//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "codegenprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" using namespace llvm; namespace { class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass(&ID), TLI(tli) {} bool runOnFunction(Function &F); private: bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB); bool OptimizeLoadStoreInst(Instruction *I, Value *Addr, const Type *AccessTy, DenseMap &SunkAddrs); bool OptimizeInlineAsmInst(Instruction *I, CallSite CS, DenseMap &SunkAddrs); bool OptimizeExtUses(Instruction *I); }; } char CodeGenPrepare::ID = 0; static RegisterPass X("codegenprepare", "Optimize for code generation"); FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { return new CodeGenPrepare(TLI); } bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; // First pass, eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) MadeChange |= OptimizeBlock(*BB); EverMadeChange |= MadeChange; } return EverMadeChange; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes /// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify) /// often split edges in ways that are non-optimal for isel. Start by /// eliminating these blocks so we can split them the way we want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch isn't a phi node, then other stuff // is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; if (!isa(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { const Instruction *User = cast(*UI); if (User->getParent() != DestBB || !isa(User)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (User->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast(User)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet BBPreds; if (const PHINode *BBPN = dyn_cast(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (DestBB->getSinglePredecessor()) { // If DestBB has single-entry PHI nodes, fold them. while (PHINode *PN = dyn_cast(DestBB->begin())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); PN->eraseFromParent(); } // Splice all the PHI nodes from BB over to DestBB. DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(), BB->begin(), BI); // Anything that branched to BB now branches to DestBB. BB->replaceAllUsesWith(DestBB); // Nuke BB. BB->eraseFromParent(); DOUT << "AFTER:\n" << *DestBB << "\n\n\n"; return; } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); BB->eraseFromParent(); DOUT << "AFTER:\n" << *DestBB << "\n\n\n"; } /// SplitEdgeNicely - Split the critical edge from TI to its specified /// successor if it will improve codegen. We only do this if the successor has /// phi nodes (otherwise critical edges are ok). If there is already another /// predecessor of the succ that is empty (and thus has no phi nodes), use it /// instead of introducing a new block. static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) { BasicBlock *TIBB = TI->getParent(); BasicBlock *Dest = TI->getSuccessor(SuccNum); assert(isa(Dest->begin()) && "This should only be called if Dest has a PHI!"); // As a hack, never split backedges of loops. Even though the copy for any // PHIs inserted on the backedge would be dead for exits from the loop, we // assume that the cost of *splitting* the backedge would be too high. if (Dest == TIBB) return; /// TIPHIValues - This array is lazily computed to determine the values of /// PHIs in Dest that TI would provide. SmallVector TIPHIValues; // Check to see if Dest has any blocks that can be used as a split edge for // this terminator. for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) { BasicBlock *Pred = *PI; // To be usable, the pred has to end with an uncond branch to the dest. BranchInst *PredBr = dyn_cast(Pred->getTerminator()); if (!PredBr || !PredBr->isUnconditional() || // Must be empty other than the branch. &Pred->front() != PredBr || // Cannot be the entry block; its label does not get emitted. Pred == &(Dest->getParent()->getEntryBlock())) continue; // Finally, since we know that Dest has phi nodes in it, we have to make // sure that jumping to Pred will have the same affect as going to Dest in // terms of PHI values. PHINode *PN; unsigned PHINo = 0; bool FoundMatch = true; for (BasicBlock::iterator I = Dest->begin(); (PN = dyn_cast(I)); ++I, ++PHINo) { if (PHINo == TIPHIValues.size()) TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB)); // If the PHI entry doesn't work, we can't use this pred. if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) { FoundMatch = false; break; } } // If we found a workable predecessor, change TI to branch to Succ. if (FoundMatch) { Dest->removePredecessor(TIBB); TI->setSuccessor(SuccNum, Pred); return; } } SplitCriticalEdge(TI, SuccNum, P, true); } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, int->uint, or /// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); MVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) SrcVT = TLI.getTypeToTransformTo(SrcVT); if (TLI.getTypeAction(DstVT) == TargetLowering::Promote) DstVT = TLI.getTypeToTransformTo(DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { unsigned OpVal = UI.getOperandNo()/2; UserBB = PN->getIncomingBlock(OpVal); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI){ BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap InsertedCmps; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } /// EraseDeadInstructions - Erase any dead instructions static void EraseDeadInstructions(Value *V) { Instruction *I = dyn_cast(V); if (!I || !I->use_empty()) return; SmallPtrSet Insts; Insts.insert(I); while (!Insts.empty()) { I = *Insts.begin(); Insts.erase(I); if (isInstructionTriviallyDead(I)) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *U = dyn_cast(I->getOperand(i))) Insts.insert(U); I->eraseFromParent(); } } } namespace { /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which /// holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg; Value *ScaledReg; ExtAddrMode() : BaseReg(0), ScaledReg(0) {} void dump() const; }; static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) { bool NeedPlus = false; OS << "["; if (AM.BaseGV) OS << (NeedPlus ? " + " : "") << "GV:%" << AM.BaseGV->getName(), NeedPlus = true; if (AM.BaseOffs) OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true; if (AM.BaseReg) OS << (NeedPlus ? " + " : "") << "Base:%" << AM.BaseReg->getName(), NeedPlus = true; if (AM.Scale) OS << (NeedPlus ? " + " : "") << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true; return OS << "]"; } void ExtAddrMode::dump() const { cerr << *this << "\n"; } } static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale, const Type *AccessTy, ExtAddrMode &AddrMode, SmallVector &AddrModeInsts, const TargetLowering &TLI, unsigned Depth); /// FindMaximalLegalAddressingMode - If we can, try to merge the computation of /// Addr into the specified addressing mode. If Addr can't be added to AddrMode /// this returns false. This assumes that Addr is either a pointer type or /// intptr_t for the target. static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy, ExtAddrMode &AddrMode, SmallVector &AddrModeInsts, const TargetLowering &TLI, unsigned Depth) { // If this is a global variable, fold it into the addressing mode if possible. if (GlobalValue *GV = dyn_cast(Addr)) { if (AddrMode.BaseGV == 0) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseGV = 0; } } else if (ConstantInt *CI = dyn_cast(Addr)) { AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (isa(Addr)) { return true; } // Look through constant exprs and instructions. unsigned Opcode = ~0U; User *AddrInst = 0; if (Instruction *I = dyn_cast(Addr)) { Opcode = I->getOpcode(); AddrInst = I; } else if (ConstantExpr *CE = dyn_cast(Addr)) { Opcode = CE->getOpcode(); AddrInst = CE; } // Limit recursion to avoid exponential behavior. if (Depth == 5) { AddrInst = 0; Opcode = ~0U; } // If this is really an instruction, add it to our list of related // instructions. if (Instruction *I = dyn_cast_or_null(AddrInst)) AddrModeInsts.push_back(I); switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth)) return true; break; case Instruction::IntToPtr: // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == TLI.getPointerTy()) { if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth)) return true; } break; case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1) && FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1) && FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); break; } case Instruction::Or: { ConstantInt *RHS = dyn_cast(AddrInst->getOperand(1)); if (!RHS) break; // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. break; } case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C, and can only handle this when the scale // field is available. ConstantInt *RHS = dyn_cast(AddrInst->getOperand(1)); if (!RHS) break; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1 << Scale; if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy, AddrMode, AddrModeInsts, TLI, Depth)) return true; break; } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; const TargetData *TD = TLI.getTargetData(); gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (const StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue()*TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) { VariableOperand = -2; break; } // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // If the GEP had multiple variable indices, punt. if (VariableOperand == -2) break; // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ // Check to see if we can fold the base pointer in too. if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; } else { // Check that this has no base reg yet. If so, we won't have a place to // put the base of the GEP (assuming it is not a null ptr). bool SetBaseReg = false; if (AddrMode.HasBaseReg) { if (!isa(AddrInst->getOperand(0))) break; } else { AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); SetBaseReg = true; } // See if the scale amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, AccessTy, AddrMode, AddrModeInsts, TLI, Depth)) { if (!SetBaseReg) return true; // If this match succeeded, we know that we can form an address with the // GepBase as the basereg. See if we can match *more*. AddrMode.HasBaseReg = false; AddrMode.BaseReg = 0; if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy, AddrMode, AddrModeInsts, TLI, Depth+1)) return true; // Strange, shouldn't happen. Restore the base reg and succeed the easy // way. AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); return true; } AddrMode.BaseOffs -= ConstantOffset; if (SetBaseReg) { AddrMode.HasBaseReg = false; AddrMode.BaseReg = 0; } } break; } } if (Instruction *I = dyn_cast_or_null(AddrInst)) { assert(AddrModeInsts.back() == I && "Stack imbalance"); I = I; AddrModeInsts.pop_back(); } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) { AddrMode.BaseReg = Addr; return true; } AddrMode.HasBaseReg = false; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) { AddrMode.ScaledReg = Addr; return true; } AddrMode.Scale = 0; } // Couldn't match. return false; } /// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified /// addressing mode. Return true if this addr mode is legal for the target, /// false if not. static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale, const Type *AccessTy, ExtAddrMode &AddrMode, SmallVector &AddrModeInsts, const TargetLowering &TLI, unsigned Depth) { // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode InputAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. AddrMode.Scale += Scale; AddrMode.ScaledReg = ScaleReg; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) { // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. BinaryOperator *BinOp = dyn_cast(ScaleReg); if (BinOp && BinOp->getOpcode() == Instruction::Add && isa(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) { InputAddrMode.Scale = Scale; InputAddrMode.ScaledReg = BinOp->getOperand(0); InputAddrMode.BaseOffs += cast(BinOp->getOperand(1))->getSExtValue()*Scale; if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) { AddrModeInsts.push_back(BinOp); AddrMode = InputAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } // Otherwise, back this attempt out. AddrMode.Scale -= Scale; if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0; return false; } /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast(V)) return I->getParent() != BB; return false; } /// OptimizeLoadStoreInst - Load and Store Instructions have often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr, const Type *AccessTy, DenseMap &SunkAddrs) { // Figure out what addressing mode will be built up for this operation. SmallVector AddrModeInsts; ExtAddrMode AddrMode; bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode, AddrModeInsts, *TLI, 0); Success = Success; assert(Success && "Couldn't select *anything*?"); // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. BasicBlock::iterator InsertPt = LdStInst; // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n"); if (SunkAddr->getType() != Addr->getType()) SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt); } else { DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n"); const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType(); Value *Result = 0; // Start with the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (isa(V->getType())) { V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt); } else { V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt); } if (AddrMode.Scale != 1) V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr", InsertPt); Result = V; } // Add in the base register. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType() != IntPtrTy) V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } if (Result == 0) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt); } LdStInst->replaceUsesOfWith(Addr, SunkAddr); if (Addr->use_empty()) EraseDeadInstructions(Addr); return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeLoadStoreInt to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS, DenseMap &SunkAddrs) { bool MadeChange = false; InlineAsm *IA = cast(CS.getCalledValue()); // Do a prepass over the constraints, canonicalizing them, and building up the // ConstraintOperands list. std::vector ConstraintInfos = IA->ParseConstraints(); /// ConstraintOperands - Information about all of the constraints. std::vector ConstraintOperands; unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { ConstraintOperands. push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i])); TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back(); // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: if (OpInfo.isIndirect) OpInfo.CallOperandVal = CS.getArgument(ArgNo++); break; case InlineAsm::isInput: OpInfo.CallOperandVal = CS.getArgument(ArgNo++); break; case InlineAsm::isClobber: // Nothing to do. break; } // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = OpInfo.CallOperandVal; MadeChange |= OptimizeLoadStoreInst(I, OpVal, OpVal->getType(), SunkAddrs); } } return MadeChange; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If both result of the {s|z}xt and its source are live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa(Src) || DefBB != cast(Src)->getParent()) return false; bool DefIsLiveOut = false; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure non of the uses are PHI nodes. for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa(User) || isa(User) || isa(User)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap InsertedTruncs; bool MadeChange = false; for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); } // Replace a use of the {s|z}ext source with a use of the result. TheUse = InsertedTrunc; MadeChange = true; } return MadeChange; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { bool MadeChange = false; // Split all critical edges where the dest block has a PHI and where the phi // has shared immediate operands. TerminatorInst *BBTI = BB.getTerminator(); if (BBTI->getNumSuccessors() > 1) { for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) if (isa(BBTI->getSuccessor(i)->begin()) && isCriticalEdge(BBTI, i, true)) SplitEdgeNicely(BBTI, i, this); } // Keep track of non-local addresses that have been sunk into this block. // This allows us to avoid inserting duplicate code for blocks with multiple // load/stores of the same address. DenseMap SunkAddrs; for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) { Instruction *I = BBI++; if (CastInst *CI = dyn_cast(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa(CI->getOperand(0))) continue; bool Change = false; if (TLI) { Change = OptimizeNoopCopyExpression(CI, *TLI); MadeChange |= Change; } if (!Change && (isa(I) || isa(I))) MadeChange |= OptimizeExtUses(I); } else if (CmpInst *CI = dyn_cast(I)) { MadeChange |= OptimizeCmpExpression(CI); } else if (LoadInst *LI = dyn_cast(I)) { if (TLI) MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(), SunkAddrs); } else if (StoreInst *SI = dyn_cast(I)) { if (TLI) MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1), SI->getOperand(0)->getType(), SunkAddrs); } else if (GetElementPtrInst *GEPI = dyn_cast(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); MadeChange = true; BBI = NC; } } else if (CallInst *CI = dyn_cast(I)) { // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa(CI->getCalledValue())) if (const TargetAsmInfo *TAI = TLI->getTargetMachine().getTargetAsmInfo()) { if (TAI->ExpandInlineAsm(CI)) BBI = BB.begin(); else // Sink address computing for memory operands into the block. MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs); } } } return MadeChange; }