//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// X86 target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #include "X86.h" #include "X86TargetMachine.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "x86tti" // Declare the pass initialization routine locally as target-specific passes // don't have a target-wide initialization entry point, and so we rely on the // pass constructor initialization. namespace llvm { void initializeX86TTIPass(PassRegistry &); } namespace { class X86TTI final : public ImmutablePass, public TargetTransformInfo { const X86Subtarget *ST; const X86TargetLowering *TLI; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; public: X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) { llvm_unreachable("This pass cannot be directly constructed"); } X86TTI(const X86TargetMachine *TM) : ImmutablePass(ID), ST(TM->getSubtargetImpl()), TLI(TM->getTargetLowering()) { initializeX86TTIPass(*PassRegistry::getPassRegistry()); } void initializePass() override { pushTTIStack(this); } void getAnalysisUsage(AnalysisUsage &AU) const override { TargetTransformInfo::getAnalysisUsage(AU); } /// Pass identification. static char ID; /// Provide necessary pointer adjustments for the two base classes. void *getAdjustedAnalysisPointer(const void *ID) override { if (ID == &TargetTransformInfo::ID) return (TargetTransformInfo*)this; return this; } /// \name Scalar TTI Implementations /// @{ PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override; /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(bool Vector) const override; unsigned getRegisterBitWidth(bool Vector) const override; unsigned getMaximumUnrollFactor() const override; unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, OperandValueKind) const override; unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const override; unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const override; unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const override; unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const override; unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const override; unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const override; unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const override; unsigned getIntImmCost(int64_t) const; unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const override; unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) const override; /// @} }; } // end anonymous namespace INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti", "X86 Target Transform Info", true, true, false) char X86TTI::ID = 0; ImmutablePass * llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) { return new X86TTI(TM); } //===----------------------------------------------------------------------===// // // X86 cost model. // //===----------------------------------------------------------------------===// X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); // TODO: Currently the __builtin_popcount() implementation using SSE3 // instructions is inefficient. Once the problem is fixed, we should // call ST->hasSSE3() instead of ST->hasPOPCNT(). return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software; } unsigned X86TTI::getNumberOfRegisters(bool Vector) const { if (Vector && !ST->hasSSE1()) return 0; if (ST->is64Bit()) return 16; return 8; } unsigned X86TTI::getRegisterBitWidth(bool Vector) const { if (Vector) { if (ST->hasAVX()) return 256; if (ST->hasSSE1()) return 128; return 0; } if (ST->is64Bit()) return 64; return 32; } unsigned X86TTI::getMaximumUnrollFactor() const { if (ST->isAtom()) return 1; // Sandybridge and Haswell have multiple execution ports and pipelined // vector units. if (ST->hasAVX()) return 4; return 2; } unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Op1Info, OperandValueKind Op2Info) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); static const CostTblEntry AVX2UniformConstCostTable[] = { { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence }; if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && ST->hasAVX2()) { int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second); if (Idx != -1) return LT.first * AVX2UniformConstCostTable[Idx].Cost; } static const CostTblEntry AVX2CostTable[] = { // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to // customize them to detect the cases where shift amount is a scalar one. { ISD::SHL, MVT::v4i32, 1 }, { ISD::SRL, MVT::v4i32, 1 }, { ISD::SRA, MVT::v4i32, 1 }, { ISD::SHL, MVT::v8i32, 1 }, { ISD::SRL, MVT::v8i32, 1 }, { ISD::SRA, MVT::v8i32, 1 }, { ISD::SHL, MVT::v2i64, 1 }, { ISD::SRL, MVT::v2i64, 1 }, { ISD::SHL, MVT::v4i64, 1 }, { ISD::SRL, MVT::v4i64, 1 }, { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence. { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized. { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized. { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized. { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized. { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized. { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized. // Vectorizing division is a bad idea. See the SSE2 table for more comments. { ISD::SDIV, MVT::v32i8, 32*20 }, { ISD::SDIV, MVT::v16i16, 16*20 }, { ISD::SDIV, MVT::v8i32, 8*20 }, { ISD::SDIV, MVT::v4i64, 4*20 }, { ISD::UDIV, MVT::v32i8, 32*20 }, { ISD::UDIV, MVT::v16i16, 16*20 }, { ISD::UDIV, MVT::v8i32, 8*20 }, { ISD::UDIV, MVT::v4i64, 4*20 }, }; // Look for AVX2 lowering tricks. if (ST->hasAVX2()) { if (ISD == ISD::SHL && LT.second == MVT::v16i16 && (Op2Info == TargetTransformInfo::OK_UniformConstantValue || Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) // On AVX2, a packed v16i16 shift left by a constant build_vector // is lowered into a vector multiply (vpmullw). return LT.first; int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second); if (Idx != -1) return LT.first * AVX2CostTable[Idx].Cost; } static const CostTblEntry SSE2UniformConstCostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // Constant splats are cheaper for the following instructions. { ISD::SHL, MVT::v16i8, 1 }, // psllw. { ISD::SHL, MVT::v8i16, 1 }, // psllw. { ISD::SHL, MVT::v4i32, 1 }, // pslld { ISD::SHL, MVT::v2i64, 1 }, // psllq. { ISD::SRL, MVT::v16i8, 1 }, // psrlw. { ISD::SRL, MVT::v8i16, 1 }, // psrlw. { ISD::SRL, MVT::v4i32, 1 }, // psrld. { ISD::SRL, MVT::v2i64, 1 }, // psrlq. { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. { ISD::SRA, MVT::v8i16, 1 }, // psraw. { ISD::SRA, MVT::v4i32, 1 }, // psrad. { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence }; if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && ST->hasSSE2()) { // pmuldq sequence. if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) return LT.first * 15; int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second); if (Idx != -1) return LT.first * SSE2UniformConstCostTable[Idx].Cost; } if (ISD == ISD::SHL && Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { EVT VT = LT.second; if ((VT == MVT::v8i16 && ST->hasSSE2()) || (VT == MVT::v4i32 && ST->hasSSE41())) // Vector shift left by non uniform constant can be lowered // into vector multiply (pmullw/pmulld). return LT.first; if (VT == MVT::v4i32 && ST->hasSSE2()) // A vector shift left by non uniform constant is converted // into a vector multiply; the new multiply is eventually // lowered into a sequence of shuffles and 2 x pmuludq. ISD = ISD::MUL; } static const CostTblEntry SSE2CostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // For some cases, where the shift amount is a scalar we would be able // to generate better code. Unfortunately, when this is the case the value // (the splat) will get hoisted out of the loop, thereby making it invisible // to ISel. The cost model must return worst case assumptions because it is // used for vectorization and we don't want to make vectorized code worse // than scalar code. { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence. { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized. { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized. { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized. { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized. { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized. { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized. { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized. { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized. { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized. { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized. { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized. // It is not a good idea to vectorize division. We have to scalarize it and // in the process we will often end up having to spilling regular // registers. The overhead of division is going to dominate most kernels // anyways so try hard to prevent vectorization of division - it is // generally a bad idea. Assume somewhat arbitrarily that we have to be able // to hide "20 cycles" for each lane. { ISD::SDIV, MVT::v16i8, 16*20 }, { ISD::SDIV, MVT::v8i16, 8*20 }, { ISD::SDIV, MVT::v4i32, 4*20 }, { ISD::SDIV, MVT::v2i64, 2*20 }, { ISD::UDIV, MVT::v16i8, 16*20 }, { ISD::UDIV, MVT::v8i16, 8*20 }, { ISD::UDIV, MVT::v4i32, 4*20 }, { ISD::UDIV, MVT::v2i64, 2*20 }, }; if (ST->hasSSE2()) { int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second); if (Idx != -1) return LT.first * SSE2CostTable[Idx].Cost; } static const CostTblEntry AVX1CostTable[] = { // We don't have to scalarize unsupported ops. We can issue two half-sized // operations and we only need to extract the upper YMM half. // Two ops + 1 extract + 1 insert = 4. { ISD::MUL, MVT::v16i16, 4 }, { ISD::MUL, MVT::v8i32, 4 }, { ISD::SUB, MVT::v8i32, 4 }, { ISD::ADD, MVT::v8i32, 4 }, { ISD::SUB, MVT::v4i64, 4 }, { ISD::ADD, MVT::v4i64, 4 }, // A v4i64 multiply is custom lowered as two split v2i64 vectors that then // are lowered as a series of long multiplies(3), shifts(4) and adds(2) // Because we believe v4i64 to be a legal type, we must also include the // split factor of two in the cost table. Therefore, the cost here is 18 // instead of 9. { ISD::MUL, MVT::v4i64, 18 }, }; // Look for AVX1 lowering tricks. if (ST->hasAVX() && !ST->hasAVX2()) { EVT VT = LT.second; // v16i16 and v8i32 shifts by non-uniform constants are lowered into a // sequence of extract + two vector multiply + insert. if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) && Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) ISD = ISD::MUL; int Idx = CostTableLookup(AVX1CostTable, ISD, VT); if (Idx != -1) return LT.first * AVX1CostTable[Idx].Cost; } // Custom lowering of vectors. static const CostTblEntry CustomLowered[] = { // A v2i64/v4i64 and multiply is custom lowered as a series of long // multiplies(3), shifts(4) and adds(2). { ISD::MUL, MVT::v2i64, 9 }, { ISD::MUL, MVT::v4i64, 9 }, }; int Idx = CostTableLookup(CustomLowered, ISD, LT.second); if (Idx != -1) return LT.first * CustomLowered[Idx].Cost; // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, // 2x pmuludq, 2x shuffle. if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() && !ST->hasSSE41()) return LT.first * 6; // Fallback to the default implementation. return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); } unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const { // We only estimate the cost of reverse and alternate shuffles. if (Kind != SK_Reverse && Kind != SK_Alternate) return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); if (Kind == SK_Reverse) { std::pair LT = TLI->getTypeLegalizationCost(Tp); unsigned Cost = 1; if (LT.second.getSizeInBits() > 128) Cost = 3; // Extract + insert + copy. // Multiple by the number of parts. return Cost * LT.first; } if (Kind == SK_Alternate) { static const CostTblEntry X86AltShuffleTbl[] = { // Alt shuffle cost table for X86. Cost is the number of instructions // required to create the shuffled vector. {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, {ISD::VECTOR_SHUFFLE, MVT::v4i16, 8}, {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 49}}; std::pair LT = TLI->getTypeLegalizationCost(Tp); int Idx = CostTableLookup(X86AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); if (Idx == -1) return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); return LT.first * X86AltShuffleTbl[Idx].Cost; } return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); } unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair LTSrc = TLI->getTypeLegalizationCost(Src); std::pair LTDest = TLI->getTypeLegalizationCost(Dst); static const TypeConversionCostTblEntry SSE2ConvTbl[] = { // These are somewhat magic numbers justified by looking at the output of // Intel's IACA, running some kernels and making sure when we take // legalization into account the throughput will be overestimated. { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, // There are faster sequences for float conversions. { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, }; if (ST->hasSSE2() && !ST->hasAVX()) { int Idx = ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second); if (Idx != -1) return LTSrc.first * SSE2ConvTbl[Idx].Cost; } EVT SrcTy = TLI->getValueType(Src); EVT DstTy = TLI->getValueType(Dst); // The function getSimpleVT only handles simple value types. if (!SrcTy.isSimple() || !DstTy.isSimple()) return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 }, }; static const TypeConversionCostTblEntry AVXConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 }, { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, // The generic code to compute the scalar overhead is currently broken. // Workaround this limitation by estimating the scalarization overhead // here. We have roughly 10 instructions per scalar element. // Multiply that by the vector width. // FIXME: remove that when PR19268 is fixed. { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 }, { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, // This node is expanded into scalarized operations but BasicTTI is overly // optimistic estimating its cost. It computes 3 per element (one // vector-extract, one scalar conversion and one vector-insert). The // problem is that the inserts form a read-modify-write chain so latency // should be factored in too. Inflating the cost per element by 1. { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, }; if (ST->hasAVX2()) { int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return AVX2ConversionTbl[Idx].Cost; } if (ST->hasAVX()) { int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return AVXConversionTbl[Idx].Cost; } return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); } unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); static const CostTblEntry SSE42CostTbl[] = { { ISD::SETCC, MVT::v2f64, 1 }, { ISD::SETCC, MVT::v4f32, 1 }, { ISD::SETCC, MVT::v2i64, 1 }, { ISD::SETCC, MVT::v4i32, 1 }, { ISD::SETCC, MVT::v8i16, 1 }, { ISD::SETCC, MVT::v16i8, 1 }, }; static const CostTblEntry AVX1CostTbl[] = { { ISD::SETCC, MVT::v4f64, 1 }, { ISD::SETCC, MVT::v8f32, 1 }, // AVX1 does not support 8-wide integer compare. { ISD::SETCC, MVT::v4i64, 4 }, { ISD::SETCC, MVT::v8i32, 4 }, { ISD::SETCC, MVT::v16i16, 4 }, { ISD::SETCC, MVT::v32i8, 4 }, }; static const CostTblEntry AVX2CostTbl[] = { { ISD::SETCC, MVT::v4i64, 1 }, { ISD::SETCC, MVT::v8i32, 1 }, { ISD::SETCC, MVT::v16i16, 1 }, { ISD::SETCC, MVT::v32i8, 1 }, }; if (ST->hasAVX2()) { int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy); if (Idx != -1) return LT.first * AVX2CostTbl[Idx].Cost; } if (ST->hasAVX()) { int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy); if (Idx != -1) return LT.first * AVX1CostTbl[Idx].Cost; } if (ST->hasSSE42()) { int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy); if (Idx != -1) return LT.first * SSE42CostTbl[Idx].Cost; } return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. Normalize the index to the new type. unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; // Floating point scalars are already located in index #0. if (Val->getScalarType()->isFloatingPointTy() && Index == 0) return 0; } return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); } unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { assert (Ty->isVectorTy() && "Can only scalarize vectors"); unsigned Cost = 0; for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { if (Insert) Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); if (Extract) Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); } return Cost; } unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { // Handle non-power-of-two vectors such as <3 x float> if (VectorType *VTy = dyn_cast(Src)) { unsigned NumElem = VTy->getVectorNumElements(); // Handle a few common cases: // <3 x float> if (NumElem == 3 && VTy->getScalarSizeInBits() == 32) // Cost = 64 bit store + extract + 32 bit store. return 3; // <3 x double> if (NumElem == 3 && VTy->getScalarSizeInBits() == 64) // Cost = 128 bit store + unpack + 64 bit store. return 3; // Assume that all other non-power-of-two numbers are scalarized. if (!isPowerOf2_32(NumElem)) { unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment, AddressSpace); unsigned SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load, Opcode==Instruction::Store); return NumElem * Cost + SplitCost; } } // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); // Each load/store unit costs 1. unsigned Cost = LT.first * 1; // On Sandybridge 256bit load/stores are double pumped // (but not on Haswell). if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) Cost*=2; return Cost; } unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; if (Ty->isVectorTy() && IsComplex) return NumVectorInstToHideOverhead; return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex); } unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy, bool IsPairwise) const { std::pair LT = TLI->getTypeLegalizationCost(ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput // and make it as the cost. static const CostTblEntry SSE42CostTblPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". { ISD::ADD, MVT::v8i16, 5 }, }; static const CostTblEntry AVX1CostTblPairWise[] = { { ISD::FADD, MVT::v4f32, 4 }, { ISD::FADD, MVT::v4f64, 5 }, { ISD::FADD, MVT::v8f32, 7 }, { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8". { ISD::ADD, MVT::v8i16, 5 }, { ISD::ADD, MVT::v8i32, 5 }, }; static const CostTblEntry SSE42CostTblNoPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". }; static const CostTblEntry AVX1CostTblNoPairWise[] = { { ISD::FADD, MVT::v4f32, 3 }, { ISD::FADD, MVT::v4f64, 3 }, { ISD::FADD, MVT::v8f32, 4 }, { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8". { ISD::ADD, MVT::v4i64, 3 }, { ISD::ADD, MVT::v8i16, 4 }, { ISD::ADD, MVT::v8i32, 5 }, }; if (IsPairwise) { if (ST->hasAVX()) { int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy); if (Idx != -1) return LT.first * AVX1CostTblPairWise[Idx].Cost; } if (ST->hasSSE42()) { int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy); if (Idx != -1) return LT.first * SSE42CostTblPairWise[Idx].Cost; } } else { if (ST->hasAVX()) { int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy); if (Idx != -1) return LT.first * AVX1CostTblNoPairWise[Idx].Cost; } if (ST->hasSSE42()) { int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy); if (Idx != -1) return LT.first * SSE42CostTblNoPairWise[Idx].Cost; } } return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise); } /// \brief Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. unsigned X86TTI::getIntImmCost(int64_t Val) const { if (Val == 0) return TCC_Free; if (isInt<32>(Val)) return TCC_Basic; return 2 * TCC_Basic; } unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; // Never hoist constants larger than 128bit, because this might lead to // incorrect code generation or assertions in codegen. // Fixme: Create a cost model for types larger than i128 once the codegen // issues have been fixed. if (BitSize > 128) return TCC_Free; if (Imm == 0) return TCC_Free; // Sign-extend all constants to a multiple of 64-bit. APInt ImmVal = Imm; if (BitSize & 0x3f) ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); // Split the constant into 64-bit chunks and calculate the cost for each // chunk. unsigned Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); int64_t Val = Tmp.getSExtValue(); Cost += getIntImmCost(Val); } // We need at least one instruction to materialze the constant. return std::max(1U, Cost); } unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TCC_Free; unsigned ImmIdx = ~0U; switch (Opcode) { default: return TCC_Free; case Instruction::GetElementPtr: // Always hoist the base address of a GetElementPtr. This prevents the // creation of new constants for every base constant that gets constant // folded with the offset. if (Idx == 0) return 2 * TCC_Basic; return TCC_Free; case Instruction::Store: ImmIdx = 0; break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: ImmIdx = 1; break; // Always return TCC_Free for the shift value of a shift instruction. case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: if (Idx == 1) return TCC_Free; break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::BitCast: case Instruction::PHI: case Instruction::Call: case Instruction::Select: case Instruction::Ret: case Instruction::Load: break; } if (Idx == ImmIdx) { unsigned NumConstants = (BitSize + 63) / 64; unsigned Cost = X86TTI::getIntImmCost(Imm, Ty); return (Cost <= NumConstants * TCC_Basic) ? static_cast(TCC_Free) : Cost; } return X86TTI::getIntImmCost(Imm, Ty); } unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TCC_Free; switch (IID) { default: return TCC_Free; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) return TCC_Free; break; case Intrinsic::experimental_stackmap: if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TCC_Free; break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TCC_Free; break; } return X86TTI::getIntImmCost(Imm, Ty); }