//===- Inliner.cpp - Code common to all inliners --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the mechanics required to implement inlining without // missing any calls and updating the call graph. The decisions of which calls // are profitable to inline are implemented elsewhere. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "inline" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/IPO/InlinerPass.h" #include "llvm/Transforms/Utils/InlineCost.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumInlined, "Number of functions inlined"); STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); STATISTIC(NumMergedAllocas, "Number of allocas merged together"); static cl::opt InlineLimit("inline-threshold", cl::Hidden, cl::init(200), cl::ZeroOrMore, cl::desc("Control the amount of inlining to perform (default = 200)")); Inliner::Inliner(void *ID) : CallGraphSCCPass(ID), InlineThreshold(InlineLimit) {} Inliner::Inliner(void *ID, int Threshold) : CallGraphSCCPass(ID), InlineThreshold(Threshold) {} /// getAnalysisUsage - For this class, we declare that we require and preserve /// the call graph. If the derived class implements this method, it should /// always explicitly call the implementation here. void Inliner::getAnalysisUsage(AnalysisUsage &Info) const { CallGraphSCCPass::getAnalysisUsage(Info); } typedef DenseMap > InlinedArrayAllocasTy; /// InlineCallIfPossible - If it is possible to inline the specified call site, /// do so and update the CallGraph for this operation. /// /// This function also does some basic book-keeping to update the IR. The /// InlinedArrayAllocas map keeps track of any allocas that are already /// available from other functions inlined into the caller. If we are able to /// inline this call site we attempt to reuse already available allocas or add /// any new allocas to the set if not possible. static bool InlineCallIfPossible(CallSite CS, CallGraph &CG, const TargetData *TD, InlinedArrayAllocasTy &InlinedArrayAllocas) { Function *Callee = CS.getCalledFunction(); Function *Caller = CS.getCaller(); // Try to inline the function. Get the list of static allocas that were // inlined. SmallVector StaticAllocas; if (!InlineFunction(CS, &CG, TD, &StaticAllocas)) return false; // If the inlined function had a higher stack protection level than the // calling function, then bump up the caller's stack protection level. if (Callee->hasFnAttr(Attribute::StackProtectReq)) Caller->addFnAttr(Attribute::StackProtectReq); else if (Callee->hasFnAttr(Attribute::StackProtect) && !Caller->hasFnAttr(Attribute::StackProtectReq)) Caller->addFnAttr(Attribute::StackProtect); // Look at all of the allocas that we inlined through this call site. If we // have already inlined other allocas through other calls into this function, // then we know that they have disjoint lifetimes and that we can merge them. // // There are many heuristics possible for merging these allocas, and the // different options have different tradeoffs. One thing that we *really* // don't want to hurt is SRoA: once inlining happens, often allocas are no // longer address taken and so they can be promoted. // // Our "solution" for that is to only merge allocas whose outermost type is an // array type. These are usually not promoted because someone is using a // variable index into them. These are also often the most important ones to // merge. // // A better solution would be to have real memory lifetime markers in the IR // and not have the inliner do any merging of allocas at all. This would // allow the backend to do proper stack slot coloring of all allocas that // *actually make it to the backend*, which is really what we want. // // Because we don't have this information, we do this simple and useful hack. // SmallPtrSet UsedAllocas; // Loop over all the allocas we have so far and see if they can be merged with // a previously inlined alloca. If not, remember that we had it. for (unsigned AllocaNo = 0, e = StaticAllocas.size(); AllocaNo != e; ++AllocaNo) { AllocaInst *AI = StaticAllocas[AllocaNo]; // Don't bother trying to merge array allocations (they will usually be // canonicalized to be an allocation *of* an array), or allocations whose // type is not itself an array (because we're afraid of pessimizing SRoA). const ArrayType *ATy = dyn_cast(AI->getAllocatedType()); if (ATy == 0 || AI->isArrayAllocation()) continue; // Get the list of all available allocas for this array type. std::vector &AllocasForType = InlinedArrayAllocas[ATy]; // Loop over the allocas in AllocasForType to see if we can reuse one. Note // that we have to be careful not to reuse the same "available" alloca for // multiple different allocas that we just inlined, we use the 'UsedAllocas' // set to keep track of which "available" allocas are being used by this // function. Also, AllocasForType can be empty of course! bool MergedAwayAlloca = false; for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { AllocaInst *AvailableAlloca = AllocasForType[i]; // The available alloca has to be in the right function, not in some other // function in this SCC. if (AvailableAlloca->getParent() != AI->getParent()) continue; // If the inlined function already uses this alloca then we can't reuse // it. if (!UsedAllocas.insert(AvailableAlloca)) continue; // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare // success! DEBUG(errs() << " ***MERGED ALLOCA: " << *AI); AI->replaceAllUsesWith(AvailableAlloca); AI->eraseFromParent(); MergedAwayAlloca = true; ++NumMergedAllocas; break; } // If we already nuked the alloca, we're done with it. if (MergedAwayAlloca) continue; // If we were unable to merge away the alloca either because there are no // allocas of the right type available or because we reused them all // already, remember that this alloca came from an inlined function and mark // it used so we don't reuse it for other allocas from this inline // operation. AllocasForType.push_back(AI); UsedAllocas.insert(AI); } return true; } /// shouldInline - Return true if the inliner should attempt to inline /// at the given CallSite. bool Inliner::shouldInline(CallSite CS) { InlineCost IC = getInlineCost(CS); if (IC.isAlways()) { DEBUG(errs() << " Inlining: cost=always" << ", Call: " << *CS.getInstruction() << "\n"); return true; } if (IC.isNever()) { DEBUG(errs() << " NOT Inlining: cost=never" << ", Call: " << *CS.getInstruction() << "\n"); return false; } int Cost = IC.getValue(); int CurrentThreshold = InlineThreshold; Function *Fn = CS.getCaller(); if (Fn && !Fn->isDeclaration() && Fn->hasFnAttr(Attribute::OptimizeForSize) && InlineThreshold != 50) CurrentThreshold = 50; float FudgeFactor = getInlineFudgeFactor(CS); if (Cost >= (int)(CurrentThreshold * FudgeFactor)) { DEBUG(errs() << " NOT Inlining: cost=" << Cost << ", Call: " << *CS.getInstruction() << "\n"); return false; } DEBUG(errs() << " Inlining: cost=" << Cost << ", Call: " << *CS.getInstruction() << "\n"); return true; } bool Inliner::runOnSCC(std::vector &SCC) { CallGraph &CG = getAnalysis(); const TargetData *TD = getAnalysisIfAvailable(); SmallPtrSet SCCFunctions; DEBUG(errs() << "Inliner visiting SCC:"); for (unsigned i = 0, e = SCC.size(); i != e; ++i) { Function *F = SCC[i]->getFunction(); if (F) SCCFunctions.insert(F); DEBUG(errs() << " " << (F ? F->getName() : "INDIRECTNODE")); } // Scan through and identify all call sites ahead of time so that we only // inline call sites in the original functions, not call sites that result // from inlining other functions. SmallVector CallSites; for (unsigned i = 0, e = SCC.size(); i != e; ++i) { Function *F = SCC[i]->getFunction(); if (!F) continue; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { CallSite CS = CallSite::get(I); // If this this isn't a call, or it is a call to an intrinsic, it can // never be inlined. if (CS.getInstruction() == 0 || isa(I)) continue; // If this is a direct call to an external function, we can never inline // it. If it is an indirect call, inlining may resolve it to be a // direct call, so we keep it. if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) continue; CallSites.push_back(CS); } } DEBUG(errs() << ": " << CallSites.size() << " call sites.\n"); // Now that we have all of the call sites, move the ones to functions in the // current SCC to the end of the list. unsigned FirstCallInSCC = CallSites.size(); for (unsigned i = 0; i < FirstCallInSCC; ++i) if (Function *F = CallSites[i].getCalledFunction()) if (SCCFunctions.count(F)) std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); InlinedArrayAllocasTy InlinedArrayAllocas; // Now that we have all of the call sites, loop over them and inline them if // it looks profitable to do so. bool Changed = false; bool LocalChange; do { LocalChange = false; // Iterate over the outer loop because inlining functions can cause indirect // calls to become direct calls. for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { CallSite CS = CallSites[CSi]; Function *Callee = CS.getCalledFunction(); // We can only inline direct calls to non-declarations. if (Callee == 0 || Callee->isDeclaration()) continue; // If the policy determines that we should inline this function, // try to do so. if (!shouldInline(CS)) continue; Function *Caller = CS.getCaller(); // Attempt to inline the function... if (!InlineCallIfPossible(CS, CG, TD, InlinedArrayAllocas)) continue; // If we inlined the last possible call site to the function, delete the // function body now. if (Callee->use_empty() && Callee->hasLocalLinkage() && // TODO: Can remove if in SCC now. !SCCFunctions.count(Callee) && // The function may be apparently dead, but if there are indirect // callgraph references to the node, we cannot delete it yet, this // could invalidate the CGSCC iterator. CG[Callee]->getNumReferences() == 0) { DEBUG(errs() << " -> Deleting dead function: " << Callee->getName() << "\n"); CallGraphNode *CalleeNode = CG[Callee]; // Remove any call graph edges from the callee to its callees. CalleeNode->removeAllCalledFunctions(); resetCachedCostInfo(Callee); // Removing the node for callee from the call graph and delete it. delete CG.removeFunctionFromModule(CalleeNode); ++NumDeleted; } // Remove any cached cost info for this caller, as inlining the // callee has increased the size of the caller (which may be the // same as the callee). resetCachedCostInfo(Caller); // Remove this call site from the list. If possible, use // swap/pop_back for efficiency, but do not use it if doing so would // move a call site to a function in this SCC before the // 'FirstCallInSCC' barrier. if (SCC.size() == 1) { std::swap(CallSites[CSi], CallSites.back()); CallSites.pop_back(); } else { CallSites.erase(CallSites.begin()+CSi); } --CSi; ++NumInlined; Changed = true; LocalChange = true; } } while (LocalChange); return Changed; } // doFinalization - Remove now-dead linkonce functions at the end of // processing to avoid breaking the SCC traversal. bool Inliner::doFinalization(CallGraph &CG) { return removeDeadFunctions(CG); } /// removeDeadFunctions - Remove dead functions that are not included in /// DNR (Do Not Remove) list. bool Inliner::removeDeadFunctions(CallGraph &CG, SmallPtrSet *DNR) { SmallPtrSet FunctionsToRemove; // Scan for all of the functions, looking for ones that should now be removed // from the program. Insert the dead ones in the FunctionsToRemove set. for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { CallGraphNode *CGN = I->second; if (CGN->getFunction() == 0) continue; Function *F = CGN->getFunction(); // If the only remaining users of the function are dead constants, remove // them. F->removeDeadConstantUsers(); if (DNR && DNR->count(F)) continue; if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && !F->hasAvailableExternallyLinkage()) continue; if (!F->use_empty()) continue; // Remove any call graph edges from the function to its callees. CGN->removeAllCalledFunctions(); // Remove any edges from the external node to the function's call graph // node. These edges might have been made irrelegant due to // optimization of the program. CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); // Removing the node for callee from the call graph and delete it. FunctionsToRemove.insert(CGN); } // Now that we know which functions to delete, do so. We didn't want to do // this inline, because that would invalidate our CallGraph::iterator // objects. :( // // Note that it doesn't matter that we are iterating over a non-stable set // here to do this, it doesn't matter which order the functions are deleted // in. bool Changed = false; for (SmallPtrSet::iterator I = FunctionsToRemove.begin(), E = FunctionsToRemove.end(); I != E; ++I) { resetCachedCostInfo((*I)->getFunction()); delete CG.removeFunctionFromModule(*I); ++NumDeleted; Changed = true; } return Changed; }