//===- FunctionResolution.cpp - Resolve declarations to implementations ---===// // // Loop over the functions that are in the module and look for functions that // have the same name. More often than not, there will be things like: // // declare void %foo(...) // void %foo(int, int) { ... } // // because of the way things are declared in C. If this is the case, patch // things up. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/CleanupGCCOutput.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" #include "llvm/iOther.h" #include "llvm/Constant.h" #include "Support/StatisticReporter.h" #include #include using std::vector; using std::string; using std::cerr; namespace { Statistic<>NumResolved("funcresolve\t- Number of varargs functions resolved"); struct FunctionResolvingPass : public Pass { const char *getPassName() const { return "Resolve Functions"; } bool run(Module &M); }; } Pass *createFunctionResolvingPass() { return new FunctionResolvingPass(); } // ConvertCallTo - Convert a call to a varargs function with no arg types // specified to a concrete nonvarargs function. // static void ConvertCallTo(CallInst *CI, Function *Dest) { const FunctionType::ParamTypes &ParamTys = Dest->getFunctionType()->getParamTypes(); BasicBlock *BB = CI->getParent(); // Keep an iterator to where we want to insert cast instructions if the // argument types don't agree. // BasicBlock::iterator BBI = CI; assert(CI->getNumOperands()-1 == ParamTys.size() && "Function calls resolved funny somehow, incompatible number of args"); vector Params; // Convert all of the call arguments over... inserting cast instructions if // the types are not compatible. for (unsigned i = 1; i < CI->getNumOperands(); ++i) { Value *V = CI->getOperand(i); if (V->getType() != ParamTys[i-1]) { // Must insert a cast... Instruction *Cast = new CastInst(V, ParamTys[i-1]); BBI = ++BB->getInstList().insert(BBI, Cast); V = Cast; } Params.push_back(V); } Instruction *NewCall = new CallInst(Dest, Params); // Replace the old call instruction with a new call instruction that calls // the real function. // BBI = ++BB->getInstList().insert(BBI, NewCall); // Remove the old call instruction from the program... BB->getInstList().remove(BBI); // Replace uses of the old instruction with the appropriate values... // if (NewCall->getType() == CI->getType()) { CI->replaceAllUsesWith(NewCall); NewCall->setName(CI->getName()); } else if (NewCall->getType() == Type::VoidTy) { // Resolved function does not return a value but the prototype does. This // often occurs because undefined functions default to returning integers. // Just replace uses of the call (which are broken anyway) with dummy // values. CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); } else if (CI->getType() == Type::VoidTy) { // If we are gaining a new return value, we don't have to do anything // special. } else { assert(0 && "This should have been checked before!"); abort(); } // The old instruction is no longer needed, destroy it! delete CI; } bool FunctionResolvingPass::run(Module &M) { SymbolTable *ST = M.getSymbolTable(); if (!ST) return false; std::map > Functions; // Loop over the entries in the symbol table. If an entry is a func pointer, // then add it to the Functions map. We do a two pass algorithm here to avoid // problems with iterators getting invalidated if we did a one pass scheme. // for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) if (const PointerType *PT = dyn_cast(I->first)) if (isa(PT->getElementType())) { SymbolTable::VarMap &Plane = I->second; for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end(); PI != PE; ++PI) { Function *F = cast(PI->second); assert(PI->first == F->getName() && "Function name and symbol table do not agree!"); if (F->hasExternalLinkage()) // Only resolve decls to external fns Functions[PI->first].push_back(F); } } bool Changed = false; // Now we have a list of all functions with a particular name. If there is // more than one entry in a list, merge the functions together. // for (std::map >::iterator I = Functions.begin(), E = Functions.end(); I != E; ++I) { vector &Functions = I->second; Function *Implementation = 0; // Find the implementation Function *Concrete = 0; for (unsigned i = 0; i < Functions.size(); ) { if (!Functions[i]->isExternal()) { // Found an implementation if (Implementation != 0) assert(Implementation == 0 && "Multiple definitions of the same" " function. Case not handled yet!"); Implementation = Functions[i]; } else { // Ignore functions that are never used so they don't cause spurious // warnings... here we will actually DCE the function so that it isn't // used later. // if (Functions[i]->use_empty()) { M.getFunctionList().erase(Functions[i]); Functions.erase(Functions.begin()+i); Changed = true; ++NumResolved; continue; } } if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) { if (Concrete) { // Found two different functions types. Can't choose Concrete = 0; break; } Concrete = Functions[i]; } ++i; } if (Functions.size() > 1) { // Found a multiply defined function... // We should find exactly one non-vararg function definition, which is // probably the implementation. Change all of the function definitions // and uses to use it instead. // if (!Concrete) { cerr << "Warning: Found functions types that are not compatible:\n"; for (unsigned i = 0; i < Functions.size(); ++i) { cerr << "\t" << Functions[i]->getType()->getDescription() << " %" << Functions[i]->getName() << "\n"; } cerr << " No linkage of functions named '" << Functions[0]->getName() << "' performed!\n"; } else { for (unsigned i = 0; i < Functions.size(); ++i) if (Functions[i] != Concrete) { Function *Old = Functions[i]; const FunctionType *OldMT = Old->getFunctionType(); const FunctionType *ConcreteMT = Concrete->getFunctionType(); bool Broken = false; assert((Old->getReturnType() == Concrete->getReturnType() || Concrete->getReturnType() == Type::VoidTy || Old->getReturnType() == Type::VoidTy) && "Differing return types not handled yet!"); assert(OldMT->getParamTypes().size() <= ConcreteMT->getParamTypes().size() && "Concrete type must have more specified parameters!"); // Check to make sure that if there are specified types, that they // match... // for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i) if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) { cerr << "Parameter types conflict for" << OldMT << " and " << ConcreteMT; Broken = true; } if (Broken) break; // Can't process this one! // Attempt to convert all of the uses of the old function to the // concrete form of the function. If there is a use of the fn that // we don't understand here we punt to avoid making a bad // transformation. // // At this point, we know that the return values are the same for // our two functions and that the Old function has no varargs fns // specified. In otherwords it's just (...) // for (unsigned i = 0; i < Old->use_size(); ) { User *U = *(Old->use_begin()+i); if (CastInst *CI = dyn_cast(U)) { // Convert casts directly assert(CI->getOperand(0) == Old); CI->setOperand(0, Concrete); Changed = true; ++NumResolved; } else if (CallInst *CI = dyn_cast(U)) { // Can only fix up calls TO the argument, not args passed in. if (CI->getCalledValue() == Old) { ConvertCallTo(CI, Concrete); Changed = true; ++NumResolved; } else { cerr << "Couldn't cleanup this function call, must be an" << " argument or something!" << CI; ++i; } } else { cerr << "Cannot convert use of function: " << U << "\n"; ++i; } } } } } } return Changed; }