//===- LevelRaise.cpp - Code to change LLVM to higher level ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the 'raising' part of the LevelChange API. This is // useful because, in general, it makes the LLVM code terser and easier to // analyze. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "TransformInternals.h" #include "llvm/iOther.h" #include "llvm/iMemory.h" #include "llvm/Pass.h" #include "llvm/ConstantHandling.h" #include "llvm/Analysis/Expressions.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" #include // StartInst - This enables the -raise-start-inst=foo option to cause the level // raising pass to start at instruction "foo", which is immensely useful for // debugging! // static cl::opt StartInst("raise-start-inst", cl::Hidden, cl::value_desc("inst name"), cl::desc("Start raise pass at the instruction with the specified name")); static Statistic<> NumLoadStorePeepholes("raise", "Number of load/store peepholes"); static Statistic<> NumGEPInstFormed("raise", "Number of other getelementptr's formed"); static Statistic<> NumExprTreesConv("raise", "Number of expression trees converted"); static Statistic<> NumCastOfCast("raise", "Number of cast-of-self removed"); static Statistic<> NumDCEorCP("raise", "Number of insts DCEd or constprop'd"); static Statistic<> NumVarargCallChanges("raise", "Number of vararg call peepholes"); #define PRINT_PEEPHOLE(ID, NUM, I) \ DEBUG(std::cerr << "Inst P/H " << ID << "[" << NUM << "] " << I) #define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0) #define PRINT_PEEPHOLE2(ID, I1, I2) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0) #define PRINT_PEEPHOLE3(ID, I1, I2, I3) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); } while (0) #define PRINT_PEEPHOLE4(ID, I1, I2, I3, I4) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); PRINT_PEEPHOLE(ID, 3, I4); } while (0) namespace { struct RPR : public FunctionPass { virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); } private: bool DoRaisePass(Function &F); bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI); }; RegisterOpt X("raise", "Raise Pointer References"); } Pass *createRaisePointerReferencesPass() { return new RPR(); } // isReinterpretingCast - Return true if the cast instruction specified will // cause the operand to be "reinterpreted". A value is reinterpreted if the // cast instruction would cause the underlying bits to change. // static inline bool isReinterpretingCast(const CastInst *CI) { return!CI->getOperand(0)->getType()->isLosslesslyConvertibleTo(CI->getType()); } // Peephole optimize the following instructions: // %t1 = cast ? to x * // %t2 = add x * %SP, %t1 ;; Constant must be 2nd operand // // Into: %t3 = getelementptr {<...>} * %SP, // %t2 = cast * %t3 to {<...>}* // static bool HandleCastToPointer(BasicBlock::iterator BI, const PointerType *DestPTy, const TargetData &TD) { CastInst &CI = cast(*BI); if (CI.use_empty()) return false; // Scan all of the uses, looking for any uses that are not add or sub // instructions. If we have non-adds, do not make this transformation. // bool HasSubUse = false; // Keep track of any subtracts... for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) if (BinaryOperator *BO = dyn_cast(*I)) { if ((BO->getOpcode() != Instruction::Add && BO->getOpcode() != Instruction::Sub) || // Avoid add sbyte* %X, %X cases... BO->getOperand(0) == BO->getOperand(1)) return false; else HasSubUse |= BO->getOpcode() == Instruction::Sub; } else { return false; } std::vector Indices; Value *Src = CI.getOperand(0); const Type *Result = ConvertibleToGEP(DestPTy, Src, Indices, TD, &BI); if (Result == 0) return false; // Not convertible... // Cannot handle subtracts if there is more than one index required... if (HasSubUse && Indices.size() != 1) return false; PRINT_PEEPHOLE2("cast-add-to-gep:in", Src, CI); // If we have a getelementptr capability... transform all of the // add instruction uses into getelementptr's. while (!CI.use_empty()) { BinaryOperator *I = cast(*CI.use_begin()); assert((I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Sub) && "Use is not a valid add instruction!"); // Get the value added to the cast result pointer... Value *OtherPtr = I->getOperand((I->getOperand(0) == &CI) ? 1 : 0); Instruction *GEP = new GetElementPtrInst(OtherPtr, Indices, I->getName()); PRINT_PEEPHOLE1("cast-add-to-gep:i", I); // If the instruction is actually a subtract, we are guaranteed to only have // one index (from code above), so we just need to negate the pointer index // long value. if (I->getOpcode() == Instruction::Sub) { Instruction *Neg = BinaryOperator::createNeg(GEP->getOperand(1), GEP->getOperand(1)->getName()+".neg", I); GEP->setOperand(1, Neg); } if (GEP->getType() == I->getType()) { // Replace the old add instruction with the shiny new GEP inst ReplaceInstWithInst(I, GEP); } else { // If the type produced by the gep instruction differs from the original // add instruction type, insert a cast now. // // Insert the GEP instruction before the old add instruction... I->getParent()->getInstList().insert(I, GEP); PRINT_PEEPHOLE1("cast-add-to-gep:o", GEP); GEP = new CastInst(GEP, I->getType()); // Replace the old add instruction with the shiny new GEP inst ReplaceInstWithInst(I, GEP); } PRINT_PEEPHOLE1("cast-add-to-gep:o", GEP); } return true; } // Peephole optimize the following instructions: // %t1 = cast ulong to {<...>} * // %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand // // or // %t1 = cast {<...>}* %SP to int* // %t5 = cast ulong to int* // %t2 = add int* %t1, %t5 ;; int is same size as field // // Into: %t3 = getelementptr {<...>} * %SP, // %t2 = cast * %t3 to {<...>}* // static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, Value *AddOp1, CastInst *AddOp2, const TargetData &TD) { const CompositeType *CompTy; Value *OffsetVal = AddOp2->getOperand(0); Value *SrcPtr = 0; // Of type pointer to struct... if ((CompTy = getPointedToComposite(AddOp1->getType()))) { SrcPtr = AddOp1; // Handle the first case... } else if (CastInst *AddOp1c = dyn_cast(AddOp1)) { SrcPtr = AddOp1c->getOperand(0); // Handle the second case... CompTy = getPointedToComposite(SrcPtr->getType()); } // Only proceed if we have detected all of our conditions successfully... if (!CompTy || !SrcPtr || !OffsetVal->getType()->isInteger()) return false; std::vector Indices; if (!ConvertibleToGEP(SrcPtr->getType(), OffsetVal, Indices, TD, &BI)) return false; // Not convertible... perhaps next time if (getPointedToComposite(AddOp1->getType())) { // case 1 PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, *BI); } else { PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, *BI); } GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Indices, AddOp2->getName(), BI); Instruction *NCI = new CastInst(GEP, AddOp1->getType()); ReplaceInstWithInst(BB->getInstList(), BI, NCI); PRINT_PEEPHOLE2("add-to-gep:out", GEP, NCI); return true; } bool RPR::PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { Instruction *I = BI; const TargetData &TD = getAnalysis(); if (CastInst *CI = dyn_cast(I)) { Value *Src = CI->getOperand(0); Instruction *SrcI = dyn_cast(Src); // Nonnull if instr source const Type *DestTy = CI->getType(); // Peephole optimize the following instruction: // %V2 = cast %V to // // Into: // if (DestTy == Src->getType()) { // Check for a cast to same type as src!! PRINT_PEEPHOLE1("cast-of-self-ty", CI); CI->replaceAllUsesWith(Src); if (!Src->hasName() && CI->hasName()) { std::string Name = CI->getName(); CI->setName(""); Src->setName(Name, &BB->getParent()->getSymbolTable()); } // DCE the instruction now, to avoid having the iterative version of DCE // have to worry about it. // BI = BB->getInstList().erase(BI); ++NumCastOfCast; return true; } // Check to see if it's a cast of an instruction that does not depend on the // specific type of the operands to do it's job. if (!isReinterpretingCast(CI)) { ValueTypeCache ConvertedTypes; // Check to see if we can convert the source of the cast to match the // destination type of the cast... // ConvertedTypes[CI] = CI->getType(); // Make sure the cast doesn't change if (ExpressionConvertibleToType(Src, DestTy, ConvertedTypes, TD)) { PRINT_PEEPHOLE3("CAST-SRC-EXPR-CONV:in ", Src, CI, BB->getParent()); DEBUG(std::cerr << "\nCONVERTING SRC EXPR TYPE:\n"); { // ValueMap must be destroyed before function verified! ValueMapCache ValueMap; Value *E = ConvertExpressionToType(Src, DestTy, ValueMap, TD); if (Constant *CPV = dyn_cast(E)) CI->replaceAllUsesWith(CPV); PRINT_PEEPHOLE1("CAST-SRC-EXPR-CONV:out", E); DEBUG(std::cerr << "DONE CONVERTING SRC EXPR TYPE: \n" << BB->getParent()); } DEBUG(assert(verifyFunction(*BB->getParent()) == false && "Function broken!")); BI = BB->begin(); // Rescan basic block. BI might be invalidated. ++NumExprTreesConv; return true; } // Check to see if we can convert the users of the cast value to match the // source type of the cast... // ConvertedTypes.clear(); // Make sure the source doesn't change type ConvertedTypes[Src] = Src->getType(); if (ValueConvertibleToType(CI, Src->getType(), ConvertedTypes, TD)) { PRINT_PEEPHOLE3("CAST-DEST-EXPR-CONV:in ", Src, CI, BB->getParent()); DEBUG(std::cerr << "\nCONVERTING EXPR TYPE:\n"); { // ValueMap must be destroyed before function verified! ValueMapCache ValueMap; ConvertValueToNewType(CI, Src, ValueMap, TD); // This will delete CI! } PRINT_PEEPHOLE1("CAST-DEST-EXPR-CONV:out", Src); DEBUG(std::cerr << "DONE CONVERTING EXPR TYPE: \n\n" << BB->getParent()); DEBUG(assert(verifyFunction(*BB->getParent()) == false && "Function broken!")); BI = BB->begin(); // Rescan basic block. BI might be invalidated. ++NumExprTreesConv; return true; } } // Otherwise find out it this cast is a cast to a pointer type, which is // then added to some other pointer, then loaded or stored through. If // so, convert the add into a getelementptr instruction... // if (const PointerType *DestPTy = dyn_cast(DestTy)) { if (HandleCastToPointer(BI, DestPTy, TD)) { BI = BB->begin(); // Rescan basic block. BI might be invalidated. ++NumGEPInstFormed; return true; } } // Check to see if we are casting from a structure pointer to a pointer to // the first element of the structure... to avoid munching other peepholes, // we only let this happen if there are no add uses of the cast. // // Peephole optimize the following instructions: // %t1 = cast {<...>} * %StructPtr to * // // Into: %t2 = getelementptr {<...>} * %StructPtr, <0, 0, 0, ...> // %t1 = cast * %t1 to * // if (const CompositeType *CTy = getPointedToComposite(Src->getType())) if (const PointerType *DestPTy = dyn_cast(DestTy)) { // Loop over uses of the cast, checking for add instructions. If an add // exists, this is probably a part of a more complex GEP, so we don't // want to mess around with the cast. // bool HasAddUse = false; for (Value::use_iterator I = CI->use_begin(), E = CI->use_end(); I != E; ++I) if (isa(*I) && cast(*I)->getOpcode() == Instruction::Add) { HasAddUse = true; break; } // If it doesn't have an add use, check to see if the dest type is // losslessly convertible to one of the types in the start of the struct // type. // if (!HasAddUse) { const Type *DestPointedTy = DestPTy->getElementType(); unsigned Depth = 1; const CompositeType *CurCTy = CTy; const Type *ElTy = 0; // Build the index vector, full of all zeros std::vector Indices; Indices.push_back(ConstantSInt::get(Type::LongTy, 0)); while (CurCTy && !isa(CurCTy)) { if (const StructType *CurSTy = dyn_cast(CurCTy)) { // Check for a zero element struct type... if we have one, bail. if (CurSTy->getElementTypes().size() == 0) break; // Grab the first element of the struct type, which must lie at // offset zero in the struct. // ElTy = CurSTy->getElementTypes()[0]; } else { ElTy = cast(CurCTy)->getElementType(); } // Insert a zero to index through this type... Indices.push_back(Constant::getNullValue(CurCTy->getIndexType())); // Did we find what we're looking for? if (ElTy->isLosslesslyConvertibleTo(DestPointedTy)) break; // Nope, go a level deeper. ++Depth; CurCTy = dyn_cast(ElTy); ElTy = 0; } // Did we find what we were looking for? If so, do the transformation if (ElTy) { PRINT_PEEPHOLE1("cast-for-first:in", CI); std::string Name = CI->getName(); CI->setName(""); // Insert the new T cast instruction... stealing old T's name GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices, Name, BI); // Make the old cast instruction reference the new GEP instead of // the old src value. // CI->setOperand(0, GEP); PRINT_PEEPHOLE2("cast-for-first:out", GEP, CI); ++NumGEPInstFormed; return true; } } } } else if (StoreInst *SI = dyn_cast(I)) { Value *Val = SI->getOperand(0); Value *Pointer = SI->getPointerOperand(); // Peephole optimize the following instructions: // %t = cast * %P to * ;; If T1 is losslessly convertible to T2 // store %V, * %t // // Into: // %t = cast %V to // store %t2, * %P // // Note: This is not taken care of by expr conversion because there might // not be a cast available for the store to convert the incoming value of. // This code is basically here to make sure that pointers don't have casts // if possible. // if (CastInst *CI = dyn_cast(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType if (const PointerType *CSPT = dyn_cast(CastSrc->getType())) // convertible types? if (Val->getType()->isLosslesslyConvertibleTo(CSPT->getElementType())) { PRINT_PEEPHOLE3("st-src-cast:in ", Pointer, Val, SI); // Insert the new T cast instruction... stealing old T's name std::string Name(CI->getName()); CI->setName(""); CastInst *NCI = new CastInst(Val, CSPT->getElementType(), Name, BI); // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, SI = new StoreInst(NCI, CastSrc)); PRINT_PEEPHOLE3("st-src-cast:out", NCI, CastSrc, SI); ++NumLoadStorePeepholes; return true; } } else if (LoadInst *LI = dyn_cast(I)) { Value *Pointer = LI->getOperand(0); const Type *PtrElType = cast(Pointer->getType())->getElementType(); // Peephole optimize the following instructions: // %Val = cast * to * ;; If T1 is losslessly convertible to T2 // %t = load * %P // // Into: // %t = load * %P // %Val = cast to // // Note: This is not taken care of by expr conversion because there might // not be a cast available for the store to convert the incoming value of. // This code is basically here to make sure that pointers don't have casts // if possible. // if (CastInst *CI = dyn_cast(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType if (const PointerType *CSPT = dyn_cast(CastSrc->getType())) // convertible types? if (PtrElType->isLosslesslyConvertibleTo(CSPT->getElementType())) { PRINT_PEEPHOLE2("load-src-cast:in ", Pointer, LI); // Create the new load instruction... loading the pre-casted value LoadInst *NewLI = new LoadInst(CastSrc, LI->getName(), BI); // Insert the new T cast instruction... stealing old T's name CastInst *NCI = new CastInst(NewLI, LI->getType(), CI->getName()); // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, NCI); PRINT_PEEPHOLE3("load-src-cast:out", NCI, CastSrc, NewLI); ++NumLoadStorePeepholes; return true; } } else if (I->getOpcode() == Instruction::Add && isa(I->getOperand(1))) { if (PeepholeOptimizeAddCast(BB, BI, I->getOperand(0), cast(I->getOperand(1)), TD)) { ++NumGEPInstFormed; return true; } } else if (CallInst *CI = dyn_cast(I)) { // If we have a call with all varargs arguments, convert the call to use the // actual argument types present... // const PointerType *PTy = cast(CI->getCalledValue()->getType()); const FunctionType *FTy = cast(PTy->getElementType()); // Is the call to a vararg variable with no real parameters? if (FTy->isVarArg() && FTy->getNumParams() == 0 && !CI->getCalledFunction()) { // If so, insert a new cast instruction, casting it to a function type // that matches the current arguments... // std::vector Params; // Parameter types... for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) Params.push_back(CI->getOperand(i)->getType()); FunctionType *NewFT = FunctionType::get(FTy->getReturnType(), Params, false); PointerType *NewPFunTy = PointerType::get(NewFT); // Create a new cast, inserting it right before the function call... Value *NewCast; Constant *ConstantCallSrc = 0; if (Constant *CS = dyn_cast(CI->getCalledValue())) ConstantCallSrc = CS; else if (GlobalValue *GV = dyn_cast(CI->getCalledValue())) ConstantCallSrc = ConstantPointerRef::get(GV); if (ConstantCallSrc) NewCast = ConstantExpr::getCast(ConstantCallSrc, NewPFunTy); else NewCast = new CastInst(CI->getCalledValue(), NewPFunTy, CI->getCalledValue()->getName()+"_c",CI); // Create a new call instruction... CallInst *NewCall = new CallInst(NewCast, std::vector(CI->op_begin()+1, CI->op_end())); ++BI; ReplaceInstWithInst(CI, NewCall); ++NumVarargCallChanges; return true; } } return false; } bool RPR::DoRaisePass(Function &F) { bool Changed = false; for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { DEBUG(std::cerr << "Processing: " << *BI); if (dceInstruction(BI) || doConstantPropagation(BI)) { Changed = true; ++NumDCEorCP; DEBUG(std::cerr << "***\t\t^^-- Dead code eliminated!\n"); } else if (PeepholeOptimize(BB, BI)) { Changed = true; } else { ++BI; } } return Changed; } // runOnFunction - Raise a function representation to a higher level. bool RPR::runOnFunction(Function &F) { DEBUG(std::cerr << "\n\n\nStarting to work on Function '" << F.getName() << "'\n"); // Insert casts for all incoming pointer pointer values that are treated as // arrays... // bool Changed = false, LocalChange; // If the StartInst option was specified, then Peephole optimize that // instruction first if it occurs in this function. // if (!StartInst.empty()) { for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) if (BI->getName() == StartInst) { bool SavedDebug = DebugFlag; // Save the DEBUG() controlling flag. DebugFlag = true; // Turn on DEBUG's Changed |= PeepholeOptimize(BB, BI); DebugFlag = SavedDebug; // Restore DebugFlag to previous state } } do { DEBUG(std::cerr << "Looping: \n" << F); // Iterate over the function, refining it, until it converges on a stable // state LocalChange = false; while (DoRaisePass(F)) LocalChange = true; Changed |= LocalChange; } while (LocalChange); return Changed; }