//===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass instruments the specified program with counters for edge profiling. // Edge profiling can give a reasonable approximation of the hot paths through a // program, and is used for a wide variety of program transformations. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "insert-optimal-edge-profiling" #include "ProfilingUtils.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Analysis/ProfileInfoLoader.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Statistic.h" #include "MaximumSpanningTree.h" #include using namespace llvm; STATISTIC(NumEdgesInserted, "The # of edges inserted."); namespace { class OptimalEdgeProfiler : public ModulePass { bool runOnModule(Module &M); public: static char ID; // Pass identification, replacement for typeid OptimalEdgeProfiler() : ModulePass(&ID) {} void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(ProfileEstimatorPassID); AU.addRequired(); } virtual const char *getPassName() const { return "Optimal Edge Profiler"; } }; } char OptimalEdgeProfiler::ID = 0; static RegisterPass X("insert-optimal-edge-profiling", "Insert optimal instrumentation for edge profiling"); ModulePass *llvm::createOptimalEdgeProfilerPass() { return new OptimalEdgeProfiler(); } inline static void printEdgeCounter(ProfileInfo::Edge e, BasicBlock* b, unsigned i) { DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \ << ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n"); } bool OptimalEdgeProfiler::runOnModule(Module &M) { Function *Main = M.getFunction("main"); if (Main == 0) { errs() << "WARNING: cannot insert edge profiling into a module" << " with no main function!\n"; return false; // No main, no instrumentation! } // NumEdges counts all the edges that may be instrumented. Later on its // decided which edges to actually instrument, to achieve optimal profiling. // For the entry block a virtual edge (0,entry) is reserved, for each block // with no successors an edge (BB,0) is reserved. These edges are necessary // to calculate a truly optimal maximum spanning tree and thus an optimal // instrumentation. unsigned NumEdges = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; // Reserve space for (0,entry) edge. ++NumEdges; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { // Keep track of which blocks need to be instrumented. We don't want to // instrument blocks that are added as the result of breaking critical // edges! if (BB->getTerminator()->getNumSuccessors() == 0) { // Reserve space for (BB,0) edge. ++NumEdges; } else { NumEdges += BB->getTerminator()->getNumSuccessors(); } } } // In the profiling output a counter for each edge is reserved, but only few // are used. This is done to be able to read back in the profile without // calulating the maximum spanning tree again, instead each edge counter that // is not used is initialised with -1 to signal that this edge counter has to // be calculated from other edge counters on reading the profile info back // in. const Type *Int32 = Type::getInt32Ty(M.getContext()); const ArrayType *ATy = ArrayType::get(Int32, NumEdges); GlobalVariable *Counters = new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage, Constant::getNullValue(ATy), "OptEdgeProfCounters"); NumEdgesInserted = 0; std::vector Initializer(NumEdges); Constant* Zero = ConstantInt::get(Int32, 0); Constant* Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted); // Instrument all of the edges not in MST... unsigned i = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; DEBUG(dbgs()<<"Working on "<getNameStr()<<"\n"); // Calculate a Maximum Spanning Tree with the edge weights determined by // ProfileEstimator. ProfileEstimator also assign weights to the virtual // edges (0,entry) and (BB,0) (for blocks with no successors) and this // edges also participate in the maximum spanning tree calculation. // The third parameter of MaximumSpanningTree() has the effect that not the // actual MST is returned but the edges _not_ in the MST. ProfileInfo::EdgeWeights ECs = getAnalysis(*F).getEdgeWeights(F); std::vector EdgeVector(ECs.begin(), ECs.end()); MaximumSpanningTree MST (EdgeVector); std::stable_sort(MST.begin(),MST.end()); // Check if (0,entry) not in the MST. If not, instrument edge // (IncrementCounterInBlock()) and set the counter initially to zero, if // the edge is in the MST the counter is initialised to -1. BasicBlock *entry = &(F->getEntryBlock()); ProfileInfo::Edge edge = ProfileInfo::getEdge(0,entry); if (!std::binary_search(MST.begin(), MST.end(), edge)) { printEdgeCounter(edge,entry,i); IncrementCounterInBlock(entry, i, Counters); NumEdgesInserted++; Initializer[i++] = (Zero); } else{ Initializer[i++] = (Uncounted); } // InsertedBlocks contains all blocks that were inserted for splitting an // edge, this blocks do not have to be instrumented. DenseSet InsertedBlocks; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { // Check if block was not inserted and thus does not have to be // instrumented. if (InsertedBlocks.count(BB)) continue; // Okay, we have to add a counter of each outgoing edge not in MST. If // the outgoing edge is not critical don't split it, just insert the // counter in the source or destination of the edge. Also, if the block // has no successors, the virtual edge (BB,0) is processed. TerminatorInst *TI = BB->getTerminator(); if (TI->getNumSuccessors() == 0) { ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,0); if (!std::binary_search(MST.begin(), MST.end(), edge)) { printEdgeCounter(edge,BB,i); IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++; Initializer[i++] = (Zero); } else{ Initializer[i++] = (Uncounted); } } for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) { BasicBlock *Succ = TI->getSuccessor(s); ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ); if (!std::binary_search(MST.begin(), MST.end(), edge)) { // If the edge is critical, split it. bool wasInserted = SplitCriticalEdge(TI, s, this); Succ = TI->getSuccessor(s); if (wasInserted) InsertedBlocks.insert(Succ); // Okay, we are guaranteed that the edge is no longer critical. If // we only have a single successor, insert the counter in this block, // otherwise insert it in the successor block. if (TI->getNumSuccessors() == 1) { // Insert counter at the start of the block printEdgeCounter(edge,BB,i); IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++; } else { // Insert counter at the start of the block printEdgeCounter(edge,Succ,i); IncrementCounterInBlock(Succ, i, Counters); NumEdgesInserted++; } Initializer[i++] = (Zero); } else { Initializer[i++] = (Uncounted); } } } } // Check if the number of edges counted at first was the number of edges we // considered for instrumentation. assert(i==NumEdges && "the number of edges in counting array is wrong"); // Assing the now completely defined initialiser to the array. Constant *init = ConstantArray::get(ATy, Initializer); Counters->setInitializer(init); // Add the initialization call to main. InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters); return true; }