//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "X86Subtarget.h" #include "X86GenSubtarget.inc" #include "llvm/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; cl::opt AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset), cl::desc("Choose style of code to emit from X86 backend:"), cl::values( clEnumValN(X86Subtarget::ATT, "att", " Emit AT&T-style assembly"), clEnumValN(X86Subtarget::Intel, "intel", " Emit Intel-style assembly"), clEnumValEnd)); /// True if accessing the GV requires an extra load. For Windows, dllimported /// symbols are indirect, loading the value at address GV rather then the /// value of GV itself. This means that the GlobalAddress must be in the base /// or index register of the address, not the GV offset field. bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV, const TargetMachine& TM, bool isDirectCall) const { // FIXME: PIC if (TM.getRelocationModel() != Reloc::Static) if (isTargetDarwin()) { return (!isDirectCall && (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || (GV->isDeclaration() && !GV->hasNotBeenReadFromBytecode()))); } else if (TM.getRelocationModel() == Reloc::PIC_ && isPICStyleGOT()) { // Extra load is needed for all non-statics. return (!isDirectCall && (GV->isDeclaration() || !GV->hasInternalLinkage())); } else if (isTargetCygMing() || isTargetWindows()) { return (GV->hasDLLImportLinkage()); } return false; } /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #endif #endif return true; } void X86Subtarget::AutoDetectSubtargetFeatures() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; union { unsigned u[3]; char c[12]; } text; if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) return; X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 23) & 0x1) X86SSELevel = MMX; if ((EDX >> 25) & 0x1) X86SSELevel = SSE1; if ((EDX >> 26) & 0x1) X86SSELevel = SSE2; if (ECX & 0x1) X86SSELevel = SSE3; if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3; if (memcmp(text.c, "GenuineIntel", 12) == 0 || memcmp(text.c, "AuthenticAMD", 12) == 0) { X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); HasX86_64 = (EDX >> 29) & 0x1; } } static const char *GetCurrentX86CPU() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = (EAX >> 8) & 0xf; // Bits 8 - 11 unsigned Model = (EAX >> 4) & 0xf; // Bits 4 - 7 X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; union { unsigned u[3]; char c[12]; } text; X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: return "i486"; case 5: switch (Model) { case 4: return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: return "pentiumpro"; case 3: case 5: case 6: return "pentium2"; case 7: case 8: case 10: case 11: return "pentium3"; case 9: case 13: return "pentium-m"; case 14: return "yonah"; case 15: return "core2"; default: return "i686"; } case 15: { switch (Model) { case 3: case 4: return (Em64T) ? "nocona" : "prescott"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } default: return "generic"; } } else { return "generic"; } } X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit) : AsmFlavor(AsmWriterFlavor) , PICStyle(PICStyle::None) , X86SSELevel(NoMMXSSE) , HasX86_64(false) , stackAlignment(8) // FIXME: this is a known good value for Yonah. How about others? , MinRepStrSizeThreshold(128) , Is64Bit(is64Bit) , TargetType(isELF) { // Default to ELF unless otherwise specified. // Determine default and user specified characteristics if (!FS.empty()) { // If feature string is not empty, parse features string. std::string CPU = GetCurrentX86CPU(); ParseSubtargetFeatures(FS, CPU); if (Is64Bit && !HasX86_64) cerr << "Warning: Generation of 64-bit code for a 32-bit processor " << "requested.\n"; if (Is64Bit && X86SSELevel < SSE2) cerr << "Warning: 64-bit processors all have at least SSE2.\n"; } else { // Otherwise, use CPUID to auto-detect feature set. AutoDetectSubtargetFeatures(); } // If requesting codegen for X86-64, make sure that 64-bit and SSE2 features // are enabled. These are available on all x86-64 CPUs. if (Is64Bit) { HasX86_64 = true; if (X86SSELevel < SSE2) X86SSELevel = SSE2; } // Set the boolean corresponding to the current target triple, or the default // if one cannot be determined, to true. const std::string& TT = M.getTargetTriple(); if (TT.length() > 5) { if (TT.find("cygwin") != std::string::npos) TargetType = isCygwin; else if (TT.find("mingw") != std::string::npos) TargetType = isMingw; else if (TT.find("darwin") != std::string::npos) TargetType = isDarwin; else if (TT.find("win32") != std::string::npos) TargetType = isWindows; } else if (TT.empty()) { #if defined(__CYGWIN__) TargetType = isCygwin; #elif defined(__MINGW32__) TargetType = isMingw; #elif defined(__APPLE__) TargetType = isDarwin; #elif defined(_WIN32) TargetType = isWindows; #endif } // If the asm syntax hasn't been overridden on the command line, use whatever // the target wants. if (AsmFlavor == X86Subtarget::Unset) { if (TargetType == isWindows) { AsmFlavor = X86Subtarget::Intel; } else { AsmFlavor = X86Subtarget::ATT; } } if (TargetType == isDarwin || TargetType == isCygwin || TargetType == isMingw || (TargetType == isELF && Is64Bit)) stackAlignment = 16; }