//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements an _extremely_ simple interprocedural constant // propagation pass. It could certainly be improved in many different ways, // like using a worklist. This pass makes arguments dead, but does not remove // them. The existing dead argument elimination pass should be run after this // to clean up the mess. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ipconstprop" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumArgumentsProped, "Number of args turned into constants"); STATISTIC(NumReturnValProped, "Number of return values turned into constants"); namespace { /// IPCP - The interprocedural constant propagation pass /// struct VISIBILITY_HIDDEN IPCP : public ModulePass { static const char ID; // Pass identifcation, replacement for typeid IPCP() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M); private: bool PropagateConstantsIntoArguments(Function &F); bool PropagateConstantReturn(Function &F); }; const char IPCP::ID = 0; RegisterPass X("ipconstprop", "Interprocedural constant propagation"); } ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); } bool IPCP::runOnModule(Module &M) { bool Changed = false; bool LocalChange = true; // FIXME: instead of using smart algorithms, we just iterate until we stop // making changes. while (LocalChange) { LocalChange = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) { // Delete any klingons. I->removeDeadConstantUsers(); if (I->hasInternalLinkage()) LocalChange |= PropagateConstantsIntoArguments(*I); Changed |= PropagateConstantReturn(*I); } Changed |= LocalChange; } return Changed; } /// PropagateConstantsIntoArguments - Look at all uses of the specified /// function. If all uses are direct call sites, and all pass a particular /// constant in for an argument, propagate that constant in as the argument. /// bool IPCP::PropagateConstantsIntoArguments(Function &F) { if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit. std::vector > ArgumentConstants; ArgumentConstants.resize(F.arg_size()); unsigned NumNonconstant = 0; for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) if (!isa(*I)) return false; // Used by a non-instruction, do not transform else { CallSite CS = CallSite::get(cast(*I)); if (CS.getInstruction() == 0 || CS.getCalledFunction() != &F) return false; // Not a direct call site? // Check out all of the potentially constant arguments CallSite::arg_iterator AI = CS.arg_begin(); Function::arg_iterator Arg = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI, ++Arg) { if (*AI == &F) return false; // Passes the function into itself if (!ArgumentConstants[i].second) { if (Constant *C = dyn_cast(*AI)) { if (!ArgumentConstants[i].first) ArgumentConstants[i].first = C; else if (ArgumentConstants[i].first != C) { // Became non-constant ArgumentConstants[i].second = true; ++NumNonconstant; if (NumNonconstant == ArgumentConstants.size()) return false; } } else if (*AI != &*Arg) { // Ignore recursive calls with same arg // This is not a constant argument. Mark the argument as // non-constant. ArgumentConstants[i].second = true; ++NumNonconstant; if (NumNonconstant == ArgumentConstants.size()) return false; } } } } // If we got to this point, there is a constant argument! assert(NumNonconstant != ArgumentConstants.size()); Function::arg_iterator AI = F.arg_begin(); bool MadeChange = false; for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) // Do we have a constant argument!? if (!ArgumentConstants[i].second && !AI->use_empty()) { Value *V = ArgumentConstants[i].first; if (V == 0) V = UndefValue::get(AI->getType()); AI->replaceAllUsesWith(V); ++NumArgumentsProped; MadeChange = true; } return MadeChange; } // Check to see if this function returns a constant. If so, replace all callers // that user the return value with the returned valued. If we can replace ALL // callers, bool IPCP::PropagateConstantReturn(Function &F) { if (F.getReturnType() == Type::VoidTy) return false; // No return value. // Check to see if this function returns a constant. Value *RetVal = 0; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) if (isa(RI->getOperand(0))) { // Ignore. } else if (Constant *C = dyn_cast(RI->getOperand(0))) { if (RetVal == 0) RetVal = C; else if (RetVal != C) return false; // Does not return the same constant. } else { return false; // Does not return a constant. } if (RetVal == 0) RetVal = UndefValue::get(F.getReturnType()); // If we got here, the function returns a constant value. Loop over all // users, replacing any uses of the return value with the returned constant. bool ReplacedAllUsers = true; bool MadeChange = false; for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) if (!isa(*I)) ReplacedAllUsers = false; else { CallSite CS = CallSite::get(cast(*I)); if (CS.getInstruction() == 0 || CS.getCalledFunction() != &F) { ReplacedAllUsers = false; } else { if (!CS.getInstruction()->use_empty()) { CS.getInstruction()->replaceAllUsesWith(RetVal); MadeChange = true; } } } // If we replace all users with the returned constant, and there can be no // other callers of the function, replace the constant being returned in the // function with an undef value. if (ReplacedAllUsers && F.hasInternalLinkage() && !isa(RetVal)) { Value *RV = UndefValue::get(RetVal->getType()); for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { if (RI->getOperand(0) != RV) { RI->setOperand(0, RV); MadeChange = true; } } } if (MadeChange) ++NumReturnValProped; return MadeChange; }