//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "X86.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; extern "C" void LLVMInitializeX86Target() { // Register the target. RegisterTargetMachine X(TheX86_32Target); RegisterTargetMachine Y(TheX86_64Target); } void X86TargetMachine::anchor() { } static std::string computeDataLayout(const X86Subtarget &ST) { // X86 is little endian std::string Ret = "e"; Ret += DataLayout::getManglingComponent(ST.getTargetTriple()); // X86 and x32 have 32 bit pointers. if (ST.isTarget64BitILP32() || !ST.is64Bit()) Ret += "-p:32:32"; // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. if (ST.is64Bit() || ST.isTargetCygMing() || ST.isTargetWindows() || ST.isTargetNaCl()) Ret += "-i64:64"; else Ret += "-f64:32:64"; // Some ABIs align long double to 128 bits, others to 32. if (ST.isTargetNaCl()) ; // No f80 else if (ST.is64Bit() || ST.isTargetDarwin()) Ret += "-f80:128"; else Ret += "-f80:32"; // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. if (ST.is64Bit()) Ret += "-n8:16:32:64"; else Ret += "-n8:16:32"; // The stack is aligned to 32 bits on some ABIs and 128 bits on others. if (!ST.is64Bit() && (ST.isTargetCygMing() || ST.isTargetWindows())) Ret += "-S32"; else Ret += "-S128"; return Ret; } /// X86TargetMachine ctor - Create an X86 target. /// X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), Subtarget(TT, CPU, FS, Options.StackAlignmentOverride), FrameLowering(*this, Subtarget), InstrItins(Subtarget.getInstrItineraryData()), DL(computeDataLayout(*getSubtargetImpl())), InstrInfo(*this), TLInfo(*this), TSInfo(*this), JITInfo(*this) { // Determine the PICStyle based on the target selected. if (getRelocationModel() == Reloc::Static) { // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None. Subtarget.setPICStyle(PICStyles::None); } else if (Subtarget.is64Bit()) { // PIC in 64 bit mode is always rip-rel. Subtarget.setPICStyle(PICStyles::RIPRel); } else if (Subtarget.isTargetCOFF()) { Subtarget.setPICStyle(PICStyles::None); } else if (Subtarget.isTargetDarwin()) { if (getRelocationModel() == Reloc::PIC_) Subtarget.setPICStyle(PICStyles::StubPIC); else { assert(getRelocationModel() == Reloc::DynamicNoPIC); Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC); } } else if (Subtarget.isTargetELF()) { Subtarget.setPICStyle(PICStyles::GOT); } // default to hard float ABI if (Options.FloatABIType == FloatABI::Default) this->Options.FloatABIType = FloatABI::Hard; initAsmInfo(); } //===----------------------------------------------------------------------===// // Command line options for x86 //===----------------------------------------------------------------------===// static cl::opt UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, cl::desc("Minimize AVX to SSE transition penalty"), cl::init(true)); // Temporary option to control early if-conversion for x86 while adding machine // models. static cl::opt X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, cl::desc("Enable early if-conversion on X86")); //===----------------------------------------------------------------------===// // X86 Analysis Pass Setup //===----------------------------------------------------------------------===// void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) { // Add first the target-independent BasicTTI pass, then our X86 pass. This // allows the X86 pass to delegate to the target independent layer when // appropriate. PM.add(createBasicTargetTransformInfoPass(this)); PM.add(createX86TargetTransformInfoPass(this)); } //===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// namespace { /// X86 Code Generator Pass Configuration Options. class X86PassConfig : public TargetPassConfig { public: X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} X86TargetMachine &getX86TargetMachine() const { return getTM(); } const X86Subtarget &getX86Subtarget() const { return *getX86TargetMachine().getSubtargetImpl(); } virtual bool addInstSelector(); virtual bool addILPOpts(); virtual bool addPreRegAlloc(); virtual bool addPostRegAlloc(); virtual bool addPreEmitPass(); }; } // namespace TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { return new X86PassConfig(this, PM); } bool X86PassConfig::addInstSelector() { // Install an instruction selector. addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); // For ELF, cleanup any local-dynamic TLS accesses. if (getX86Subtarget().isTargetELF() && getOptLevel() != CodeGenOpt::None) addPass(createCleanupLocalDynamicTLSPass()); // For 32-bit, prepend instructions to set the "global base reg" for PIC. if (!getX86Subtarget().is64Bit()) addPass(createGlobalBaseRegPass()); return false; } bool X86PassConfig::addILPOpts() { if (X86EarlyIfConv && getX86Subtarget().hasCMov()) { addPass(&EarlyIfConverterID); return true; } return false; } bool X86PassConfig::addPreRegAlloc() { return false; // -print-machineinstr shouldn't print after this. } bool X86PassConfig::addPostRegAlloc() { addPass(createX86FloatingPointStackifierPass()); return true; // -print-machineinstr should print after this. } bool X86PassConfig::addPreEmitPass() { bool ShouldPrint = false; if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2()) { addPass(createExecutionDependencyFixPass(&X86::VR128RegClass)); ShouldPrint = true; } if (getX86Subtarget().hasAVX() && UseVZeroUpper) { addPass(createX86IssueVZeroUpperPass()); ShouldPrint = true; } if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().padShortFunctions()) { addPass(createX86PadShortFunctions()); ShouldPrint = true; } if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().LEAusesAG()){ addPass(createX86FixupLEAs()); ShouldPrint = true; } return ShouldPrint; } bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) { PM.add(createX86JITCodeEmitterPass(*this, JCE)); return false; }