG.getUNDEF(MVT::v2f64), ShufMask); SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, DAG.getIntPtrConstant(0)); } // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); // FP constant to bias correct the final result. SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), MVT::f64); // Load the 32-bit value into an XMM register. SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(0), DAG.getIntPtrConstant(0))); Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load), DAG.getIntPtrConstant(0)); // Or the load with the bias. SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or), DAG.getIntPtrConstant(0)); // Subtract the bias. SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); // Handle final rounding. EVT DestVT = Op.getValueType(); if (DestVT.bitsLT(MVT::f64)) { return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0)); } else if (DestVT.bitsGT(MVT::f64)) { return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); } // Handle final rounding. return Sub; } SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) { SDValue N0 = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform // the optimization here. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); EVT SrcVT = N0.getValueType(); if (SrcVT == MVT::i64) { // We only handle SSE2 f64 target here; caller can expand the rest. if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64) return SDValue(); return LowerUINT_TO_FP_i64(Op, DAG); } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) { return LowerUINT_TO_FP_i32(Op, DAG); } assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!"); // Make a 64-bit buffer, and use it to build an FILD. SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); SDValue WordOff = DAG.getConstant(4, getPointerTy()); SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackSlot, WordOff); SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, NULL, 0); SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), OffsetSlot, NULL, 0); return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); } std::pair X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) { DebugLoc dl = Op.getDebugLoc(); EVT DstTy = Op.getValueType(); if (!IsSigned) { assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); DstTy = MVT::i64; } assert(DstTy.getSimpleVT() <= MVT::i64 && DstTy.getSimpleVT() >= MVT::i16 && "Unknown FP_TO_SINT to lower!"); // These are really Legal. if (DstTy == MVT::i32 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); if (Subtarget->is64Bit() && DstTy == MVT::i64 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary // stack slot. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = DstTy.getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; switch (DstTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDValue Chain = DAG.getEntryNode(); SDValue Value = Op.getOperand(0); if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getStore(Chain, dl, Value, StackSlot, PseudoSourceValue::getFixedStack(SSFI), 0); SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) }; Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } // Build the FP_TO_INT*_IN_MEM SDValue Ops[] = { Chain, Value, StackSlot }; SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3); return std::make_pair(FIST, StackSlot); } SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { if (Op.getValueType().isVector()) { if (Op.getValueType() == MVT::v2i32 && Op.getOperand(0).getValueType() == MVT::v2f64) { return Op; } return SDValue(); } std::pair Vals = FP_TO_INTHelper(Op, DAG, true); SDValue FIST = Vals.first, StackSlot = Vals.second; // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. if (FIST.getNode() == 0) return Op; // Load the result. return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), FIST, StackSlot, NULL, 0); } SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) { std::pair Vals = FP_TO_INTHelper(Op, DAG, false); SDValue FIST = Vals.first, StackSlot = Vals.second; assert(FIST.getNode() && "Unexpected failure"); // Load the result. return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), FIST, StackSlot, NULL, 0); } SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); EVT EltVT = VT; if (VT.isVector()) EltVT = VT.getVectorElementType(); std::vector CV; if (EltVT == MVT::f64) { Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); CV.push_back(C); CV.push_back(C); } else { Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); CV.push_back(C); CV.push_back(C); CV.push_back(C); CV.push_back(C); } Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, 16); return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); } SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); EVT EltVT = VT; if (VT.isVector()) EltVT = VT.getVectorElementType(); std::vector CV; if (EltVT == MVT::f64) { Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); CV.push_back(C); CV.push_back(C); } else { Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); CV.push_back(C); CV.push_back(C); CV.push_back(C); CV.push_back(C); } Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, 16); if (VT.isVector()) { return DAG.getNode(ISD::BIT_CONVERT, dl, VT, DAG.getNode(ISD::XOR, dl, MVT::v2i64, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Op.getOperand(0)), DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask))); } else { return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); } } SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { LLVMContext *Context = DAG.getContext(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); EVT SrcVT = Op1.getValueType(); // If second operand is smaller, extend it first. if (SrcVT.bitsLT(VT)) { Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); SrcVT = VT; } // And if it is bigger, shrink it first. if (SrcVT.bitsGT(VT)) { Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); SrcVT = VT; } // At this point the operands and the result should have the same // type, and that won't be f80 since that is not custom lowered. // First get the sign bit of second operand. std::vector CV; if (SrcVT == MVT::f64) { CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); } else { CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); } Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, 16); SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); // Shift sign bit right or left if the two operands have different types. if (SrcVT.bitsGT(VT)) { // Op0 is MVT::f32, Op1 is MVT::f64. SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, DAG.getConstant(32, MVT::i32)); SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit); SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, DAG.getIntPtrConstant(0)); } // Clear first operand sign bit. CV.clear(); if (VT == MVT::f64) { CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); } else { CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); } C = ConstantVector::get(CV); CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, 16); SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); // Or the value with the sign bit. return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); } /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent. SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); // CF and OF aren't always set the way we want. Determine which // of these we need. bool NeedCF = false; bool NeedOF = false; switch (X86CC) { case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: NeedCF = true; break; case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: NeedOF = true; break; default: break; } // See if we can use the EFLAGS value from the operand instead of // doing a separate TEST. TEST always sets OF and CF to 0, so unless // we prove that the arithmetic won't overflow, we can't use OF or CF. if (Op.getResNo() == 0 && !NeedOF && !NeedCF) { unsigned Opcode = 0; unsigned NumOperands = 0; switch (Op.getNode()->getOpcode()) { case ISD::ADD: // Due to an isel shortcoming, be conservative if this add is likely to // be selected as part of a load-modify-store instruction. When the root // node in a match is a store, isel doesn't know how to remap non-chain // non-flag uses of other nodes in the match, such as the ADD in this // case. This leads to the ADD being left around and reselected, with // the result being two adds in the output. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() == ISD::STORE) goto default_case; if (ConstantSDNode *C = dyn_cast(Op.getNode()->getOperand(1))) { // An add of one will be selected as an INC. if (C->getAPIntValue() == 1) { Opcode = X86ISD::INC; NumOperands = 1; break; } // An add of negative one (subtract of one) will be selected as a DEC. if (C->getAPIntValue().isAllOnesValue()) { Opcode = X86ISD::DEC; NumOperands = 1; break; } } // Otherwise use a regular EFLAGS-setting add. Opcode = X86ISD::ADD; NumOperands = 2; break; case ISD::AND: { // If the primary and result isn't used, don't bother using X86ISD::AND, // because a TEST instruction will be better. bool NonFlagUse = false; for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; unsigned UOpNo = UI.getOperandNo(); if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { // Look pass truncate. UOpNo = User->use_begin().getOperandNo(); User = *User->use_begin(); } if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { NonFlagUse = true; break; } } if (!NonFlagUse) break; } // FALL THROUGH case ISD::SUB: case ISD::OR: case ISD::XOR: // Due to the ISEL shortcoming noted above, be conservative if this op is // likely to be selected as part of a load-modify-store instruction. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() == ISD::STORE) goto default_case; // Otherwise use a regular EFLAGS-setting instruction. switch (Op.getNode()->getOpcode()) { case ISD::SUB: Opcode = X86ISD::SUB; break; case ISD::OR: Opcode = X86ISD::OR; break; case ISD::XOR: Opcode = X86ISD::XOR; break; case ISD::AND: Opcode = X86ISD::AND; break; default: llvm_unreachable("unexpected operator!"); } NumOperands = 2; break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: return SDValue(Op.getNode(), 1); default: default_case: break; } if (Opcode != 0) { SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SmallVector Ops; for (unsigned i = 0; i != NumOperands; ++i) Ops.push_back(Op.getOperand(i)); SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); DAG.ReplaceAllUsesWith(Op, New); return SDValue(New.getNode(), 1); } } // Otherwise just emit a CMP with 0, which is the TEST pattern. return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, Op.getValueType())); } /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent. SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SelectionDAG &DAG) { if (ConstantSDNode *C = dyn_cast(Op1)) if (C->getAPIntValue() == 0) return EmitTest(Op0, X86CC, DAG); DebugLoc dl = Op0.getDebugLoc(); return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); } /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC, DebugLoc dl, SelectionDAG &DAG) { SDValue LHS, RHS; if (Op0.getOperand(1).getOpcode() == ISD::SHL) { if (ConstantSDNode *Op010C = dyn_cast(Op0.getOperand(1).getOperand(0))) if (Op010C->getZExtValue() == 1) { LHS = Op0.getOperand(0); RHS = Op0.getOperand(1).getOperand(1); } } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) { if (ConstantSDNode *Op000C = dyn_cast(Op0.getOperand(0).getOperand(0))) if (Op000C->getZExtValue() == 1) { LHS = Op0.getOperand(1); RHS = Op0.getOperand(0).getOperand(1); } } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) { ConstantSDNode *AndRHS = cast(Op0.getOperand(1)); SDValue AndLHS = Op0.getOperand(0); if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { LHS = AndLHS.getOperand(0); RHS = AndLHS.getOperand(1); } } if (LHS.getNode()) { // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT // instruction. Since the shift amount is in-range-or-undefined, we know // that doing a bittest on the i16 value is ok. We extend to i32 because // the encoding for the i16 version is larger than the i32 version. if (LHS.getValueType() == MVT::i8) LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); // If the operand types disagree, extend the shift amount to match. Since // BT ignores high bits (like shifts) we can use anyextend. if (LHS.getValueType() != RHS.getValueType()) RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(Cond, MVT::i8), BT); } return SDValue(); } SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); ISD::CondCode CC = cast(Op.getOperand(2))->get(); // Optimize to BT if possible. // Lower (X & (1 << N)) == 0 to BT(X, N). // Lower ((X >>u N) & 1) != 0 to BT(X, N). // Lower ((X >>s N) & 1) != 0 to BT(X, N). if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && Op1.getOpcode() == ISD::Constant && cast(Op1)->getZExtValue() == 0 && (CC == ISD::SETEQ || CC == ISD::SETNE)) { SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); if (NewSetCC.getNode()) return NewSetCC; } bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); if (X86CC == X86::COND_INVALID) return SDValue(); SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG); // Use sbb x, x to materialize carry bit into a GPR. if (X86CC == X86::COND_B) return DAG.getNode(ISD::AND, dl, MVT::i8, DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond), DAG.getConstant(1, MVT::i8)); return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); } SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) { SDValue Cond; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); EVT VT = Op.getValueType(); ISD::CondCode SetCCOpcode = cast(CC)->get(); bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); DebugLoc dl = Op.getDebugLoc(); if (isFP) { unsigned SSECC = 8; EVT VT0 = Op0.getValueType(); assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; bool Swap = false; switch (SetCCOpcode) { default: break; case ISD::SETOEQ: case ISD::SETEQ: SSECC = 0; break; case ISD::SETOGT: case ISD::SETGT: Swap = true; // Fallthrough case ISD::SETLT: case ISD::SETOLT: SSECC = 1; break; case ISD::SETOGE: case ISD::SETGE: Swap = true; // Fallthrough case ISD::SETLE: case ISD::SETOLE: SSECC = 2; break; case ISD::SETUO: SSECC = 3; break; case ISD::SETUNE: case ISD::SETNE: SSECC = 4; break; case ISD::SETULE: Swap = true; case ISD::SETUGE: SSECC = 5; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: SSECC = 6; break; case ISD::SETO: SSECC = 7; break; } if (Swap) std::swap(Op0, Op1); // In the two special cases we can't handle, emit two comparisons. if (SSECC == 8) { if (SetCCOpcode == ISD::SETUEQ) { SDValue UNORD, EQ; UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); } else if (SetCCOpcode == ISD::SETONE) { SDValue ORD, NEQ; ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); } llvm_unreachable("Illegal FP comparison"); } // Handle all other FP comparisons here. return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); } // We are handling one of the integer comparisons here. Since SSE only has // GT and EQ comparisons for integer, swapping operands and multiple // operations may be required for some comparisons. unsigned Opc = 0, EQOpc = 0, GTOpc = 0; bool Swap = false, Invert = false, FlipSigns = false; switch (VT.getSimpleVT().SimpleTy) { default: break; case MVT::v8i8: case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; case MVT::v4i16: case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; case MVT::v2i32: case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; } switch (SetCCOpcode) { default: break; case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = EQOpc; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = GTOpc; break; case ISD::SETGE: Swap = true; case ISD::SETLE: Opc = GTOpc; Invert = true; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; case ISD::SETUGE: Swap = true; case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; } if (Swap) std::swap(Op0, Op1); // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. if (FlipSigns) { EVT EltVT = VT.getVectorElementType(); SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), EltVT); std::vector SignBits(VT.getVectorNumElements(), SignBit); SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], SignBits.size()); Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); } SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); // If the logical-not of the result is required, perform that now. if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. static bool isX86LogicalCmp(SDValue Op) { unsigned Opc = Op.getNode()->getOpcode(); if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) return true; if (Op.getResNo() == 1 && (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL || Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND)) return true; return false; } SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) { bool addTest = true; SDValue Cond = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); SDValue CC; if (Cond.getOpcode() == ISD::SETCC) { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } // Look pass (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. if (Cond.getOpcode() == X86ISD::SETCC || Cond.getOpcode() == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); EVT VT = Op.getValueType(); bool IllegalFPCMov = false; if (VT.isFloatingPoint() && !VT.isVector() && !isScalarFPTypeInSSEReg(VT)) // FPStack? IllegalFPCMov = !hasFPCMov(cast(CC)->getSExtValue()); if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME Cond = Cmp; addTest = false; } } if (addTest) { // Look pass the truncate. if (Cond.getOpcode() == ISD::TRUNCATE) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DAG); } SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag); // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. SDValue Ops[] = { Op.getOperand(2), Op.getOperand(1), CC, Cond }; return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops)); } // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart // from the AND / OR. static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { Opc = Op.getOpcode(); if (Opc != ISD::OR && Opc != ISD::AND) return false; return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse() && Op.getOperand(1).getOpcode() == X86ISD::SETCC && Op.getOperand(1).hasOneUse()); } // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and // 1 and that the SETCC node has a single use. static bool isXor1OfSetCC(SDValue Op) { if (Op.getOpcode() != ISD::XOR) return false; ConstantSDNode *N1C = dyn_cast(Op.getOperand(1)); if (N1C && N1C->getAPIntValue() == 1) { return Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse(); } return false; } SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) { bool addTest = true; SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); SDValue CC; if (Cond.getOpcode() == ISD::SETCC) { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } #if 0 // FIXME: LowerXALUO doesn't handle these!! else if (Cond.getOpcode() == X86ISD::ADD || Cond.getOpcode() == X86ISD::SUB || Cond.getOpcode() == X86ISD::SMUL || Cond.getOpcode() == X86ISD::UMUL) Cond = LowerXALUO(Cond, DAG); #endif // Look pass (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { ConstantSDNode *C = dyn_cast(Cond.getOperand(1)); if (C && C->getAPIntValue() == 1) Cond = Cond.getOperand(0); } // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. if (Cond.getOpcode() == X86ISD::SETCC || Cond.getOpcode() == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { Cond = Cmp; addTest = false; } else { switch (cast(CC)->getZExtValue()) { default: break; case X86::COND_O: case X86::COND_B: // These can only come from an arithmetic instruction with overflow, // e.g. SADDO, UADDO. Cond = Cond.getNode()->getOperand(1); addTest = false; break; } } } else { unsigned CondOpc; if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { SDValue Cmp = Cond.getOperand(0).getOperand(1); if (CondOpc == ISD::OR) { // Also, recognize the pattern generated by an FCMP_UNE. We can emit // two branches instead of an explicit OR instruction with a // separate test. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp)) { CC = Cond.getOperand(0).getOperand(0); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = Cond.getOperand(1).getOperand(0); Cond = Cmp; addTest = false; } } else { // ISD::AND // Also, recognize the pattern generated by an FCMP_OEQ. We can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp) && Op.getNode()->hasOneUse()) { X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); SDValue User = SDValue(*Op.getNode()->use_begin(), 0); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User.getOpcode() == ISD::BR) { SDValue FalseBB = User.getOperand(1); SDValue NewBR = DAG.UpdateNodeOperands(User, User.getOperand(0), Dest); assert(NewBR == User); Dest = FalseBB; Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); X86::CondCode CCode = (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cmp; addTest = false; } } } } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. // It should be transformed during dag combiner except when the condition // is set by a arithmetics with overflow node. X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); Cond = Cond.getOperand(0).getOperand(1); addTest = false; } } if (addTest) { // Look pass the truncate. if (Cond.getOpcode() == ISD::TRUNCATE) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); if (NewSetCC.getNode()) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DAG); } return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cond); } // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. // Calls to _alloca is needed to probe the stack when allocating more than 4k // bytes in one go. Touching the stack at 4K increments is necessary to ensure // that the guard pages used by the OS virtual memory manager are allocated in // correct sequence. SDValue X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) { assert(Subtarget->isTargetCygMing() && "This should be used only on Cygwin/Mingw targets"); DebugLoc dl = Op.getDebugLoc(); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); // FIXME: Ensure alignment here SDValue Flag; EVT IntPtr = getPointerTy(); EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, DAG.getTargetExternalSymbol("_alloca", IntPtr), DAG.getRegister(X86::EAX, IntPtr), DAG.getRegister(X86StackPtr, SPTy), Flag }; Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5); Flag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), DAG.getIntPtrConstant(0, true), Flag); Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); SDValue Ops1[2] = { Chain.getValue(0), Chain }; return DAG.getMergeValues(Ops1, 2, dl); } SDValue X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff) { ConstantSDNode *ConstantSize = dyn_cast(Size); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. if ((Align & 3) != 0 || !ConstantSize || ConstantSize->getZExtValue() > getSubtarget()->getMaxInlineSizeThreshold()) { SDValue InFlag(0, 0); // Check to see if there is a specialized entry-point for memory zeroing. ConstantSDNode *V = dyn_cast(Src); if (const char *bzeroEntry = V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { EVT IntPtr = getPointerTy(); const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); std::pair CallResult = LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, false, /*isReturnValueUsed=*/false, DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl, DAG.GetOrdering(Chain.getNode())); return CallResult.second; } // Otherwise have the target-independent code call memset. return SDValue(); } uint64_t SizeVal = ConstantSize->getZExtValue(); SDValue InFlag(0, 0); EVT AVT; SDValue Count; ConstantSDNode *ValC = dyn_cast(Src); unsigned BytesLeft = 0; bool TwoRepStos = false; if (ValC) { unsigned ValReg; uint64_t Val = ValC->getZExtValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; ValReg = X86::AX; Val = (Val << 8) | Val; break; case 0: // DWORD aligned AVT = MVT::i32; ValReg = X86::EAX; Val = (Val << 8) | Val; Val = (Val << 16) | Val; if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned AVT = MVT::i64; ValReg = X86::RAX; Val = (Val << 32) | Val; } break; default: // Byte aligned AVT = MVT::i8; ValReg = X86::AL; Count = DAG.getIntPtrConstant(SizeVal); break; } if (AVT.bitsGT(MVT::i8)) { unsigned UBytes = AVT.getSizeInBits() / 8; Count = DAG.getIntPtrConstant(SizeVal / UBytes); BytesLeft = SizeVal % UBytes; } Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = DAG.getIntPtrConstant(SizeVal); Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : X86::EDI, Dst, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); if (TwoRepStos) { InFlag = Chain.getValue(1); Count = Size; EVT CVT = Count.getValueType(); SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); } else if (BytesLeft) { // Handle the last 1 - 7 bytes. unsigned Offset = SizeVal - BytesLeft; EVT AddrVT = Dst.getValueType(); EVT SizeVT = Size.getValueType(); Chain = DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, AddrVT)), Src, DAG.getConstant(BytesLeft, SizeVT), Align, DstSV, DstSVOff + Offset); } // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. return Chain; } SDValue X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff) { // This requires the copy size to be a constant, preferrably // within a subtarget-specific limit. ConstantSDNode *ConstantSize = dyn_cast(Size); if (!ConstantSize) return SDValue(); uint64_t SizeVal = ConstantSize->getZExtValue(); if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) return SDValue(); /// If not DWORD aligned, call the library. if ((Align & 3) != 0) return SDValue(); // DWORD aligned EVT AVT = MVT::i32; if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned AVT = MVT::i64; unsigned UBytes = AVT.getSizeInBits() / 8; unsigned CountVal = SizeVal / UBytes; SDValue Count = DAG.getIntPtrConstant(CountVal); unsigned BytesLeft = SizeVal % UBytes; SDValue InFlag(0, 0); Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : X86::EDI, Dst, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI : X86::ESI, Src, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops, array_lengthof(Ops)); SmallVector Results; Results.push_back(RepMovs); if (BytesLeft) { // Handle the last 1 - 7 bytes. unsigned Offset = SizeVal - BytesLeft; EVT DstVT = Dst.getValueType(); EVT SrcVT = Src.getValueType(); EVT SizeVT = Size.getValueType(); Results.push_back(DAG.getMemcpy(Chain, dl, DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, DstVT)), DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, SrcVT)), DAG.getConstant(BytesLeft, SizeVT), Align, AlwaysInline, DstSV, DstSVOff + Offset, SrcSV, SrcSVOff + Offset)); } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Results[0], Results.size()); } SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) { const Value *SV = cast(Op.getOperand(2))->getValue(); DebugLoc dl = Op.getDebugLoc(); if (!Subtarget->is64Bit()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); } // __va_list_tag: // gp_offset (0 - 6 * 8) // fp_offset (48 - 48 + 8 * 16) // overflow_arg_area (point to parameters coming in memory). // reg_save_area SmallVector MemOps; SDValue FIN = Op.getOperand(1); // Store gp_offset SDValue Store = DAG.getStore(Op.getOperand(0), dl, DAG.getConstant(VarArgsGPOffset, MVT::i32), FIN, SV, 0); MemOps.push_back(Store); // Store fp_offset FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); Store = DAG.getStore(Op.getOperand(0), dl, DAG.getConstant(VarArgsFPOffset, MVT::i32), FIN, SV, 0); MemOps.push_back(Store); // Store ptr to overflow_arg_area FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0); MemOps.push_back(Store); // Store ptr to reg_save_area. FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); } SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) { // X86-64 va_list is a struct { i32, i32, i8*, i8* }. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); SDValue Chain = Op.getOperand(0); SDValue SrcPtr = Op.getOperand(1); SDValue SrcSV = Op.getOperand(2); llvm_report_error("VAArgInst is not yet implemented for x86-64!"); return SDValue(); } SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) { // X86-64 va_list is a struct { i32, i32, i8*, i8* }. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); DebugLoc dl = Op.getDebugLoc(); return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr, DAG.getIntPtrConstant(24), 8, false, DstSV, 0, SrcSV, 0); } SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. // Comparison intrinsics. case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomineq_sd: { unsigned Opc = 0; ISD::CondCode CC = ISD::SETCC_INVALID; switch (IntNo) { default: break; case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse2_comieq_sd: Opc = X86ISD::COMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse2_comilt_sd: Opc = X86ISD::COMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse2_comile_sd: Opc = X86ISD::COMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse2_comigt_sd: Opc = X86ISD::COMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse2_comige_sd: Opc = X86ISD::COMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse2_comineq_sd: Opc = X86ISD::COMI; CC = ISD::SETNE; break; case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse2_ucomieq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse2_ucomilt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse2_ucomile_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse2_ucomigt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse2_ucomige_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_ucomineq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETNE; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } // ptest intrinsics. The intrinsic these come from are designed to return // an integer value, not just an instruction so lower it to the ptest // pattern and a setcc for the result. case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestnzc:{ unsigned X86CC = 0; switch (IntNo) { default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); case Intrinsic::x86_sse41_ptestz: // ZF = 1 X86CC = X86::COND_E; break; case Intrinsic::x86_sse41_ptestc: // CF = 1 X86CC = X86::COND_B; break; case Intrinsic::x86_sse41_ptestnzc: // ZF and CF = 0 X86CC = X86::COND_A; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS); SDValue CC = DAG.getConstant(X86CC, MVT::i8); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } // Fix vector shift instructions where the last operand is a non-immediate // i32 value. case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_mmx_pslli_w: case Intrinsic::x86_mmx_pslli_d: case Intrinsic::x86_mmx_pslli_q: case Intrinsic::x86_mmx_psrli_w: case Intrinsic::x86_mmx_psrli_d: case Intrinsic::x86_mmx_psrli_q: case Intrinsic::x86_mmx_psrai_w: case Intrinsic::x86_mmx_psrai_d: { SDValue ShAmt = Op.getOperand(2); if (isa(ShAmt)) return SDValue(); unsigned NewIntNo = 0; EVT ShAmtVT = MVT::v4i32; switch (IntNo) { case Intrinsic::x86_sse2_pslli_w: NewIntNo = Intrinsic::x86_sse2_psll_w; break; case Intrinsic::x86_sse2_pslli_d: NewIntNo = Intrinsic::x86_sse2_psll_d; break; case Intrinsic::x86_sse2_pslli_q: NewIntNo = Intrinsic::x86_sse2_psll_q; break; case Intrinsic::x86_sse2_psrli_w: NewIntNo = Intrinsic::x86_sse2_psrl_w; break; case Intrinsic::x86_sse2_psrli_d: NewIntNo = Intrinsic::x86_sse2_psrl_d; break; case Intrinsic::x86_sse2_psrli_q: NewIntNo = Intrinsic::x86_sse2_psrl_q; break; case Intrinsic::x86_sse2_psrai_w: NewIntNo = Intrinsic::x86_sse2_psra_w; break; case Intrinsic::x86_sse2_psrai_d: NewIntNo = Intrinsic::x86_sse2_psra_d; break; default: { ShAmtVT = MVT::v2i32; switch (IntNo) { case Intrinsic::x86_mmx_pslli_w: NewIntNo = Intrinsic::x86_mmx_psll_w; break; case Intrinsic::x86_mmx_pslli_d: NewIntNo = Intrinsic::x86_mmx_psll_d; break; case Intrinsic::x86_mmx_pslli_q: NewIntNo = Intrinsic::x86_mmx_psll_q; break; case Intrinsic::x86_mmx_psrli_w: NewIntNo = Intrinsic::x86_mmx_psrl_w; break; case Intrinsic::x86_mmx_psrli_d: NewIntNo = Intrinsic::x86_mmx_psrl_d; break; case Intrinsic::x86_mmx_psrli_q: NewIntNo = Intrinsic::x86_mmx_psrl_q; break; case Intrinsic::x86_mmx_psrai_w: NewIntNo = Intrinsic::x86_mmx_psra_w; break; case Intrinsic::x86_mmx_psrai_d: NewIntNo = Intrinsic::x86_mmx_psra_d; break; default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. } break; } } // The vector shift intrinsics with scalars uses 32b shift amounts but // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits // to be zero. SDValue ShOps[4]; ShOps[0] = ShAmt; ShOps[1] = DAG.getConstant(0, MVT::i32); if (ShAmtVT == MVT::v4i32) { ShOps[2] = DAG.getUNDEF(MVT::i32); ShOps[3] = DAG.getUNDEF(MVT::i32); ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4); } else { ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); } EVT VT = Op.getValueType(); ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(NewIntNo, MVT::i32), Op.getOperand(1), ShAmt); } } } SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); DebugLoc dl = Op.getDebugLoc(); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(TD->getPointerSize(), Subtarget->is64Bit() ? MVT::i64 : MVT::i32); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, getPointerTy(), FrameAddr, Offset), NULL, 0); } // Just load the return address. SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), RetAddrFI, NULL, 0); } SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0); return FrameAddr; } SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) { return DAG.getIntPtrConstant(2*TD->getPointerSize()); } SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, getPointerTy()); unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame, DAG.getIntPtrConstant(-TD->getPointerSize())); StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0); Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); MF.getRegInfo().addLiveOut(StoreAddrReg); return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); } SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) { SDValue Root = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value DebugLoc dl = Op.getDebugLoc(); const Value *TrmpAddr = cast(Op.getOperand(4))->getValue(); const X86InstrInfo *TII = ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); if (Subtarget->is64Bit()) { SDValue OutChains[6]; // Large code-model. const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix // Load the pointer to the nested function into R11. unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 SDValue Addr = Trmp; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, TrmpAddr, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2); // Load the 'nest' parameter value into R10. // R10 is specified in X86CallingConv.td OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, TrmpAddr, 10); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2); // Jump to the nested function. OpCode = (JMP64r << 8) | REX_WB; // jmpq *... Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), Addr, TrmpAddr, 20); unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, TrmpAddr, 22); SDValue Ops[] = { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; return DAG.getMergeValues(Ops, 2, dl); } else { const Function *Func = cast(cast(Op.getOperand(5))->getValue()); CallingConv::ID CC = Func->getCallingConv(); unsigned NestReg; switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::X86_StdCall: { // Pass 'nest' parameter in ECX. // Must be kept in sync with X86CallingConv.td NestReg = X86::ECX; // Check that ECX wasn't needed by an 'inreg' parameter. const FunctionType *FTy = Func->getFunctionType(); const AttrListPtr &Attrs = Func->getAttributes(); if (!Attrs.isEmpty() && !Func->isVarArg()) { unsigned InRegCount = 0; unsigned Idx = 1; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I, ++Idx) if (Attrs.paramHasAttr(Idx, Attribute::InReg)) // FIXME: should only count parameters that are lowered to integers. InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; if (InRegCount > 2) { llvm_report_error("Nest register in use - reduce number of inreg parameters!"); } } break; } case CallingConv::X86_FastCall: case CallingConv::Fast: // Pass 'nest' parameter in EAX. // Must be kept in sync with X86CallingConv.td NestReg = X86::EAX; break; } SDValue OutChains[4]; SDValue Addr, Disp; Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), Trmp, TrmpAddr, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1); const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, TrmpAddr, 5, false, 1); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1); SDValue Ops[] = { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; return DAG.getMergeValues(Ops, 2, dl); } } SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { /* The rounding mode is in bits 11:10 of FPSR, and has the following settings: 00 Round to nearest 01 Round to -inf 10 Round to +inf 11 Round to 0 FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) */ MachineFunction &MF = DAG.getMachineFunction(); const TargetMachine &TM = MF.getTarget(); const TargetFrameInfo &TFI = *TM.getFrameInfo(); unsigned StackAlignment = TFI.getStackAlignment(); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); // Save FP Control Word to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other, DAG.getEntryNode(), StackSlot); // Load FP Control Word from stack slot SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::SRL, dl, MVT::i16, DAG.getNode(ISD::AND, dl, MVT::i16, CWD, DAG.getConstant(0x800, MVT::i16)), DAG.getConstant(11, MVT::i8)); SDValue CWD2 = DAG.getNode(ISD::SRL, dl, MVT::i16, DAG.getNode(ISD::AND, dl, MVT::i16, CWD, DAG.getConstant(0x400, MVT::i16)), DAG.getConstant(9, MVT::i8)); SDValue RetVal = DAG.getNode(ISD::AND, dl, MVT::i16, DAG.getNode(ISD::ADD, dl, MVT::i16, DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2), DAG.getConstant(1, MVT::i16)), DAG.getConstant(3, MVT::i16)); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); } SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // If src is zero (i.e. bsr sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits+NumBits-1, OpVT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); // Finally xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); DebugLoc dl = Op.getDebugLoc(); Op = Op.getOperand(0); if (VT == MVT::i8) { OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsf (scan bits forward) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); // If src is zero (i.e. bsf sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits, OpVT), DAG.getConstant(X86::COND_E, MVT::i8), Op.getValue(1) }; Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); DebugLoc dl = Op.getDebugLoc(); // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); // // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); // return AloBlo + AloBhi + AhiBlo; SDValue A = Op.getOperand(0); SDValue B = Op.getOperand(1); SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), A, DAG.getConstant(32, MVT::i32)); SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), B, DAG.getConstant(32, MVT::i32)); SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), A, B); SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), A, Bhi); SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), Ahi, B); AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), AloBhi, DAG.getConstant(32, MVT::i32)); AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), AhiBlo, DAG.getConstant(32, MVT::i32)); SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); return Res; } SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Lower the "add/sub/mul with overflow" instruction into a regular ins plus // a "setcc" instruction that checks the overflow flag. The "brcond" lowering // looks for this combo and may remove the "setcc" instruction if the "setcc" // has only one use. SDNode *N = Op.getNode(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned BaseOp = 0; unsigned Cond = 0; DebugLoc dl = Op.getDebugLoc(); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown ovf instruction!"); case ISD::SADDO: // A subtract of one will be selected as a INC. Note that INC doesn't // set CF, so we can't do this for UADDO. if (ConstantSDNode *C = dyn_cast(Op)) if (C->getAPIntValue() == 1) { BaseOp = X86ISD::INC; Cond = X86::COND_O; break; } BaseOp = X86ISD::ADD; Cond = X86::COND_O; break; case ISD::UADDO: BaseOp = X86ISD::ADD; Cond = X86::COND_B; break; case ISD::SSUBO: // A subtract of one will be selected as a DEC. Note that DEC doesn't // set CF, so we can't do this for USUBO. if (ConstantSDNode *C = dyn_cast(Op)) if (C->getAPIntValue() == 1) { BaseOp = X86ISD::DEC; Cond = X86::COND_O; break; } BaseOp = X86ISD::SUB; Cond = X86::COND_O; break; case ISD::USUBO: BaseOp = X86ISD::SUB; Cond = X86::COND_B; break; case ISD::SMULO: BaseOp = X86ISD::SMUL; Cond = X86::COND_O; break; case ISD::UMULO: BaseOp = X86ISD::UMUL; Cond = X86::COND_B; break; } // Also sets EFLAGS. SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1), DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); return Sum; } SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) { EVT T = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned Reg = 0; unsigned size = 0; switch(T.getSimpleVT().SimpleTy) { default: assert(false && "Invalid value type!"); case MVT::i8: Reg = X86::AL; size = 1; break; case MVT::i16: Reg = X86::AX; size = 2; break; case MVT::i32: Reg = X86::EAX; size = 4; break; case MVT::i64: assert(Subtarget->is64Bit() && "Node not type legal!"); Reg = X86::RAX; size = 8; break; } SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg, Op.getOperand(2), SDValue()); SDValue Ops[] = { cpIn.getValue(0), Op.getOperand(1), Op.getOperand(3), DAG.getTargetConstant(size, MVT::i8), cpIn.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5); SDValue cpOut = DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1)); return cpOut; } SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) { assert(Subtarget->is64Bit() && "Result not type legalized?"); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue TheChain = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, rax.getValue(2)); SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, DAG.getConstant(32, MVT::i8)); SDValue Ops[] = { DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), rdx.getValue(1) }; return DAG.getMergeValues(Ops, 2, dl); } SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); DebugLoc dl = Node->getDebugLoc(); EVT T = Node->getValueType(0); SDValue negOp = DAG.getNode(ISD::SUB, dl, T, DAG.getConstant(0, T), Node->getOperand(2)); return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), negOp, cast(Node)->getSrcValue(), cast(Node)->getAlignment()); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShift(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::FABS: return LowerFABS(Op, DAG); case ISD::FNEG: return LowerFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VSETCC: return LowerVSETCC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::CTLZ: return LowerCTLZ(Op, DAG); case ISD::CTTZ: return LowerCTTZ(Op, DAG); case ISD::MUL: return LowerMUL_V2I64(Op, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); } } void X86TargetLowering:: ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl&Results, SelectionDAG &DAG, unsigned NewOp) { EVT T = Node->getValueType(0); DebugLoc dl = Node->getDebugLoc(); assert (T == MVT::i64 && "Only know how to expand i64 atomics"); SDValue Chain = Node->getOperand(0); SDValue In1 = Node->getOperand(1); SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(0)); SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(1)); SDValue Ops[] = { Chain, In1, In2L, In2H }; SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); SDValue Result = DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, cast(Node)->getMemOperand()); SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); Results.push_back(Result.getValue(2)); } /// ReplaceNodeResults - Replace a node with an illegal result type /// with a new node built out of custom code. void X86TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) { DebugLoc dl = N->getDebugLoc(); switch (N->getOpcode()) { default: assert(false && "Do not know how to custom type legalize this operation!"); return; case ISD::FP_TO_SINT: { std::pair Vals = FP_TO_INTHelper(SDValue(N, 0), DAG, true); SDValue FIST = Vals.first, StackSlot = Vals.second; if (FIST.getNode() != 0) { EVT VT = N->getValueType(0); // Return a load from the stack slot. Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0)); } return; } case ISD::READCYCLECOUNTER: { SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue TheChain = N->getOperand(0); SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, rd.getValue(1)); SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, eax.getValue(2)); // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { eax, edx }; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); Results.push_back(edx.getValue(1)); return; } case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { EVT WidenVT = getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); Results.push_back(DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements())); return; } case ISD::ATOMIC_CMP_SWAP: { EVT T = N->getValueType(0); assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); SDValue cpInL, cpInH; cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), DAG.getConstant(0, MVT::i32)); cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), DAG.getConstant(1, MVT::i32)); cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, cpInL.getValue(1)); SDValue swapInL, swapInH; swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), DAG.getConstant(0, MVT::i32)); swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), DAG.getConstant(1, MVT::i32)); swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, cpInH.getValue(1)); swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, swapInL.getValue(1)); SDValue Ops[] = { swapInH.getValue(0), N->getOperand(1), swapInH.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3); SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, MVT::i32, Result.getValue(1)); SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, MVT::i32, cpOutL.getValue(2)); SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); Results.push_back(cpOutH.getValue(1)); return; } case ISD::ATOMIC_LOAD_ADD: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); return; case ISD::ATOMIC_LOAD_AND: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); return; case ISD::ATOMIC_LOAD_NAND: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); return; case ISD::ATOMIC_LOAD_OR: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); return; case ISD::ATOMIC_LOAD_SUB: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); return; case ISD::ATOMIC_LOAD_XOR: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); return; case ISD::ATOMIC_SWAP: ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); return; } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case X86ISD::BSF: return "X86ISD::BSF"; case X86ISD::BSR: return "X86ISD::BSR"; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FOR: return "X86ISD::FOR"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FSRL: return "X86ISD::FSRL"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::BT: return "X86ISD::BT"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; case X86ISD::PINSRB: return "X86ISD::PINSRB"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; case X86ISD::FRCP: return "X86ISD::FRCP"; case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress"; case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; case X86ISD::VSHL: return "X86ISD::VSHL"; case X86ISD::VSRL: return "X86ISD::VSRL"; case X86ISD::CMPPD: return "X86ISD::CMPPD"; case X86ISD::CMPPS: return "X86ISD::CMPPS"; case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; case X86ISD::ADD: return "X86ISD::ADD"; case X86ISD::SUB: return "X86ISD::SUB"; case X86ISD::SMUL: return "X86ISD::SMUL"; case X86ISD::UMUL: return "X86ISD::UMUL"; case X86ISD::INC: return "X86ISD::INC"; case X86ISD::DEC: return "X86ISD::DEC"; case X86ISD::OR: return "X86ISD::OR"; case X86ISD::XOR: return "X86ISD::XOR"; case X86ISD::AND: return "X86ISD::AND"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; } } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { // X86 supports extremely general addressing modes. CodeModel::Model M = getTargetMachine().getCodeModel(); // X86 allows a sign-extended 32-bit immediate field as a displacement. if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) return false; if (AM.BaseGV) { unsigned GVFlags = Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); // If a reference to this global requires an extra load, we can't fold it. if (isGlobalStubReference(GVFlags)) return false; // If BaseGV requires a register for the PIC base, we cannot also have a // BaseReg specified. if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) return false; // If lower 4G is not available, then we must use rip-relative addressing. if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) return false; } switch (AM.Scale) { case 0: case 1: case 2: case 4: case 8: // These scales always work. break; case 3: case 5: case 9: // These scales are formed with basereg+scalereg. Only accept if there is // no basereg yet. if (AM.HasBaseReg) return false; break; default: // Other stuff never works. return false; } return true; } bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { if (!Ty1->isInteger() || !Ty2->isInteger()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); if (NumBits1 <= NumBits2) return false; return Subtarget->is64Bit() || NumBits1 < 64; } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); if (NumBits1 <= NumBits2) return false; return Subtarget->is64Bit() || NumBits1 < 64; } bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return Ty1->isInteger(32) && Ty2->isInteger(64) && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); } bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { // i16 instructions are longer (0x66 prefix) and potentially slower. return !(VT1 == MVT::i32 && VT2 == MVT::i16); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const { // Only do shuffles on 128-bit vector types for now. if (VT.getSizeInBits() == 64) return false; // FIXME: pshufb, blends, shifts. return (VT.getVectorNumElements() == 2 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isMOVLMask(M, VT) || isSHUFPMask(M, VT) || isPSHUFDMask(M, VT) || isPSHUFHWMask(M, VT) || isPSHUFLWMask(M, VT) || isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) || isUNPCKLMask(M, VT) || isUNPCKHMask(M, VT) || isUNPCKL_v_undef_Mask(M, VT) || isUNPCKH_v_undef_Mask(M, VT)); } bool X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl &Mask, EVT VT) const { unsigned NumElts = VT.getVectorNumElements(); // FIXME: This collection of masks seems suspect. if (NumElts == 2) return true; if (NumElts == 4 && VT.getSizeInBits() == 128) { return (isMOVLMask(Mask, VT) || isCommutedMOVLMask(Mask, VT, true) || isSHUFPMask(Mask, VT) || isCommutedSHUFPMask(Mask, VT)); } return false; } //===----------------------------------------------------------------------===// // X86 Scheduler Hooks //===----------------------------------------------------------------------===// // private utility function MachineBasicBlock * X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, MachineBasicBlock *MBB, unsigned regOpc, unsigned immOpc, unsigned LoadOpc, unsigned CXchgOpc, unsigned copyOpc, unsigned notOpc, unsigned EAXreg, TargetRegisterClass *RC, bool invSrc) const { // For the atomic bitwise operator, we generate // thisMBB: // newMBB: // ld t1 = [bitinstr.addr] // op t2 = t1, [bitinstr.val] // mov EAX = t1 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] // bz newMBB // fallthrough -->nextMBB const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; /// First build the CFG MachineFunction *F = MBB->getParent(); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); // Move all successors to thisMBB to nextMBB nextMBB->transferSuccessors(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); // newMBB jumps to itself and fall through to nextMBB newMBB->addSuccessor(nextMBB); newMBB->addSuccessor(newMBB); // Insert instructions into newMBB based on incoming instruction assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 && "unexpected number of operands"); DebugLoc dl = bInstr->getDebugLoc(); MachineOperand& destOper = bInstr->getOperand(0); MachineOperand* argOpers[2 + X86AddrNumOperands]; int numArgs = bInstr->getNumOperands() - 1; for (int i=0; i < numArgs; ++i) argOpers[i] = &bInstr->getOperand(i+1); // x86 address has 4 operands: base, index, scale, and displacement int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] int valArgIndx = lastAddrIndx + 1; unsigned t1 = F->getRegInfo().createVirtualRegister(RC); MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); unsigned tt = F->getRegInfo().createVirtualRegister(RC); if (invSrc) { MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); } else tt = t1; unsigned t2 = F->getRegInfo().createVirtualRegister(RC); assert((argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm()) && "invalid operand"); if (argOpers[valArgIndx]->isReg()) MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); else MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); MIB.addReg(tt); (*MIB).addOperand(*argOpers[valArgIndx]); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg); MIB.addReg(t1); MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); MIB.addReg(t2); assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); (*MIB).setMemRefs(bInstr->memoperands_begin(), bInstr->memoperands_end()); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg()); MIB.addReg(EAXreg); // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. return nextMBB; } // private utility function: 64 bit atomics on 32 bit host. MachineBasicBlock * X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, MachineBasicBlock *MBB, unsigned regOpcL, unsigned regOpcH, unsigned immOpcL, unsigned immOpcH, bool invSrc) const { // For the atomic bitwise operator, we generate // thisMBB (instructions are in pairs, except cmpxchg8b) // ld t1,t2 = [bitinstr.addr] // newMBB: // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) // op t5, t6 <- out1, out2, [bitinstr.val] // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val]) // mov ECX, EBX <- t5, t6 // mov EAX, EDX <- t1, t2 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit] // mov t3, t4 <- EAX, EDX // bz newMBB // result in out1, out2 // fallthrough -->nextMBB const TargetRegisterClass *RC = X86::GR32RegisterClass; const unsigned LoadOpc = X86::MOV32rm; const unsigned copyOpc = X86::MOV32rr; const unsigned NotOpc = X86::NOT32r; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; /// First build the CFG MachineFunction *F = MBB->getParent(); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); // Move all successors to thisMBB to nextMBB nextMBB->transferSuccessors(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); // newMBB jumps to itself and fall through to nextMBB newMBB->addSuccessor(nextMBB); newMBB->addSuccessor(newMBB); DebugLoc dl = bInstr->getDebugLoc(); // Insert instructions into newMBB based on incoming instruction // There are 8 "real" operands plus 9 implicit def/uses, ignored here. assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 && "unexpected number of operands"); MachineOperand& dest1Oper = bInstr->getOperand(0); MachineOperand& dest2Oper = bInstr->getOperand(1); MachineOperand* argOpers[2 + X86AddrNumOperands]; for (int i=0; i < 2 + X86AddrNumOperands; ++i) argOpers[i] = &bInstr->getOperand(i+2); // x86 address has 5 operands: base, index, scale, displacement, and segment. int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] unsigned t1 = F->getRegInfo().createVirtualRegister(RC); MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); unsigned t2 = F->getRegInfo().createVirtualRegister(RC); MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); // add 4 to displacement. for (int i=0; i <= lastAddrIndx-2; ++i) (*MIB).addOperand(*argOpers[i]); MachineOperand newOp3 = *(argOpers[3]); if (newOp3.isImm()) newOp3.setImm(newOp3.getImm()+4); else newOp3.setOffset(newOp3.getOffset()+4); (*MIB).addOperand(newOp3); (*MIB).addOperand(*argOpers[lastAddrIndx]); // t3/4 are defined later, at the bottom of the loop unsigned t3 = F->getRegInfo().createVirtualRegister(RC); unsigned t4 = F->getRegInfo().createVirtualRegister(RC); BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); // The subsequent operations should be using the destination registers of //the PHI instructions. if (invSrc) { t1 = F->getRegInfo().createVirtualRegister(RC); t2 = F->getRegInfo().createVirtualRegister(RC); MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg()); MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg()); } else { t1 = dest1Oper.getReg(); t2 = dest2Oper.getReg(); } int valArgIndx = lastAddrIndx + 1; assert((argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm()) && "invalid operand"); unsigned t5 = F->getRegInfo().createVirtualRegister(RC); unsigned t6 = F->getRegInfo().createVirtualRegister(RC); if (argOpers[valArgIndx]->isReg()) MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); else MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); if (regOpcL != X86::MOV32rr) MIB.addReg(t1); (*MIB).addOperand(*argOpers[valArgIndx]); assert(argOpers[valArgIndx + 1]->isReg() == argOpers[valArgIndx]->isReg()); assert(argOpers[valArgIndx + 1]->isImm() == argOpers[valArgIndx]->isImm()); if (argOpers[valArgIndx + 1]->isReg()) MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); else MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); if (regOpcH != X86::MOV32rr) MIB.addReg(t2); (*MIB).addOperand(*argOpers[valArgIndx + 1]); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX); MIB.addReg(t1); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX); MIB.addReg(t2); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX); MIB.addReg(t5); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX); MIB.addReg(t6); MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); (*MIB).setMemRefs(bInstr->memoperands_begin(), bInstr->memoperands_end()); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3); MIB.addReg(X86::EAX); MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4); MIB.addReg(X86::EDX); // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. return nextMBB; } // private utility function MachineBasicBlock * X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, MachineBasicBlock *MBB, unsigned cmovOpc) const { // For the atomic min/max operator, we generate // thisMBB: // newMBB: // ld t1 = [min/max.addr] // mov t2 = [min/max.val] // cmp t1, t2 // cmov[cond] t2 = t1 // mov EAX = t1 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] // bz newMBB // fallthrough -->nextMBB // const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; /// First build the CFG MachineFunction *F = MBB->getParent(); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); // Move all successors of thisMBB to nextMBB nextMBB->transferSuccessors(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); // newMBB jumps to newMBB and fall through to nextMBB newMBB->addSuccessor(nextMBB); newMBB->addSuccessor(newMBB); DebugLoc dl = mInstr->getDebugLoc(); // Insert instructions into newMBB based on incoming instruction assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 && "unexpected number of operands"); MachineOperand& destOper = mInstr->getOperand(0); MachineOperand* argOpers[2 + X86AddrNumOperands]; int numArgs = mInstr->getNumOperands() - 1; for (int i=0; i < numArgs; ++i) argOpers[i] = &mInstr->getOperand(i+1); // x86 address has 4 operands: base, index, scale, and displacement int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] int valArgIndx = lastAddrIndx + 1; unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); // We only support register and immediate values assert((argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm()) && "invalid operand"); unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); if (argOpers[valArgIndx]->isReg()) MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); else MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); (*MIB).addOperand(*argOpers[valArgIndx]); MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX); MIB.addReg(t1); MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); MIB.addReg(t1); MIB.addReg(t2); // Generate movc unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); MIB.addReg(t2); MIB.addReg(t1); // Cmp and exchange if none has modified the memory location MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); for (int i=0; i <= lastAddrIndx; ++i) (*MIB).addOperand(*argOpers[i]); MIB.addReg(t3); assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); (*MIB).setMemRefs(mInstr->memoperands_begin(), mInstr->memoperands_end()); MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg()); MIB.addReg(X86::EAX); // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. return nextMBB; } // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 // all of this code can be replaced with that in the .td file. MachineBasicBlock * X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, unsigned numArgs, bool memArg) const { MachineFunction *F = BB->getParent(); DebugLoc dl = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); unsigned Opc; if (memArg) Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; else Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc)); for (unsigned i = 0; i < numArgs; ++i) { MachineOperand &Op = MI->getOperand(i+1); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) .addReg(X86::XMM0); F->DeleteMachineInstr(MI); return BB; } MachineBasicBlock * X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit code to save XMM registers to the stack. The ABI says that the // number of registers to save is given in %al, so it's theoretically // possible to do an indirect jump trick to avoid saving all of them, // however this code takes a simpler approach and just executes all // of the stores if %al is non-zero. It's less code, and it's probably // easier on the hardware branch predictor, and stores aren't all that // expensive anyway. // Create the new basic blocks. One block contains all the XMM stores, // and one block is the final destination regardless of whether any // stores were performed. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *F = MBB->getParent(); MachineFunction::iterator MBBIter = MBB; ++MBBIter; MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, XMMSaveMBB); F->insert(MBBIter, EndMBB); // Set up the CFG. // Move any original successors of MBB to the end block. EndMBB->transferSuccessors(MBB); // The original block will now fall through to the XMM save block. MBB->addSuccessor(XMMSaveMBB); // The XMMSaveMBB will fall through to the end block. XMMSaveMBB->addSuccessor(EndMBB); // Now add the instructions. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned CountReg = MI->getOperand(0).getReg(); int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); if (!Subtarget->isTargetWin64()) { // If %al is 0, branch around the XMM save block. BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB); MBB->addSuccessor(EndMBB); } // In the XMM save block, save all the XMM argument registers. for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; MachineMemOperand *MMO = F->getMachineMemOperand( PseudoSourceValue::getFixedStack(RegSaveFrameIndex), MachineMemOperand::MOStore, Offset, /*Size=*/16, /*Align=*/16); BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr)) .addFrameIndex(RegSaveFrameIndex) .addImm(/*Scale=*/1) .addReg(/*IndexReg=*/0) .addImm(/*Disp=*/Offset) .addReg(/*Segment=*/0) .addReg(MI->getOperand(i).getReg()) .addMemOperand(MMO); } F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. return EndMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, MachineBasicBlock *BB, DenseMap *EM) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); unsigned Opc = X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. // Also inform sdisel of the edge changes. for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { EM->insert(std::make_pair(*I, sinkMBB)); sinkMBB->addSuccessor(*I); } // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while (!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); // Add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB, DenseMap *EM) const { switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case X86::CMOV_GR8: case X86::CMOV_V1I64: case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_V4F32: case X86::CMOV_V2F64: case X86::CMOV_V2I64: return EmitLoweredSelect(MI, BB, EM); case X86::FP32_TO_INT16_IN_MEM: case X86::FP32_TO_INT32_IN_MEM: case X86::FP32_TO_INT64_IN_MEM: case X86::FP64_TO_INT16_IN_MEM: case X86::FP64_TO_INT32_IN_MEM: case X86::FP64_TO_INT64_IN_MEM: case X86::FP80_TO_INT16_IN_MEM: case X86::FP80_TO_INT32_IN_MEM: case X86::FP80_TO_INT64_IN_MEM: { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isReg()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getIndex(); } Op = MI->getOperand(1); if (Op.isImm()) AM.Scale = Op.getImm(); Op = MI->getOperand(2); if (Op.isImm()) AM.IndexReg = Op.getImm(); Op = MI->getOperand(3); if (Op.isGlobal()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImm(); } addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM) .addReg(MI->getOperand(X86AddrNumOperands).getReg()); // Reload the original control word now. addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. return BB; } // String/text processing lowering. case X86::PCMPISTRM128REG: return EmitPCMP(MI, BB, 3, false /* in-mem */); case X86::PCMPISTRM128MEM: return EmitPCMP(MI, BB, 3, true /* in-mem */); case X86::PCMPESTRM128REG: return EmitPCMP(MI, BB, 5, false /* in mem */); case X86::PCMPESTRM128MEM: return EmitPCMP(MI, BB, 5, true /* in mem */); // Atomic Lowering. case X86::ATOMAND32: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, X86::AND32ri, X86::MOV32rm, X86::LCMPXCHG32, X86::MOV32rr, X86::NOT32r, X86::EAX, X86::GR32RegisterClass); case X86::ATOMOR32: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, X86::OR32ri, X86::MOV32rm, X86::LCMPXCHG32, X86::MOV32rr, X86::NOT32r, X86::EAX, X86::GR32RegisterClass); case X86::ATOMXOR32: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, X86::XOR32ri, X86::MOV32rm, X86::LCMPXCHG32, X86::MOV32rr, X86::NOT32r, X86::EAX, X86::GR32RegisterClass); case X86::ATOMNAND32: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, X86::AND32ri, X86::MOV32rm, X86::LCMPXCHG32, X86::MOV32rr, X86::NOT32r, X86::EAX, X86::GR32RegisterClass, true); case X86::ATOMMIN32: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); case X86::ATOMMAX32: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); case X86::ATOMUMIN32: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); case X86::ATOMUMAX32: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); case X86::ATOMAND16: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, X86::AND16ri, X86::MOV16rm, X86::LCMPXCHG16, X86::MOV16rr, X86::NOT16r, X86::AX, X86::GR16RegisterClass); case X86::ATOMOR16: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, X86::OR16ri, X86::MOV16rm, X86::LCMPXCHG16, X86::MOV16rr, X86::NOT16r, X86::AX, X86::GR16RegisterClass); case X86::ATOMXOR16: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, X86::XOR16ri, X86::MOV16rm, X86::LCMPXCHG16, X86::MOV16rr, X86::NOT16r, X86::AX, X86::GR16RegisterClass); case X86::ATOMNAND16: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, X86::AND16ri, X86::MOV16rm, X86::LCMPXCHG16, X86::MOV16rr, X86::NOT16r, X86::AX, X86::GR16RegisterClass, true); case X86::ATOMMIN16: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); case X86::ATOMMAX16: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); case X86::ATOMUMIN16: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); case X86::ATOMUMAX16: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); case X86::ATOMAND8: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, X86::AND8ri, X86::MOV8rm, X86::LCMPXCHG8, X86::MOV8rr, X86::NOT8r, X86::AL, X86::GR8RegisterClass); case X86::ATOMOR8: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, X86::OR8ri, X86::MOV8rm, X86::LCMPXCHG8, X86::MOV8rr, X86::NOT8r, X86::AL, X86::GR8RegisterClass); case X86::ATOMXOR8: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, X86::XOR8ri, X86::MOV8rm, X86::LCMPXCHG8, X86::MOV8rr, X86::NOT8r, X86::AL, X86::GR8RegisterClass); case X86::ATOMNAND8: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, X86::AND8ri, X86::MOV8rm, X86::LCMPXCHG8, X86::MOV8rr, X86::NOT8r, X86::AL, X86::GR8RegisterClass, true); // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. // This group is for 64-bit host. case X86::ATOMAND64: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, X86::AND64ri32, X86::MOV64rm, X86::LCMPXCHG64, X86::MOV64rr, X86::NOT64r, X86::RAX, X86::GR64RegisterClass); case X86::ATOMOR64: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, X86::OR64ri32, X86::MOV64rm, X86::LCMPXCHG64, X86::MOV64rr, X86::NOT64r, X86::RAX, X86::GR64RegisterClass); case X86::ATOMXOR64: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, X86::XOR64ri32, X86::MOV64rm, X86::LCMPXCHG64, X86::MOV64rr, X86::NOT64r, X86::RAX, X86::GR64RegisterClass); case X86::ATOMNAND64: return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, X86::AND64ri32, X86::MOV64rm, X86::LCMPXCHG64, X86::MOV64rr, X86::NOT64r, X86::RAX, X86::GR64RegisterClass, true); case X86::ATOMMIN64: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); case X86::ATOMMAX64: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); case X86::ATOMUMIN64: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); case X86::ATOMUMAX64: return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); // This group does 64-bit operations on a 32-bit host. case X86::ATOMAND6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::AND32rr, X86::AND32rr, X86::AND32ri, X86::AND32ri, false); case X86::ATOMOR6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::OR32rr, X86::OR32rr, X86::OR32ri, X86::OR32ri, false); case X86::ATOMXOR6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::XOR32rr, X86::XOR32rr, X86::XOR32ri, X86::XOR32ri, false); case X86::ATOMNAND6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::AND32rr, X86::AND32rr, X86::AND32ri, X86::AND32ri, true); case X86::ATOMADD6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::ADD32rr, X86::ADC32rr, X86::ADD32ri, X86::ADC32ri, false); case X86::ATOMSUB6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::SUB32rr, X86::SBB32rr, X86::SUB32ri, X86::SBB32ri, false); case X86::ATOMSWAP6432: return EmitAtomicBit6432WithCustomInserter(MI, BB, X86::MOV32rr, X86::MOV32rr, X86::MOV32ri, X86::MOV32ri, false); case X86::VASTART_SAVE_XMM_REGS: return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); } } //===----------------------------------------------------------------------===// // X86 Optimization Hooks //===----------------------------------------------------------------------===// void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. switch (Opc) { default: break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::SMUL: case X86ISD::UMUL: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: // These nodes' second result is a boolean. if (Op.getResNo() == 0) break; // Fallthrough case X86ISD::SETCC: KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), Mask.getBitWidth() - 1); break; } } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. bool X86TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const{ if (N->getOpcode() == X86ISD::Wrapper) { if (isa(N->getOperand(0))) { GA = cast(N->getOperand(0))->getGlobal(); Offset = cast(N->getOperand(0))->getOffset(); return true; } } return TargetLowering::isGAPlusOffset(N, GA, Offset); } static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems, EVT EltVT, LoadSDNode *&LDBase, unsigned &LastLoadedElt, SelectionDAG &DAG, MachineFrameInfo *MFI, const TargetLowering &TLI) { LDBase = NULL; LastLoadedElt = -1U; for (unsigned i = 0; i < NumElems; ++i) { if (N->getMaskElt(i) < 0) { if (!LDBase) return false; continue; } SDValue Elt = DAG.getShuffleScalarElt(N, i); if (!Elt.getNode() || (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) return false; if (!LDBase) { if (Elt.getNode()->getOpcode() == ISD::UNDEF) return false; LDBase = cast(Elt.getNode()); LastLoadedElt = i; continue; } if (Elt.getOpcode() == ISD::UNDEF) continue; LoadSDNode *LD = cast(Elt); if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) return false; LastLoadedElt = i; } return true; } /// PerformShuffleCombine - Combine a vector_shuffle that is equal to /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load /// if the load addresses are consecutive, non-overlapping, and in the right /// order. In the case of v2i64, it will see if it can rewrite the /// shuffle to be an appropriate build vector so it can take advantage of // performBuildVectorCombine. static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI) { DebugLoc dl = N->getDebugLoc(); EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); ShuffleVectorSDNode *SVN = cast(N); unsigned NumElems = VT.getVectorNumElements(); if (VT.getSizeInBits() != 128) return SDValue(); // Try to combine a vector_shuffle into a 128-bit load. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); LoadSDNode *LD = NULL; unsigned LastLoadedElt; if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG, MFI, TLI)) return SDValue(); if (LastLoadedElt == NumElems - 1) { if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16) return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset(), LD->isVolatile()); return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset(), LD->isVolatile(), LD->getAlignment()); } else if (NumElems == 4 && LastLoadedElt == 1) { SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); SDValue Ops[] = { LD->getChain(), LD->getBasePtr() }; SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode); } return SDValue(); } /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { DebugLoc DL = N->getDebugLoc(); SDValue Cond = N->getOperand(0); // Get the LHS/RHS of the select. SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); // If we have SSE[12] support, try to form min/max nodes. SSE min/max // instructions have the peculiarity that if either operand is a NaN, // they chose what we call the RHS operand (and as such are not symmetric). // It happens that this matches the semantics of the common C idiom // xhasSSE2() && (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && Cond.getOpcode() == ISD::SETCC) { ISD::CondCode CC = cast(Cond.getOperand(2))->get(); unsigned Opcode = 0; // Check for x CC y ? x : y. if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { switch (CC) { default: break; case ISD::SETULT: // This can be a min if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(RHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(LHS)) break; } Opcode = X86ISD::FMIN; break; case ISD::SETOLE: // This can be a min if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(LHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(RHS)) break; } Opcode = X86ISD::FMIN; break; case ISD::SETULE: // This can be a min, but if either operand is a NaN we need it to // preserve the original LHS. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMIN; break; case ISD::SETOGE: // This can be a max if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(LHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(RHS)) break; } Opcode = X86ISD::FMAX; break; case ISD::SETUGT: // This can be a max if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(RHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(LHS)) break; } Opcode = X86ISD::FMAX; break; case ISD::SETUGE: // This can be a max, but if either operand is a NaN we need it to // preserve the original LHS. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMAX; break; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { switch (CC) { default: break; case ISD::SETOGE: // This can be a min if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(RHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(LHS)) break; } Opcode = X86ISD::FMIN; break; case ISD::SETUGT: // This can be a min if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(LHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(RHS)) break; } Opcode = X86ISD::FMIN; break; case ISD::SETUGE: // This can be a min, but if either operand is a NaN we need it to // preserve the original LHS. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMIN; break; case ISD::SETULT: // This can be a max if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(LHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(RHS)) break; } Opcode = X86ISD::FMAX; break; case ISD::SETOLE: // This can be a max if we can prove that at least one of the operands // is not a nan. if (!FiniteOnlyFPMath()) { if (DAG.isKnownNeverNaN(RHS)) { // Put the potential NaN in the RHS so that SSE will preserve it. std::swap(LHS, RHS); } else if (!DAG.isKnownNeverNaN(LHS)) break; } Opcode = X86ISD::FMAX; break; case ISD::SETULE: // This can be a max, but if either operand is a NaN we need it to // preserve the original LHS. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMAX; break; } } if (Opcode) return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); } // If this is a select between two integer constants, try to do some // optimizations. if (ConstantSDNode *TrueC = dyn_cast(LHS)) { if (ConstantSDNode *FalseC = dyn_cast(RHS)) // Don't do this for crazy integer types. if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { // If this is efficiently invertible, canonicalize the LHSC/RHSC values // so that TrueC (the true value) is larger than FalseC. bool NeedsCondInvert = false; if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && // Efficiently invertible. (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. isa(Cond.getOperand(1))))) { NeedsCondInvert = true; std::swap(TrueC, FalseC); } // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); return Cond; } } } } return SDValue(); } /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { DebugLoc DL = N->getDebugLoc(); // If the flag operand isn't dead, don't touch this CMOV. if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) return SDValue(); // If this is a select between two integer constants, try to do some // optimizations. Note that the operands are ordered the opposite of SELECT // operands. if (ConstantSDNode *TrueC = dyn_cast(N->getOperand(1))) { if (ConstantSDNode *FalseC = dyn_cast(N->getOperand(0))) { // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is // larger than FalseC (the false value). X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueC, FalseC); } // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. // This is efficient for any integer data type (including i8/i16) and // shift amount. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { SDValue Cond = N->getOperand(3); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, DAG.getConstant(ShAmt, MVT::i8)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient // for any integer data type, including i8/i16. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { SDValue Cond = N->getOperand(3); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); SDValue Cond = N->getOperand(3); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } } } } return SDValue(); } /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DAG.getMachineFunction(). getFunction()->hasFnAttr(Attribute::OptimizeForSize)) return SDValue(); if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); uint64_t MulAmt = C->getZExtValue(); if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) return SDValue(); uint64_t MulAmt1 = 0; uint64_t MulAmt2 = 0; if ((MulAmt % 9) == 0) { MulAmt1 = 9; MulAmt2 = MulAmt / 9; } else if ((MulAmt % 5) == 0) { MulAmt1 = 5; MulAmt2 = MulAmt / 5; } else if ((MulAmt % 3) == 0) { MulAmt1 = 3; MulAmt2 = MulAmt / 3; } if (MulAmt2 && (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ DebugLoc DL = N->getDebugLoc(); if (isPowerOf2_64(MulAmt2) && !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) // If second multiplifer is pow2, issue it first. We want the multiply by // 3, 5, or 9 to be folded into the addressing mode unless the lone use // is an add. std::swap(MulAmt1, MulAmt2); SDValue NewMul; if (isPowerOf2_64(MulAmt1)) NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), DAG.getConstant(MulAmt1, VT)); if (isPowerOf2_64(MulAmt2)) NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, DAG.getConstant(MulAmt2, VT)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, NewMul, false); } return SDValue(); } static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) // since the result of setcc_c is all zero's or all ones. if (N1C && N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY || ((N00.getOpcode() == ISD::ANY_EXTEND || N00.getOpcode() == ISD::ZERO_EXTEND) && N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { APInt Mask = cast(N0.getOperand(1))->getAPIntValue(); APInt ShAmt = N1C->getAPIntValue(); Mask = Mask.shl(ShAmt); if (Mask != 0) return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N00, DAG.getConstant(Mask, VT)); } } return SDValue(); } /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts /// when possible. static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.isVector() && VT.isInteger() && N->getOpcode() == ISD::SHL) return PerformSHLCombine(N, DAG); // On X86 with SSE2 support, we can transform this to a vector shift if // all elements are shifted by the same amount. We can't do this in legalize // because the a constant vector is typically transformed to a constant pool // so we have no knowledge of the shift amount. if (!Subtarget->hasSSE2()) return SDValue(); if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) return SDValue(); SDValue ShAmtOp = N->getOperand(1); EVT EltVT = VT.getVectorElementType(); DebugLoc DL = N->getDebugLoc(); SDValue BaseShAmt = SDValue(); if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { unsigned NumElts = VT.getVectorNumElements(); unsigned i = 0; for (; i != NumElts; ++i) { SDValue Arg = ShAmtOp.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; BaseShAmt = Arg; break; } for (; i != NumElts; ++i) { SDValue Arg = ShAmtOp.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; if (Arg != BaseShAmt) { return SDValue(); } } } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && cast(ShAmtOp)->isSplat()) { SDValue InVec = ShAmtOp.getOperand(0); if (InVec.getOpcode() == ISD::BUILD_VECTOR) { unsigned NumElts = InVec.getValueType().getVectorNumElements(); unsigned i = 0; for (; i != NumElts; ++i) { SDValue Arg = InVec.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; BaseShAmt = Arg; break; } } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (ConstantSDNode *C = dyn_cast(InVec.getOperand(2))) { unsigned SplatIdx = cast(ShAmtOp)->getSplatIndex(); if (C->getZExtValue() == SplatIdx) BaseShAmt = InVec.getOperand(1); } } if (BaseShAmt.getNode() == 0) BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, DAG.getIntPtrConstant(0)); } else return SDValue(); // The shift amount is an i32. if (EltVT.bitsGT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); else if (EltVT.bitsLT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); // The shift amount is identical so we can do a vector shift. SDValue ValOp = N->getOperand(0); switch (N->getOpcode()) { default: llvm_unreachable("Unknown shift opcode!"); break; case ISD::SHL: if (VT == MVT::v2i64) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), ValOp, BaseShAmt); if (VT == MVT::v4i32) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), ValOp, BaseShAmt); if (VT == MVT::v8i16) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), ValOp, BaseShAmt); break; case ISD::SRA: if (VT == MVT::v4i32) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), ValOp, BaseShAmt); if (VT == MVT::v8i16) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), ValOp, BaseShAmt); break; case ISD::SRL: if (VT == MVT::v2i64) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), ValOp, BaseShAmt); if (VT == MVT::v4i32) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), ValOp, BaseShAmt); if (VT == MVT::v8i16) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), ValOp, BaseShAmt); break; } return SDValue(); } static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (VT != MVT::i64 || !Subtarget->is64Bit()) return SDValue(); // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); SDValue ShAmt0 = N0.getOperand(1); if (ShAmt0.getValueType() != MVT::i8) return SDValue(); SDValue ShAmt1 = N1.getOperand(1); if (ShAmt1.getValueType() != MVT::i8) return SDValue(); if (ShAmt0.getOpcode() == ISD::TRUNCATE) ShAmt0 = ShAmt0.getOperand(0); if (ShAmt1.getOpcode() == ISD::TRUNCATE) ShAmt1 = ShAmt1.getOperand(0); DebugLoc DL = N->getDebugLoc(); unsigned Opc = X86ISD::SHLD; SDValue Op0 = N0.getOperand(0); SDValue Op1 = N1.getOperand(0); if (ShAmt0.getOpcode() == ISD::SUB) { Opc = X86ISD::SHRD; std::swap(Op0, Op1); std::swap(ShAmt0, ShAmt1); } if (ShAmt1.getOpcode() == ISD::SUB) { SDValue Sum = ShAmt1.getOperand(0); if (ConstantSDNode *SumC = dyn_cast(Sum)) { if (SumC->getSExtValue() == 64 && ShAmt1.getOperand(1) == ShAmt0) return DAG.getNode(Opc, DL, VT, Op0, Op1, DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } } else if (ConstantSDNode *ShAmt1C = dyn_cast(ShAmt1)) { ConstantSDNode *ShAmt0C = dyn_cast(ShAmt0); if (ShAmt0C && ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64) return DAG.getNode(Opc, DL, VT, N0.getOperand(0), N1.getOperand(0), DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } return SDValue(); } /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // Turn load->store of MMX types into GPR load/stores. This avoids clobbering // the FP state in cases where an emms may be missing. // A preferable solution to the general problem is to figure out the right // places to insert EMMS. This qualifies as a quick hack. // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. StoreSDNode *St = cast(N); EVT VT = St->getValue().getValueType(); if (VT.getSizeInBits() != 64) return SDValue(); const Function *F = DAG.getMachineFunction().getFunction(); bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps && Subtarget->hasSSE2(); if ((VT.isVector() || (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && isa(St->getValue()) && !cast(St->getValue())->isVolatile() && St->getChain().hasOneUse() && !St->isVolatile()) { SDNode* LdVal = St->getValue().getNode(); LoadSDNode *Ld = 0; int TokenFactorIndex = -1; SmallVector Ops; SDNode* ChainVal = St->getChain().getNode(); // Must be a store of a load. We currently handle two cases: the load // is a direct child, and it's under an intervening TokenFactor. It is // possible to dig deeper under nested TokenFactors. if (ChainVal == LdVal) Ld = cast(St->getChain()); else if (St->getValue().hasOneUse() && ChainVal->getOpcode() == ISD::TokenFactor) { for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { if (ChainVal->getOperand(i).getNode() == LdVal) { TokenFactorIndex = i; Ld = cast(St->getValue()); } else Ops.push_back(ChainVal->getOperand(i)); } } if (!Ld || !ISD::isNormalLoad(Ld)) return SDValue(); // If this is not the MMX case, i.e. we are just turning i64 load/store // into f64 load/store, avoid the transformation if there are multiple // uses of the loaded value. if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) return SDValue(); DebugLoc LdDL = Ld->getDebugLoc(); DebugLoc StDL = N->getDebugLoc(); // If we are a 64-bit capable x86, lower to a single movq load/store pair. // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store // pair instead. if (Subtarget->is64Bit() || F64IsLegal) { EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), Ld->getSrcValue(), Ld->getSrcValueOffset(), Ld->isVolatile(), Ld->getAlignment()); SDValue NewChain = NewLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(NewChain); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], Ops.size()); } return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), St->getSrcValue(), St->getSrcValueOffset(), St->isVolatile(), St->getAlignment()); } // Otherwise, lower to two pairs of 32-bit loads / stores. SDValue LoAddr = Ld->getBasePtr(); SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, Ld->getSrcValue(), Ld->getSrcValueOffset(), Ld->isVolatile(), Ld->getAlignment()); SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, Ld->getSrcValue(), Ld->getSrcValueOffset()+4, Ld->isVolatile(), MinAlign(Ld->getAlignment(), 4)); SDValue NewChain = LoLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(LoLd); Ops.push_back(HiLd); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], Ops.size()); } LoAddr = St->getBasePtr(); HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, DAG.getConstant(4, MVT::i32)); SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, St->getSrcValue(), St->getSrcValueOffset(), St->isVolatile(), St->getAlignment()); SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, St->getSrcValue(), St->getSrcValueOffset() + 4, St->isVolatile(), MinAlign(St->getAlignment(), 4)); return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); } return SDValue(); } /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and /// X86ISD::FXOR nodes. static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); // F[X]OR(0.0, x) -> x // F[X]OR(x, 0.0) -> x if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); return SDValue(); } /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { // FAND(0.0, x) -> 0.0 // FAND(x, 0.0) -> 0.0 if (ConstantFPSDNode *C = dyn_cast(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); if (ConstantFPSDNode *C = dyn_cast(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return SDValue(); } static SDValue PerformBTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { // BT ignores high bits in the bit index operand. SDValue Op1 = N->getOperand(1); if (Op1.hasOneUse()) { unsigned BitWidth = Op1.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG); TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); if (Op.getOpcode() == ISD::BIT_CONVERT) Op = Op.getOperand(0); EVT VT = N->getValueType(0), OpVT = Op.getValueType(); if (Op.getOpcode() == X86ISD::VZEXT_LOAD && VT.getVectorElementType().getSizeInBits() == OpVT.getVectorElementType().getSizeInBits()) { return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op); } return SDValue(); } // On X86 and X86-64, atomic operations are lowered to locked instructions. // Locked instructions, in turn, have implicit fence semantics (all memory // operations are flushed before issuing the locked instruction, and the // are not buffered), so we can fold away the common pattern of // fence-atomic-fence. static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) { SDValue atomic = N->getOperand(0); switch (atomic.getOpcode()) { case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: break; default: return SDValue(); } SDValue fence = atomic.getOperand(0); if (fence.getOpcode() != ISD::MEMBARRIER) return SDValue(); switch (atomic.getOpcode()) { case ISD::ATOMIC_CMP_SWAP: return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), atomic.getOperand(1), atomic.getOperand(2), atomic.getOperand(3)); case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), atomic.getOperand(1), atomic.getOperand(2)); default: return SDValue(); } } static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> // (and (i32 x86isd::setcc_carry), 1) // This eliminates the zext. This transformation is necessary because // ISD::SETCC is always legalized to i8. DebugLoc dl = N->getDebugLoc(); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() != X86ISD::SETCC_CARRY) return SDValue(); ConstantSDNode *C = dyn_cast(N0.getOperand(1)); if (!C || C->getZExtValue() != 1) return SDValue(); return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, VT)); } return SDValue(); } SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); case ISD::MUL: return PerformMulCombine(N, DAG, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget); case ISD::OR: return PerformOrCombine(N, DAG, Subtarget); case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); case X86ISD::FXOR: case X86ISD::FOR: return PerformFORCombine(N, DAG); case X86ISD::FAND: return PerformFANDCombine(N, DAG); case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG); case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG); } return SDValue(); } //===----------------------------------------------------------------------===// // X86 Inline Assembly Support //===----------------------------------------------------------------------===// static bool LowerToBSwap(CallInst *CI) { // FIXME: this should verify that we are targetting a 486 or better. If not, // we will turn this bswap into something that will be lowered to logical ops // instead of emitting the bswap asm. For now, we don't support 486 or lower // so don't worry about this. // Verify this is a simple bswap. if (CI->getNumOperands() != 2 || CI->getType() != CI->getOperand(1)->getType() || !CI->getType()->isInteger()) return false; const IntegerType *Ty = dyn_cast(CI->getType()); if (!Ty || Ty->getBitWidth() % 16 != 0) return false; // Okay, we can do this xform, do so now. const Type *Tys[] = { Ty }; Module *M = CI->getParent()->getParent()->getParent(); Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); Value *Op = CI->getOperand(1); Op = CallInst::Create(Int, Op, CI->getName(), CI); CI->replaceAllUsesWith(Op); CI->eraseFromParent(); return true; } bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { InlineAsm *IA = cast(CI->getCalledValue()); std::vector Constraints = IA->ParseConstraints(); std::string AsmStr = IA->getAsmString(); // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" SmallVector AsmPieces; SplitString(AsmStr, AsmPieces, "\n"); // ; as separator? switch (AsmPieces.size()) { default: return false; case 1: AsmStr = AsmPieces[0]; AsmPieces.clear(); SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace. // bswap $0 if (AsmPieces.size() == 2 && (AsmPieces[0] == "bswap" || AsmPieces[0] == "bswapq" || AsmPieces[0] == "bswapl") && (AsmPieces[1] == "$0" || AsmPieces[1] == "${0:q}")) { // No need to check constraints, nothing other than the equivalent of // "=r,0" would be valid here. return LowerToBSwap(CI); } // rorw $$8, ${0:w} --> llvm.bswap.i16 if (CI->getType()->isInteger(16) && AsmPieces.size() == 3 && AsmPieces[0] == "rorw" && AsmPieces[1] == "$$8," && AsmPieces[2] == "${0:w}" && IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") { return LowerToBSwap(CI); } break; case 3: if (CI->getType()->isInteger(64) && Constraints.size() >= 2 && Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 SmallVector Words; SplitString(AsmPieces[0], Words, " \t"); if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { Words.clear(); SplitString(AsmPieces[1], Words, " \t"); if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { Words.clear(); SplitString(AsmPieces[2], Words, " \t,"); if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && Words[2] == "%edx") { return LowerToBSwap(CI); } } } } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType X86TargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'A': return C_Register; case 'f': case 'r': case 'R': case 'l': case 'q': case 'Q': case 'x': case 'y': case 'Y': return C_RegisterClass; case 'e': case 'Z': return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. const char *X86TargetLowering:: LowerXConstraint(EVT ConstraintVT) const { // FP X constraints get lowered to SSE1/2 registers if available, otherwise // 'f' like normal targets. if (ConstraintVT.isFloatingPoint()) { if (Subtarget->hasSSE2()) return "Y"; if (Subtarget->hasSSE1()) return "x"; } return TargetLowering::LowerXConstraint(ConstraintVT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Constraint, bool hasMemory, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); switch (Constraint) { default: break; case 'I': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 31) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'J': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 63) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'K': if (ConstantSDNode *C = dyn_cast(Op)) { if ((int8_t)C->getSExtValue() == C->getSExtValue()) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'N': if (ConstantSDNode *C = dyn_cast(Op)) { if (C->getZExtValue() <= 255) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } return; case 'e': { // 32-bit signed value if (ConstantSDNode *C = dyn_cast(Op)) { const ConstantInt *CI = C->getConstantIntValue(); if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getSExtValue())) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); break; } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. } return; } case 'Z': { // 32-bit unsigned value if (ConstantSDNode *C = dyn_cast(Op)) { const ConstantInt *CI = C->getConstantIntValue(); if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getZExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. return; } case 'i': { // Literal immediates are always ok. if (ConstantSDNode *CST = dyn_cast(Op)) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); break; } // If we are in non-pic codegen mode, we allow the address of a global (with // an optional displacement) to be used with 'i'. GlobalAddressSDNode *GA = 0; int64_t Offset = 0; // Match either (GA), (GA+C), (GA+C1+C2), etc. while (1) { if ((GA = dyn_cast(Op))) { Offset += GA->getOffset(); break; } else if (Op.getOpcode() == ISD::ADD) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += C->getZExtValue(); Op = Op.getOperand(0); continue; } } else if (Op.getOpcode() == ISD::SUB) { if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Offset += -C->getZExtValue(); Op = Op.getOperand(0); continue; } } // Otherwise, this isn't something we can handle, reject it. return; } GlobalValue *GV = GA->getGlobal(); // If we require an extra load to get this address, as in PIC mode, we // can't accept it. if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, getTargetMachine()))) return; if (hasMemory) Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); else Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset); Result = Op; break; } } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, Ops, DAG); } std::vector X86TargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { // FIXME: not handling fp-stack yet! switch (Constraint[0]) { // GCC X86 Constraint Letters default: break; // Unknown constraint letter case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. if (Subtarget->is64Bit()) { if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, X86::ESI, X86::EDI, X86::R8D, X86::R9D, X86::R10D,X86::R11D,X86::R12D, X86::R13D,X86::R14D,X86::R15D, X86::EBP, X86::ESP, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, X86::SI, X86::DI, X86::R8W,X86::R9W, X86::R10W,X86::R11W,X86::R12W, X86::R13W,X86::R14W,X86::R15W, X86::BP, X86::SP, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::BL, X86::SIL, X86::DIL, X86::R8B,X86::R9B, X86::R10B,X86::R11B,X86::R12B, X86::R13B,X86::R14B,X86::R15B, X86::BPL, X86::SPL, 0); else if (VT == MVT::i64) return make_vector(X86::RAX, X86::RDX, X86::RCX, X86::RBX, X86::RSI, X86::RDI, X86::R8, X86::R9, X86::R10, X86::R11, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, X86::RSP, 0); break; } // 32-bit fallthrough case 'Q': // Q_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::BL, 0); else if (VT == MVT::i64) return make_vector(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); break; } } return std::vector(); } std::pair X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { // First, see if this is a constraint that directly corresponds to an LLVM // register class. if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; case 'r': // GENERAL_REGS case 'l': // INDEX_REGS if (VT == MVT::i8) return std::make_pair(0U, X86::GR8RegisterClass); if (VT == MVT::i16) return std::make_pair(0U, X86::GR16RegisterClass); if (VT == MVT::i32 || !Subtarget->is64Bit()) return std::make_pair(0U, X86::GR32RegisterClass); return std::make_pair(0U, X86::GR64RegisterClass); case 'R': // LEGACY_REGS if (VT == MVT::i8) return std::make_pair(0U, X86::GR8_NOREXRegisterClass); if (VT == MVT::i16) return std::make_pair(0U, X86::GR16_NOREXRegisterClass); if (VT == MVT::i32 || !Subtarget->is64Bit()) return std::make_pair(0U, X86::GR32_NOREXRegisterClass); return std::make_pair(0U, X86::GR64_NOREXRegisterClass); case 'f': // FP Stack registers. // If SSE is enabled for this VT, use f80 to ensure the isel moves the // value to the correct fpstack register class. if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, X86::RFP32RegisterClass); if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, X86::RFP64RegisterClass); return std::make_pair(0U, X86::RFP80RegisterClass); case 'y': // MMX_REGS if MMX allowed. if (!Subtarget->hasMMX()) break; return std::make_pair(0U, X86::VR64RegisterClass); case 'Y': // SSE_REGS if SSE2 allowed if (!Subtarget->hasSSE2()) break; // FALL THROUGH. case 'x': // SSE_REGS if SSE1 allowed if (!Subtarget->hasSSE1()) break; switch (VT.getSimpleVT().SimpleTy) { default: break; // Scalar SSE types. case MVT::f32: case MVT::i32: return std::make_pair(0U, X86::FR32RegisterClass); case MVT::f64: case MVT::i64: return std::make_pair(0U, X86::FR64RegisterClass); // Vector types. case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: return std::make_pair(0U, X86::VR128RegisterClass); } break; } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // Not found as a standard register? if (Res.second == 0) { // Map st(0) -> st(7) -> ST0 if (Constraint.size() == 7 && Constraint[0] == '{' && tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' && Constraint[3] == '(' && (Constraint[4] >= '0' && Constraint[4] <= '7') && Constraint[5] == ')' && Constraint[6] == '}') { Res.first = X86::ST0+Constraint[4]-'0'; Res.second = X86::RFP80RegisterClass; return Res; } // GCC allows "st(0)" to be called just plain "st". if (StringRef("{st}").equals_lower(Constraint)) { Res.first = X86::ST0; Res.second = X86::RFP80RegisterClass; return Res; } // flags -> EFLAGS if (StringRef("{flags}").equals_lower(Constraint)) { Res.first = X86::EFLAGS; Res.second = X86::CCRRegisterClass; return Res; } // 'A' means EAX + EDX. if (Constraint == "A") { Res.first = X86::EAX; Res.second = X86::GR32_ADRegisterClass; return Res; } return Res; } // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. if (Res.second->hasType(VT)) return Res; // Correct type already, nothing to do. // All of the single-register GCC register classes map their values onto // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we // really want an 8-bit or 32-bit register, map to the appropriate register // class and return the appropriate register. if (Res.second == X86::GR16RegisterClass) { if (VT == MVT::i8) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::AL; break; case X86::DX: DestReg = X86::DL; break; case X86::CX: DestReg = X86::CL; break; case X86::BX: DestReg = X86::BL; break; } if (DestReg) { Res.first = DestReg; Res.second = X86::GR8RegisterClass; } } else if (VT == MVT::i32) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::EAX; break; case X86::DX: DestReg = X86::EDX; break; case X86::CX: DestReg = X86::ECX; break; case X86::BX: DestReg = X86::EBX; break; case X86::SI: DestReg = X86::ESI; break; case X86::DI: DestReg = X86::EDI; break; case X86::BP: DestReg = X86::EBP; break; case X86::SP: DestReg = X86::ESP; break; } if (DestReg) { Res.first = DestReg; Res.second = X86::GR32RegisterClass; } } else if (VT == MVT::i64) { unsigned DestReg = 0; switch (Res.first) { default: break; case X86::AX: DestReg = X86::RAX; break; case X86::DX: DestReg = X86::RDX; break; case X86::CX: DestReg = X86::RCX; break; case X86::BX: DestReg = X86::RBX; break; case X86::SI: DestReg = X86::RSI; break; case X86::DI: DestReg = X86::RDI; break; case X86::BP: DestReg = X86::RBP; break; case X86::SP: DestReg = X86::RSP; break; } if (DestReg) { Res.first = DestReg; Res.second = X86::GR64RegisterClass; } } } else if (Res.second == X86::FR32RegisterClass || Res.second == X86::FR64RegisterClass || Res.second == X86::VR128RegisterClass) { // Handle references to XMM physical registers that got mapped into the // wrong class. This can happen with constraints like {xmm0} where the // target independent register mapper will just pick the first match it can // find, ignoring the required type. if (VT == MVT::f32) Res.second = X86::FR32RegisterClass; else if (VT == MVT::f64) Res.second = X86::FR64RegisterClass; else if (X86::VR128RegisterClass->hasType(VT)) Res.second = X86::VR128RegisterClass; } return Res; } //===----------------------------------------------------------------------===// // X86 Widen vector type //===----------------------------------------------------------------------===// /// getWidenVectorType: given a vector type, returns the type to widen /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself. /// If there is no vector type that we want to widen to, returns MVT::Other /// When and where to widen is target dependent based on the cost of /// scalarizing vs using the wider vector type. EVT X86TargetLowering::getWidenVectorType(EVT VT) const { assert(VT.isVector()); if (isTypeLegal(VT)) return VT; // TODO: In computeRegisterProperty, we can compute the list of legal vector // type based on element type. This would speed up our search (though // it may not be worth it since the size of the list is relatively // small). EVT EltVT = VT.getVectorElementType(); unsigned NElts = VT.getVectorNumElements(); // On X86, it make sense to widen any vector wider than 1 if (NElts <= 1) return MVT::Other; for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { EVT SVT = (MVT::SimpleValueType)nVT; if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT && SVT.getVectorNumElements() > NElts) return SVT; } return MVT::Other; }