//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass promotes "by reference" arguments to be "by value" arguments. In // practice, this means looking for internal functions that have pointer // arguments. If we can prove, through the use of alias analysis, that an // argument is *only* loaded, then we can pass the value into the function // instead of the address of the value. This can cause recursive simplification // of code and lead to the elimination of allocas (especially in C++ template // code like the STL). // // This pass also handles aggregate arguments that are passed into a function, // scalarizing them if the elements of the aggregate are only loaded. Note that // we refuse to scalarize aggregates which would require passing in more than // three operands to the function, because we don't want to pass thousands of // operands for a large array or structure! // // Note that this transformation could also be done for arguments that are only // stored to (returning the value instead), but we do not currently handle that // case. This case would be best handled when and if we start supporting // multiple return values from functions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "argpromotion" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/CallGraphSCCPass.h" #include "llvm/Instructions.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Compiler.h" #include using namespace llvm; STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); namespace { /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. /// struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); CallGraphSCCPass::getAnalysisUsage(AU); } virtual bool runOnSCC(const std::vector &SCC); static const char ID; // Pass identifcation, replacement for typeid ArgPromotion() : CallGraphSCCPass((intptr_t)&ID) {} private: bool PromoteArguments(CallGraphNode *CGN); bool isSafeToPromoteArgument(Argument *Arg) const; Function *DoPromotion(Function *F, std::vector &ArgsToPromote); }; const char ArgPromotion::ID = 0; RegisterPass X("argpromotion", "Promote 'by reference' arguments to scalars"); } Pass *llvm::createArgumentPromotionPass() { return new ArgPromotion(); } bool ArgPromotion::runOnSCC(const std::vector &SCC) { bool Changed = false, LocalChange; do { // Iterate until we stop promoting from this SCC. LocalChange = false; // Attempt to promote arguments from all functions in this SCC. for (unsigned i = 0, e = SCC.size(); i != e; ++i) LocalChange |= PromoteArguments(SCC[i]); Changed |= LocalChange; // Remember that we changed something. } while (LocalChange); return Changed; } /// PromoteArguments - This method checks the specified function to see if there /// are any promotable arguments and if it is safe to promote the function (for /// example, all callers are direct). If safe to promote some arguments, it /// calls the DoPromotion method. /// bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) { Function *F = CGN->getFunction(); // Make sure that it is local to this module. if (!F || !F->hasInternalLinkage()) return false; // First check: see if there are any pointer arguments! If not, quick exit. std::vector PointerArgs; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) PointerArgs.push_back(I); if (PointerArgs.empty()) return false; // Second check: make sure that all callers are direct callers. We can't // transform functions that have indirect callers. for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E; ++UI) { CallSite CS = CallSite::get(*UI); if (!CS.getInstruction()) // "Taking the address" of the function return false; // Ensure that this call site is CALLING the function, not passing it as // an argument. for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (*AI == F) return false; // Passing the function address in! } // Check to see which arguments are promotable. If an argument is not // promotable, remove it from the PointerArgs vector. for (unsigned i = 0; i != PointerArgs.size(); ++i) if (!isSafeToPromoteArgument(PointerArgs[i])) { std::swap(PointerArgs[i--], PointerArgs.back()); PointerArgs.pop_back(); } // No promotable pointer arguments. if (PointerArgs.empty()) return false; // Okay, promote all of the arguments are rewrite the callees! Function *NewF = DoPromotion(F, PointerArgs); // Update the call graph to know that the old function is gone. getAnalysis().changeFunction(F, NewF); return true; } /// IsAlwaysValidPointer - Return true if the specified pointer is always legal /// to load. static bool IsAlwaysValidPointer(Value *V) { if (isa(V) || isa(V)) return true; if (GetElementPtrInst *GEP = dyn_cast(V)) return IsAlwaysValidPointer(GEP->getOperand(0)); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::GetElementPtr) return IsAlwaysValidPointer(CE->getOperand(0)); return false; } /// AllCalleesPassInValidPointerForArgument - Return true if we can prove that /// all callees pass in a valid pointer for the specified function argument. static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) { Function *Callee = Arg->getParent(); unsigned ArgNo = std::distance(Callee->arg_begin(), Function::arg_iterator(Arg)); // Look at all call sites of the function. At this pointer we know we only // have direct callees. for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end(); UI != E; ++UI) { CallSite CS = CallSite::get(*UI); assert(CS.getInstruction() && "Should only have direct calls!"); if (!IsAlwaysValidPointer(CS.getArgument(ArgNo))) return false; } return true; } /// isSafeToPromoteArgument - As you might guess from the name of this method, /// it checks to see if it is both safe and useful to promote the argument. /// This method limits promotion of aggregates to only promote up to three /// elements of the aggregate in order to avoid exploding the number of /// arguments passed in. bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const { // We can only promote this argument if all of the uses are loads, or are GEP // instructions (with constant indices) that are subsequently loaded. bool HasLoadInEntryBlock = false; BasicBlock *EntryBlock = Arg->getParent()->begin(); std::vector Loads; std::vector > GEPIndices; for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end(); UI != E; ++UI) if (LoadInst *LI = dyn_cast(*UI)) { if (LI->isVolatile()) return false; // Don't hack volatile loads Loads.push_back(LI); HasLoadInEntryBlock |= LI->getParent() == EntryBlock; } else if (GetElementPtrInst *GEP = dyn_cast(*UI)) { if (GEP->use_empty()) { // Dead GEP's cause trouble later. Just remove them if we run into // them. getAnalysis().deleteValue(GEP); GEP->getParent()->getInstList().erase(GEP); return isSafeToPromoteArgument(Arg); } // Ensure that all of the indices are constants. std::vector Operands; for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) if (ConstantInt *C = dyn_cast(GEP->getOperand(i))) Operands.push_back(C); else return false; // Not a constant operand GEP! // Ensure that the only users of the GEP are load instructions. for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end(); UI != E; ++UI) if (LoadInst *LI = dyn_cast(*UI)) { if (LI->isVolatile()) return false; // Don't hack volatile loads Loads.push_back(LI); HasLoadInEntryBlock |= LI->getParent() == EntryBlock; } else { return false; } // See if there is already a GEP with these indices. If not, check to // make sure that we aren't promoting too many elements. If so, nothing // to do. if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) == GEPIndices.end()) { if (GEPIndices.size() == 3) { DOUT << "argpromotion disable promoting argument '" << Arg->getName() << "' because it would require adding more " << "than 3 arguments to the function.\n"; // We limit aggregate promotion to only promoting up to three elements // of the aggregate. return false; } GEPIndices.push_back(Operands); } } else { return false; // Not a load or a GEP. } if (Loads.empty()) return true; // No users, this is a dead argument. // If we decide that we want to promote this argument, the value is going to // be unconditionally loaded in all callees. This is only safe to do if the // pointer was going to be unconditionally loaded anyway (i.e. there is a load // of the pointer in the entry block of the function) or if we can prove that // all pointers passed in are always to legal locations (for example, no null // pointers are passed in, no pointers to free'd memory, etc). if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg)) return false; // Cannot prove that this is safe!! // Okay, now we know that the argument is only used by load instructions and // it is safe to unconditionally load the pointer. Use alias analysis to // check to see if the pointer is guaranteed to not be modified from entry of // the function to each of the load instructions. // Because there could be several/many load instructions, remember which // blocks we know to be transparent to the load. std::set TranspBlocks; AliasAnalysis &AA = getAnalysis(); TargetData &TD = getAnalysis(); for (unsigned i = 0, e = Loads.size(); i != e; ++i) { // Check to see if the load is invalidated from the start of the block to // the load itself. LoadInst *Load = Loads[i]; BasicBlock *BB = Load->getParent(); const PointerType *LoadTy = cast(Load->getOperand(0)->getType()); unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType()); if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize)) return false; // Pointer is invalidated! // Now check every path from the entry block to the load for transparency. // To do this, we perform a depth first search on the inverse CFG from the // loading block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) for (idf_ext_iterator I = idf_ext_begin(*PI, TranspBlocks), E = idf_ext_end(*PI, TranspBlocks); I != E; ++I) if (AA.canBasicBlockModify(**I, Arg, LoadSize)) return false; } // If the path from the entry of the function to each load is free of // instructions that potentially invalidate the load, we can make the // transformation! return true; } namespace { /// GEPIdxComparator - Provide a strong ordering for GEP indices. All Value* /// elements are instances of ConstantInt. /// struct GEPIdxComparator { bool operator()(const std::vector &LHS, const std::vector &RHS) const { unsigned idx = 0; for (; idx < LHS.size() && idx < RHS.size(); ++idx) { if (LHS[idx] != RHS[idx]) { return cast(LHS[idx])->getZExtValue() < cast(RHS[idx])->getZExtValue(); } } // Return less than if we ran out of stuff in LHS and we didn't run out of // stuff in RHS. return idx == LHS.size() && idx != RHS.size(); } }; } /// DoPromotion - This method actually performs the promotion of the specified /// arguments, and returns the new function. At this point, we know that it's /// safe to do so. Function *ArgPromotion::DoPromotion(Function *F, std::vector &Args2Prom) { std::set ArgsToPromote(Args2Prom.begin(), Args2Prom.end()); // Start by computing a new prototype for the function, which is the same as // the old function, but has modified arguments. const FunctionType *FTy = F->getFunctionType(); std::vector Params; typedef std::set, GEPIdxComparator> ScalarizeTable; // ScalarizedElements - If we are promoting a pointer that has elements // accessed out of it, keep track of which elements are accessed so that we // can add one argument for each. // // Arguments that are directly loaded will have a zero element value here, to // handle cases where there are both a direct load and GEP accesses. // std::map ScalarizedElements; // OriginalLoads - Keep track of a representative load instruction from the // original function so that we can tell the alias analysis implementation // what the new GEP/Load instructions we are inserting look like. std::map, LoadInst*> OriginalLoads; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (!ArgsToPromote.count(I)) { Params.push_back(I->getType()); } else if (I->use_empty()) { ++NumArgumentsDead; } else { // Okay, this is being promoted. Check to see if there are any GEP uses // of the argument. ScalarizeTable &ArgIndices = ScalarizedElements[I]; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); assert(isa(User) || isa(User)); std::vector Indices(User->op_begin()+1, User->op_end()); ArgIndices.insert(Indices); LoadInst *OrigLoad; if (LoadInst *L = dyn_cast(User)) OrigLoad = L; else OrigLoad = cast(User->use_back()); OriginalLoads[Indices] = OrigLoad; } // Add a parameter to the function for each element passed in. for (ScalarizeTable::iterator SI = ArgIndices.begin(), E = ArgIndices.end(); SI != E; ++SI) Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), &(*SI)[0], SI->size())); if (ArgIndices.size() == 1 && ArgIndices.begin()->empty()) ++NumArgumentsPromoted; else ++NumAggregatesPromoted; } const Type *RetTy = FTy->getReturnType(); // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which // have zero fixed arguments. bool ExtraArgHack = false; if (Params.empty() && FTy->isVarArg()) { ExtraArgHack = true; Params.push_back(Type::Int32Ty); } FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); // Create the new function body and insert it into the module... Function *NF = new Function(NFTy, F->getLinkage(), F->getName()); NF->setCallingConv(F->getCallingConv()); F->getParent()->getFunctionList().insert(F, NF); // Get the alias analysis information that we need to update to reflect our // changes. AliasAnalysis &AA = getAnalysis(); // Loop over all of the callers of the function, transforming the call sites // to pass in the loaded pointers. // std::vector Args; while (!F->use_empty()) { CallSite CS = CallSite::get(F->use_back()); Instruction *Call = CS.getInstruction(); // Loop over the operands, inserting GEP and loads in the caller as // appropriate. CallSite::arg_iterator AI = CS.arg_begin(); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++AI) if (!ArgsToPromote.count(I)) Args.push_back(*AI); // Unmodified argument else if (!I->use_empty()) { // Non-dead argument: insert GEPs and loads as appropriate. ScalarizeTable &ArgIndices = ScalarizedElements[I]; for (ScalarizeTable::iterator SI = ArgIndices.begin(), E = ArgIndices.end(); SI != E; ++SI) { Value *V = *AI; LoadInst *OrigLoad = OriginalLoads[*SI]; if (!SI->empty()) { V = new GetElementPtrInst(V, &(*SI)[0], SI->size(), V->getName()+".idx", Call); AA.copyValue(OrigLoad->getOperand(0), V); } Args.push_back(new LoadInst(V, V->getName()+".val", Call)); AA.copyValue(OrigLoad, Args.back()); } } if (ExtraArgHack) Args.push_back(Constant::getNullValue(Type::Int32Ty)); // Push any varargs arguments on the list for (; AI != CS.arg_end(); ++AI) Args.push_back(*AI); Instruction *New; if (InvokeInst *II = dyn_cast(Call)) { New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(), &Args[0], Args.size(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); } else { New = new CallInst(NF, &Args[0], Args.size(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); if (cast(Call)->isTailCall()) cast(New)->setTailCall(); } Args.clear(); // Update the alias analysis implementation to know that we are replacing // the old call with a new one. AA.replaceWithNewValue(Call, New); if (!Call->use_empty()) { Call->replaceAllUsesWith(New); New->takeName(Call); } // Finally, remove the old call from the program, reducing the use-count of // F. Call->getParent()->getInstList().erase(Call); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); // Loop over the argument list, transfering uses of the old arguments over to // the new arguments, also transfering over the names as well. // for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin(); I != E; ++I) if (!ArgsToPromote.count(I)) { // If this is an unmodified argument, move the name and users over to the // new version. I->replaceAllUsesWith(I2); I2->takeName(I); AA.replaceWithNewValue(I, I2); ++I2; } else if (I->use_empty()) { AA.deleteValue(I); } else { // Otherwise, if we promoted this argument, then all users are load // instructions, and all loads should be using the new argument that we // added. ScalarizeTable &ArgIndices = ScalarizedElements[I]; while (!I->use_empty()) { if (LoadInst *LI = dyn_cast(I->use_back())) { assert(ArgIndices.begin()->empty() && "Load element should sort to front!"); I2->setName(I->getName()+".val"); LI->replaceAllUsesWith(I2); AA.replaceWithNewValue(LI, I2); LI->getParent()->getInstList().erase(LI); DOUT << "*** Promoted load of argument '" << I->getName() << "' in function '" << F->getName() << "'\n"; } else { GetElementPtrInst *GEP = cast(I->use_back()); std::vector Operands(GEP->op_begin()+1, GEP->op_end()); Function::arg_iterator TheArg = I2; for (ScalarizeTable::iterator It = ArgIndices.begin(); *It != Operands; ++It, ++TheArg) { assert(It != ArgIndices.end() && "GEP not handled??"); } std::string NewName = I->getName(); for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast(Operands[i])) NewName += "." + CI->getValue().toString(10); else NewName += ".x"; TheArg->setName(NewName+".val"); DOUT << "*** Promoted agg argument '" << TheArg->getName() << "' of function '" << F->getName() << "'\n"; // All of the uses must be load instructions. Replace them all with // the argument specified by ArgNo. while (!GEP->use_empty()) { LoadInst *L = cast(GEP->use_back()); L->replaceAllUsesWith(TheArg); AA.replaceWithNewValue(L, TheArg); L->getParent()->getInstList().erase(L); } AA.deleteValue(GEP); GEP->getParent()->getInstList().erase(GEP); } } // Increment I2 past all of the arguments added for this promoted pointer. for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i) ++I2; } // Notify the alias analysis implementation that we inserted a new argument. if (ExtraArgHack) AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin()); // Tell the alias analysis that the old function is about to disappear. AA.replaceWithNewValue(F, NF); // Now that the old function is dead, delete it. F->getParent()->getFunctionList().erase(F); return NF; }