//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "subtarget" #include "X86Subtarget.h" #include "X86InstrInfo.h" #include "X86GenSubtarget.inc" #include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #if defined(_MSC_VER) #include #endif /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char X86Subtarget:: ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // DLLImport only exists on windows, it is implemented as a load from a // DLLIMPORT stub. if (GV->hasDLLImportLinkage()) return X86II::MO_DLLIMPORT; // GV with ghost linkage (in JIT lazy compilation mode) do not require an // extra load from stub. bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode(); // X86-64 in PIC mode. if (isPICStyleRIPRel()) { // Large model never uses stubs. if (TM.getCodeModel() == CodeModel::Large) return X86II::MO_NO_FLAG; if (isTargetDarwin()) { // If symbol visibility is hidden, the extra load is not needed if // target is x86-64 or the symbol is definitely defined in the current // translation unit. if (GV->hasDefaultVisibility() && (isDecl || GV->isWeakForLinker())) return X86II::MO_GOTPCREL; } else { assert(isTargetELF() && "Unknown rip-relative target"); // Extra load is needed for all externally visible. if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) return X86II::MO_GOTPCREL; } return X86II::MO_NO_FLAG; } if (isPICStyleGOT()) { // 32-bit ELF targets. // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return X86II::MO_GOTOFF; return X86II::MO_GOT; } if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. // Determine whether we have a stub reference and/or whether the reference // is relative to the PIC base or not. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_PIC_BASE_OFFSET; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY_PIC_BASE; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) { // Hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; } // Otherwise, no stub. return X86II::MO_PIC_BASE_OFFSET; } if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. // Determine whether we have a stub reference. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_NO_FLAG; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) { // Hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_HIDDEN_NONLAZY; } // Otherwise, no stub. return X86II::MO_NO_FLAG; } // Direct static reference to global. return X86II::MO_NO_FLAG; } /// getBZeroEntry - This function returns the name of a function which has an /// interface like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over memset with zero /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. if (getDarwinVers() >= 10) return "__bzero"; return 0; } /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls /// to immediate address. bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { if (Is64Bit) return false; return isTargetELF() || TM.getRelocationModel() == Reloc::Static; } /// getSpecialAddressLatency - For targets where it is beneficial to /// backschedule instructions that compute addresses, return a value /// indicating the number of scheduling cycles of backscheduling that /// should be attempted. unsigned X86Subtarget::getSpecialAddressLatency() const { // For x86 out-of-order targets, back-schedule address computations so // that loads and stores aren't blocked. // This value was chosen arbitrarily. return 200; } /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #endif #endif return true; } static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } void X86Subtarget::AutoDetectSubtargetFeatures() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; union { unsigned u[3]; char c[12]; } text; if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) return; X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 23) & 0x1) X86SSELevel = MMX; if ((EDX >> 25) & 0x1) X86SSELevel = SSE1; if ((EDX >> 26) & 0x1) X86SSELevel = SSE2; if (ECX & 0x1) X86SSELevel = SSE3; if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3; if ((ECX >> 19) & 0x1) X86SSELevel = SSE41; if ((ECX >> 20) & 0x1) X86SSELevel = SSE42; bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; HasFMA3 = IsIntel && ((ECX >> 12) & 0x1); HasAVX = ((ECX >> 28) & 0x1); if (IsIntel || IsAMD) { // Determine if bit test memory instructions are slow. unsigned Family = 0; unsigned Model = 0; DetectFamilyModel(EAX, Family, Model); IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13); X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); HasX86_64 = (EDX >> 29) & 0x1; HasSSE4A = IsAMD && ((ECX >> 6) & 0x1); HasFMA4 = IsAMD && ((ECX >> 16) & 0x1); } } static const char *GetCurrentX86CPU() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = 0; unsigned Model = 0; DetectFamilyModel(EAX, Family, Model); X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; bool HasSSE3 = (ECX & 0x1); union { unsigned u[3]; char c[12]; } text; X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: return "i486"; case 5: switch (Model) { case 4: return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: return "pentiumpro"; case 3: case 5: case 6: return "pentium2"; case 7: case 8: case 10: case 11: return "pentium3"; case 9: case 13: return "pentium-m"; case 14: return "yonah"; case 15: case 22: // Celeron M 540 return "core2"; case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE) return "penryn"; default: return "i686"; } case 15: { switch (Model) { case 3: case 4: case 6: // same as 4, but 65nm return (Em64T) ? "nocona" : "prescott"; case 26: return "corei7"; case 28: return "atom"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: if (HasSSE3) { return "k8-sse3"; } else { switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } } case 16: return "amdfam10"; default: return "generic"; } } else { return "generic"; } } X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, bool is64Bit) : PICStyle(PICStyles::None) , X86SSELevel(NoMMXSSE) , X863DNowLevel(NoThreeDNow) , HasX86_64(false) , HasSSE4A(false) , HasAVX(false) , HasFMA3(false) , HasFMA4(false) , IsBTMemSlow(false) , DarwinVers(0) , IsLinux(false) , stackAlignment(8) // FIXME: this is a known good value for Yonah. How about others? , MaxInlineSizeThreshold(128) , Is64Bit(is64Bit) , TargetType(isELF) { // Default to ELF unless otherwise specified. // default to hard float ABI if (FloatABIType == FloatABI::Default) FloatABIType = FloatABI::Hard; // Determine default and user specified characteristics if (!FS.empty()) { // If feature string is not empty, parse features string. std::string CPU = GetCurrentX86CPU(); ParseSubtargetFeatures(FS, CPU); // All X86-64 CPUs also have SSE2, however user might request no SSE via // -mattr, so don't force SSELevel here. } else { // Otherwise, use CPUID to auto-detect feature set. AutoDetectSubtargetFeatures(); // Make sure SSE2 is enabled; it is available on all X86-64 CPUs. if (Is64Bit && X86SSELevel < SSE2) X86SSELevel = SSE2; } // If requesting codegen for X86-64, make sure that 64-bit features // are enabled. if (Is64Bit) HasX86_64 = true; DEBUG(errs() << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"); assert((!Is64Bit || HasX86_64) && "64-bit code requested on a subtarget that doesn't support it!"); // Set the boolean corresponding to the current target triple, or the default // if one cannot be determined, to true. if (TT.length() > 5) { size_t Pos; if ((Pos = TT.find("-darwin")) != std::string::npos) { TargetType = isDarwin; // Compute the darwin version number. if (isdigit(TT[Pos+7])) DarwinVers = atoi(&TT[Pos+7]); else DarwinVers = 8; // Minimum supported darwin is Tiger. } else if (TT.find("linux") != std::string::npos) { // Linux doesn't imply ELF, but we don't currently support anything else. TargetType = isELF; IsLinux = true; } else if (TT.find("cygwin") != std::string::npos) { TargetType = isCygwin; } else if (TT.find("mingw") != std::string::npos) { TargetType = isMingw; } else if (TT.find("win32") != std::string::npos) { TargetType = isWindows; } else if (TT.find("windows") != std::string::npos) { TargetType = isWindows; } else if (TT.find("-cl") != std::string::npos) { TargetType = isDarwin; DarwinVers = 9; } } // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 // bit targets. if (TargetType == isDarwin || Is64Bit) stackAlignment = 16; if (StackAlignment) stackAlignment = StackAlignment; }