//===- GVN.cpp - Eliminate redundant values and loads ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global value numbering to eliminate fully redundant // instructions. It also performs simple dead load elimination. // // Note that this pass does the value numbering itself, it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "gvn" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Value.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; STATISTIC(NumGVNInstr, "Number of instructions deleted"); STATISTIC(NumGVNLoad, "Number of loads deleted"); STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); STATISTIC(NumGVNBlocks, "Number of blocks merged"); static cl::opt EnablePRE("enable-pre", cl::init(true), cl::Hidden); //===----------------------------------------------------------------------===// // ValueTable Class //===----------------------------------------------------------------------===// /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. namespace { struct VISIBILITY_HIDDEN Expression { enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT, EMPTY, TOMBSTONE }; ExpressionOpcode opcode; const Type* type; uint32_t firstVN; uint32_t secondVN; uint32_t thirdVN; SmallVector varargs; Value* function; Expression() { } Expression(ExpressionOpcode o) : opcode(o) { } bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; else if (opcode == EMPTY || opcode == TOMBSTONE) return true; else if (type != other.type) return false; else if (function != other.function) return false; else if (firstVN != other.firstVN) return false; else if (secondVN != other.secondVN) return false; else if (thirdVN != other.thirdVN) return false; else { if (varargs.size() != other.varargs.size()) return false; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return false; return true; } } bool operator!=(const Expression &other) const { if (opcode != other.opcode) return true; else if (opcode == EMPTY || opcode == TOMBSTONE) return false; else if (type != other.type) return true; else if (function != other.function) return true; else if (firstVN != other.firstVN) return true; else if (secondVN != other.secondVN) return true; else if (thirdVN != other.thirdVN) return true; else { if (varargs.size() != other.varargs.size()) return true; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return true; return false; } } }; class VISIBILITY_HIDDEN ValueTable { private: DenseMap valueNumbering; DenseMap expressionNumbering; AliasAnalysis* AA; MemoryDependenceAnalysis* MD; DominatorTree* DT; uint32_t nextValueNumber; Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); Expression::ExpressionOpcode getOpcode(CmpInst* C); Expression::ExpressionOpcode getOpcode(CastInst* C); Expression create_expression(BinaryOperator* BO); Expression create_expression(CmpInst* C); Expression create_expression(ShuffleVectorInst* V); Expression create_expression(ExtractElementInst* C); Expression create_expression(InsertElementInst* V); Expression create_expression(SelectInst* V); Expression create_expression(CastInst* C); Expression create_expression(GetElementPtrInst* G); Expression create_expression(CallInst* C); Expression create_expression(Constant* C); public: ValueTable() : nextValueNumber(1) { } uint32_t lookup_or_add(Value* V); uint32_t lookup(Value* V) const; void add(Value* V, uint32_t num); void clear(); void erase(Value* v); unsigned size(); void setAliasAnalysis(AliasAnalysis* A) { AA = A; } void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } void setDomTree(DominatorTree* D) { DT = D; } uint32_t getNextUnusedValueNumber() { return nextValueNumber; } }; } namespace llvm { template <> struct DenseMapInfo { static inline Expression getEmptyKey() { return Expression(Expression::EMPTY); } static inline Expression getTombstoneKey() { return Expression(Expression::TOMBSTONE); } static unsigned getHashValue(const Expression e) { unsigned hash = e.opcode; hash = e.firstVN + hash * 37; hash = e.secondVN + hash * 37; hash = e.thirdVN + hash * 37; hash = ((unsigned)((uintptr_t)e.type >> 4) ^ (unsigned)((uintptr_t)e.type >> 9)) + hash * 37; for (SmallVector::const_iterator I = e.varargs.begin(), E = e.varargs.end(); I != E; ++I) hash = *I + hash * 37; hash = ((unsigned)((uintptr_t)e.function >> 4) ^ (unsigned)((uintptr_t)e.function >> 9)) + hash * 37; return hash; } static bool isEqual(const Expression &LHS, const Expression &RHS) { return LHS == RHS; } static bool isPod() { return true; } }; } //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) { switch(BO->getOpcode()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Binary operator with unknown opcode?"); case Instruction::Add: return Expression::ADD; case Instruction::Sub: return Expression::SUB; case Instruction::Mul: return Expression::MUL; case Instruction::UDiv: return Expression::UDIV; case Instruction::SDiv: return Expression::SDIV; case Instruction::FDiv: return Expression::FDIV; case Instruction::URem: return Expression::UREM; case Instruction::SRem: return Expression::SREM; case Instruction::FRem: return Expression::FREM; case Instruction::Shl: return Expression::SHL; case Instruction::LShr: return Expression::LSHR; case Instruction::AShr: return Expression::ASHR; case Instruction::And: return Expression::AND; case Instruction::Or: return Expression::OR; case Instruction::Xor: return Expression::XOR; } } Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { if (isa(C) || isa(C)) { switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Comparison with unknown predicate?"); case ICmpInst::ICMP_EQ: return Expression::ICMPEQ; case ICmpInst::ICMP_NE: return Expression::ICMPNE; case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; case ICmpInst::ICMP_ULT: return Expression::ICMPULT; case ICmpInst::ICMP_ULE: return Expression::ICMPULE; case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; } } assert((isa(C) || isa(C)) && "Unknown compare"); switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Comparison with unknown predicate?"); case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; case FCmpInst::FCMP_ONE: return Expression::FCMPONE; case FCmpInst::FCMP_ORD: return Expression::FCMPORD; case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; case FCmpInst::FCMP_ULT: return Expression::FCMPULT; case FCmpInst::FCMP_ULE: return Expression::FCMPULE; case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; } } Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) { switch(C->getOpcode()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Cast operator with unknown opcode?"); case Instruction::Trunc: return Expression::TRUNC; case Instruction::ZExt: return Expression::ZEXT; case Instruction::SExt: return Expression::SEXT; case Instruction::FPToUI: return Expression::FPTOUI; case Instruction::FPToSI: return Expression::FPTOSI; case Instruction::UIToFP: return Expression::UITOFP; case Instruction::SIToFP: return Expression::SITOFP; case Instruction::FPTrunc: return Expression::FPTRUNC; case Instruction::FPExt: return Expression::FPEXT; case Instruction::PtrToInt: return Expression::PTRTOINT; case Instruction::IntToPtr: return Expression::INTTOPTR; case Instruction::BitCast: return Expression::BITCAST; } } Expression ValueTable::create_expression(CallInst* C) { Expression e; e.type = C->getType(); e.firstVN = 0; e.secondVN = 0; e.thirdVN = 0; e.function = C->getCalledFunction(); e.opcode = Expression::CALL; for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } Expression ValueTable::create_expression(BinaryOperator* BO) { Expression e; e.firstVN = lookup_or_add(BO->getOperand(0)); e.secondVN = lookup_or_add(BO->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = BO->getType(); e.opcode = getOpcode(BO); return e; } Expression ValueTable::create_expression(CmpInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = lookup_or_add(C->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(CastInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = 0; e.thirdVN = 0; e.function = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(ShuffleVectorInst* S) { Expression e; e.firstVN = lookup_or_add(S->getOperand(0)); e.secondVN = lookup_or_add(S->getOperand(1)); e.thirdVN = lookup_or_add(S->getOperand(2)); e.function = 0; e.type = S->getType(); e.opcode = Expression::SHUFFLE; return e; } Expression ValueTable::create_expression(ExtractElementInst* E) { Expression e; e.firstVN = lookup_or_add(E->getOperand(0)); e.secondVN = lookup_or_add(E->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = E->getType(); e.opcode = Expression::EXTRACT; return e; } Expression ValueTable::create_expression(InsertElementInst* I) { Expression e; e.firstVN = lookup_or_add(I->getOperand(0)); e.secondVN = lookup_or_add(I->getOperand(1)); e.thirdVN = lookup_or_add(I->getOperand(2)); e.function = 0; e.type = I->getType(); e.opcode = Expression::INSERT; return e; } Expression ValueTable::create_expression(SelectInst* I) { Expression e; e.firstVN = lookup_or_add(I->getCondition()); e.secondVN = lookup_or_add(I->getTrueValue()); e.thirdVN = lookup_or_add(I->getFalseValue()); e.function = 0; e.type = I->getType(); e.opcode = Expression::SELECT; return e; } Expression ValueTable::create_expression(GetElementPtrInst* G) { Expression e; e.firstVN = lookup_or_add(G->getPointerOperand()); e.secondVN = 0; e.thirdVN = 0; e.function = 0; e.type = G->getType(); e.opcode = Expression::GEP; for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// /// add - Insert a value into the table with a specified value number. void ValueTable::add(Value* V, uint32_t num) { valueNumbering.insert(std::make_pair(V, num)); } /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t ValueTable::lookup_or_add(Value* V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (CallInst* C = dyn_cast(V)) { if (AA->doesNotAccessMemory(C)) { Expression e = create_expression(C); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (AA->onlyReadsMemory(C)) { Expression e = create_expression(C); if (expressionNumbering.find(e) == expressionNumbering.end()) { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } Instruction* local_dep = MD->getDependency(C); if (local_dep == MemoryDependenceAnalysis::None) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else if (local_dep != MemoryDependenceAnalysis::NonLocal) { if (!isa(local_dep)) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } CallInst* local_cdep = cast(local_dep); if (local_cdep->getCalledFunction() != C->getCalledFunction() || local_cdep->getNumOperands() != C->getNumOperands()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else if (!C->getCalledFunction()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else { for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } uint32_t v = lookup_or_add(local_cdep); valueNumbering.insert(std::make_pair(V, v)); return v; } } DenseMap deps; MD->getNonLocalDependency(C, deps); CallInst* cdep = 0; for (DenseMap::iterator I = deps.begin(), E = deps.end(); I != E; ++I) { if (I->second == MemoryDependenceAnalysis::None) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else if (I->second != MemoryDependenceAnalysis::NonLocal) { if (DT->properlyDominates(I->first, C->getParent())) { if (CallInst* CD = dyn_cast(I->second)) cdep = CD; else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } } if (!cdep) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } if (cdep->getCalledFunction() != C->getCalledFunction() || cdep->getNumOperands() != C->getNumOperands()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else if (!C->getCalledFunction()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } else { for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } uint32_t v = lookup_or_add(cdep); valueNumbering.insert(std::make_pair(V, v)); return v; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (BinaryOperator* BO = dyn_cast(V)) { Expression e = create_expression(BO); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CmpInst* C = dyn_cast(V)) { Expression e = create_expression(C); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ShuffleVectorInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ExtractElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (InsertElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (SelectInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CastInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (GetElementPtrInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } /// lookup - Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t ValueTable::lookup(Value* V) const { DenseMap::iterator VI = valueNumbering.find(V); assert(VI != valueNumbering.end() && "Value not numbered?"); return VI->second; } /// clear - Remove all entries from the ValueTable void ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// erase - Remove a value from the value numbering void ValueTable::erase(Value* V) { valueNumbering.erase(V); } //===----------------------------------------------------------------------===// // GVN Pass //===----------------------------------------------------------------------===// namespace { struct VISIBILITY_HIDDEN ValueNumberScope { ValueNumberScope* parent; DenseMap table; ValueNumberScope(ValueNumberScope* p) : parent(p) { } }; } namespace { class VISIBILITY_HIDDEN GVN : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid GVN() : FunctionPass(&ID) { } private: ValueTable VN; DenseMap localAvail; typedef DenseMap > PhiMapType; PhiMapType phiMap; // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } // Helper fuctions // FIXME: eliminate or document these better bool processLoad(LoadInst* L, DenseMap &lastLoad, SmallVectorImpl &toErase); bool processInstruction(Instruction* I, DenseMap& lastSeenLoad, SmallVectorImpl &toErase); bool processNonLocalLoad(LoadInst* L, SmallVectorImpl &toErase); bool processBlock(DomTreeNode* DTN); Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig, DenseMap &Phis, bool top_level = false); void dump(DenseMap& d); bool iterateOnFunction(Function &F); Value* CollapsePhi(PHINode* p); bool isSafeReplacement(PHINode* p, Instruction* inst); bool performPRE(Function& F); Value* lookupNumber(BasicBlock* BB, uint32_t num); bool mergeBlockIntoPredecessor(BasicBlock* BB); }; char GVN::ID = 0; } // createGVNPass - The public interface to this file... FunctionPass *llvm::createGVNPass() { return new GVN(); } static RegisterPass X("gvn", "Global Value Numbering"); void GVN::dump(DenseMap& d) { printf("{\n"); for (DenseMap::iterator I = d.begin(), E = d.end(); I != E; ++I) { printf("%d\n", I->first); I->second->dump(); } printf("}\n"); } Value* GVN::CollapsePhi(PHINode* p) { DominatorTree &DT = getAnalysis(); Value* constVal = p->hasConstantValue(); if (!constVal) return 0; Instruction* inst = dyn_cast(constVal); if (!inst) return constVal; if (DT.dominates(inst, p)) if (isSafeReplacement(p, inst)) return inst; return 0; } bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) { if (!isa(inst)) return true; for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end(); UI != E; ++UI) if (PHINode* use_phi = dyn_cast(UI)) if (use_phi->getParent() == inst->getParent()) return false; return true; } /// GetValueForBlock - Get the value to use within the specified basic block. /// available values are in Phis. Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig, DenseMap &Phis, bool top_level) { // If we have already computed this value, return the previously computed val. DenseMap::iterator V = Phis.find(BB); if (V != Phis.end() && !top_level) return V->second; // If the block is unreachable, just return undef, since this path // can't actually occur at runtime. if (!getAnalysis().isReachableFromEntry(BB)) return Phis[BB] = UndefValue::get(orig->getType()); BasicBlock* singlePred = BB->getSinglePredecessor(); if (singlePred) { Value *ret = GetValueForBlock(singlePred, orig, Phis); Phis[BB] = ret; return ret; } // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so // now, then get values to fill in the incoming values for the PHI. PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle", BB->begin()); PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); if (Phis.count(BB) == 0) Phis.insert(std::make_pair(BB, PN)); // Fill in the incoming values for the block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Value* val = GetValueForBlock(*PI, orig, Phis); PN->addIncoming(val, *PI); } AliasAnalysis& AA = getAnalysis(); AA.copyValue(orig, PN); // Attempt to collapse PHI nodes that are trivially redundant Value* v = CollapsePhi(PN); if (!v) { // Cache our phi construction results phiMap[orig->getPointerOperand()].insert(PN); return PN; } MemoryDependenceAnalysis& MD = getAnalysis(); MD.removeInstruction(PN); PN->replaceAllUsesWith(v); for (DenseMap::iterator I = Phis.begin(), E = Phis.end(); I != E; ++I) if (I->second == PN) I->second = v; PN->eraseFromParent(); Phis[BB] = v; return v; } /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are /// non-local by performing PHI construction. bool GVN::processNonLocalLoad(LoadInst* L, SmallVectorImpl &toErase) { MemoryDependenceAnalysis& MD = getAnalysis(); // Find the non-local dependencies of the load DenseMap deps; MD.getNonLocalDependency(L, deps); // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. if (deps.size() > 100) return false; DenseMap repl; // Filter out useless results (non-locals, etc) for (DenseMap::iterator I = deps.begin(), E = deps.end(); I != E; ++I) { if (I->second == MemoryDependenceAnalysis::None) return false; if (I->second == MemoryDependenceAnalysis::NonLocal) continue; if (StoreInst* S = dyn_cast(I->second)) { if (S->getPointerOperand() != L->getPointerOperand()) return false; repl[I->first] = S->getOperand(0); } else if (LoadInst* LD = dyn_cast(I->second)) { if (LD->getPointerOperand() != L->getPointerOperand()) return false; repl[I->first] = LD; } else { return false; } } // Use cached PHI construction information from previous runs SmallPtrSet& p = phiMap[L->getPointerOperand()]; for (SmallPtrSet::iterator I = p.begin(), E = p.end(); I != E; ++I) { if ((*I)->getParent() == L->getParent()) { MD.removeInstruction(L); L->replaceAllUsesWith(*I); toErase.push_back(L); NumGVNLoad++; return true; } repl.insert(std::make_pair((*I)->getParent(), *I)); } // Perform PHI construction SmallPtrSet visited; Value* v = GetValueForBlock(L->getParent(), L, repl, true); MD.removeInstruction(L); L->replaceAllUsesWith(v); toErase.push_back(L); NumGVNLoad++; return true; } /// processLoad - Attempt to eliminate a load, first by eliminating it /// locally, and then attempting non-local elimination if that fails. bool GVN::processLoad(LoadInst *L, DenseMap &lastLoad, SmallVectorImpl &toErase) { if (L->isVolatile()) { lastLoad[L->getPointerOperand()] = L; return false; } Value* pointer = L->getPointerOperand(); LoadInst*& last = lastLoad[pointer]; // ... to a pointer that has been loaded from before... MemoryDependenceAnalysis& MD = getAnalysis(); bool removedNonLocal = false; Instruction* dep = MD.getDependency(L); if (dep == MemoryDependenceAnalysis::NonLocal && L->getParent() != &L->getParent()->getParent()->getEntryBlock()) { removedNonLocal = processNonLocalLoad(L, toErase); if (!removedNonLocal) last = L; return removedNonLocal; } bool deletedLoad = false; // Walk up the dependency chain until we either find // a dependency we can use, or we can't walk any further while (dep != MemoryDependenceAnalysis::None && dep != MemoryDependenceAnalysis::NonLocal && (isa(dep) || isa(dep))) { // ... that depends on a store ... if (StoreInst* S = dyn_cast(dep)) { if (S->getPointerOperand() == pointer) { // Remove it! MD.removeInstruction(L); L->replaceAllUsesWith(S->getOperand(0)); toErase.push_back(L); deletedLoad = true; NumGVNLoad++; } // Whether we removed it or not, we can't // go any further break; } else if (!last) { // If we don't depend on a store, and we haven't // been loaded before, bail. break; } else if (dep == last) { // Remove it! MD.removeInstruction(L); L->replaceAllUsesWith(last); toErase.push_back(L); deletedLoad = true; NumGVNLoad++; break; } else { dep = MD.getDependency(L, dep); } } if (dep != MemoryDependenceAnalysis::None && dep != MemoryDependenceAnalysis::NonLocal && isa(dep)) { // Check that this load is actually from the // allocation we found Value* v = L->getOperand(0); while (true) { if (BitCastInst *BC = dyn_cast(v)) v = BC->getOperand(0); else if (GetElementPtrInst *GEP = dyn_cast(v)) v = GEP->getOperand(0); else break; } if (v == dep) { // If this load depends directly on an allocation, there isn't // anything stored there; therefore, we can optimize this load // to undef. MD.removeInstruction(L); L->replaceAllUsesWith(UndefValue::get(L->getType())); toErase.push_back(L); deletedLoad = true; NumGVNLoad++; } } if (!deletedLoad) last = L; return deletedLoad; } Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) { DenseMap::iterator I = localAvail.find(BB); if (I == localAvail.end()) return 0; ValueNumberScope* locals = I->second; while (locals) { DenseMap::iterator I = locals->table.find(num); if (I != locals->table.end()) return I->second; else locals = locals->parent; } return 0; } /// processInstruction - When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction *I, DenseMap &lastSeenLoad, SmallVectorImpl &toErase) { if (LoadInst* L = dyn_cast(I)) { bool changed = processLoad(L, lastSeenLoad, toErase); if (!changed) { unsigned num = VN.lookup_or_add(L); localAvail[I->getParent()]->table.insert(std::make_pair(num, L)); } return changed; } uint32_t nextNum = VN.getNextUnusedValueNumber(); unsigned num = VN.lookup_or_add(I); // Allocations are always uniquely numbered, so we can save time and memory // by fast failing them. if (isa(I) || isa(I)) { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); return false; } // Collapse PHI nodes if (PHINode* p = dyn_cast(I)) { Value* constVal = CollapsePhi(p); if (constVal) { for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end(); PI != PE; ++PI) if (PI->second.count(p)) PI->second.erase(p); p->replaceAllUsesWith(constVal); toErase.push_back(p); } else { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); } // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! } else if (num == nextNum) { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); // Perform value-number based elimination } else if (Value* repl = lookupNumber(I->getParent(), num)) { // Remove it! MemoryDependenceAnalysis& MD = getAnalysis(); MD.removeInstruction(I); VN.erase(I); I->replaceAllUsesWith(repl); toErase.push_back(I); return true; } else { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); } return false; } // GVN::runOnFunction - This is the main transformation entry point for a // function. // bool GVN::runOnFunction(Function& F) { VN.setAliasAnalysis(&getAnalysis()); VN.setMemDep(&getAnalysis()); VN.setDomTree(&getAnalysis()); bool changed = false; bool shouldContinue = true; // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { BasicBlock* BB = FI; ++FI; bool removedBlock = MergeBlockIntoPredecessor(BB, this); if (removedBlock) NumGVNBlocks++; changed |= removedBlock; } while (shouldContinue) { shouldContinue = iterateOnFunction(F); changed |= shouldContinue; } if (EnablePRE) { bool PREChanged = true; while (PREChanged) { PREChanged = performPRE(F); changed |= PREChanged; } } return changed; } bool GVN::processBlock(DomTreeNode* DTN) { BasicBlock* BB = DTN->getBlock(); SmallVector toErase; DenseMap lastSeenLoad; bool changed_function = false; if (DTN->getIDom()) localAvail[BB] = new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]); else localAvail[BB] = new ValueNumberScope(0); for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { changed_function |= processInstruction(BI, lastSeenLoad, toErase); if (toErase.empty()) { ++BI; continue; } // If we need some instructions deleted, do it now. NumGVNInstr += toErase.size(); // Avoid iterator invalidation. bool AtStart = BI == BB->begin(); if (!AtStart) --BI; for (SmallVector::iterator I = toErase.begin(), E = toErase.end(); I != E; ++I) (*I)->eraseFromParent(); if (AtStart) BI = BB->begin(); else ++BI; toErase.clear(); } return changed_function; } /// performPRE - Perform a purely local form of PRE that looks for diamond /// control flow patterns and attempts to perform simple PRE at the join point. bool GVN::performPRE(Function& F) { bool changed = false; SmallVector, 4> toSplit; for (df_iterator DI = df_begin(&F.getEntryBlock()), DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { BasicBlock* CurrentBlock = *DI; // Nothing to PRE in the entry block. if (CurrentBlock == &F.getEntryBlock()) continue; for (BasicBlock::iterator BI = CurrentBlock->begin(), BE = CurrentBlock->end(); BI != BE; ) { if (isa(BI) || isa(BI) || isa(BI) || BI->mayReadFromMemory() || BI->mayWriteToMemory()) { BI++; continue; } uint32_t valno = VN.lookup(BI); // Look for the predecessors for PRE opportunities. We're // only trying to solve the basic diamond case, where // a value is computed in the successor and one predecessor, // but not the other. We also explicitly disallow cases // where the successor is its own predecessor, because they're // more complicated to get right. unsigned numWith = 0; unsigned numWithout = 0; BasicBlock* PREPred = 0; DenseMap predMap; for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) { // We're not interested in PRE where the block is its // own predecessor, on in blocks with predecessors // that are not reachable. if (*PI == CurrentBlock) { numWithout = 2; break; } else if (!localAvail.count(*PI)) { numWithout = 2; break; } DenseMap::iterator predV = localAvail[*PI]->table.find(valno); if (predV == localAvail[*PI]->table.end()) { PREPred = *PI; numWithout++; } else if (predV->second == BI) { numWithout = 2; } else { predMap[*PI] = predV->second; numWith++; } } // Don't do PRE when it might increase code size, i.e. when // we would need to insert instructions in more than one pred. if (numWithout != 1 || numWith == 0) { BI++; continue; } // We can't do PRE safely on a critical edge, so instead we schedule // the edge to be split and perform the PRE the next time we iterate // on the function. unsigned succNum = 0; for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors(); i != e; ++i) if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) { succNum = i; break; } if (isCriticalEdge(PREPred->getTerminator(), succNum)) { toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum)); changed = true; BI++; continue; } // Instantiate the expression the in predecessor that lacked it. // Because we are going top-down through the block, all value numbers // will be available in the predecessor by the time we need them. Any // that weren't original present will have been instantiated earlier // in this loop. Instruction* PREInstr = BI->clone(); bool success = true; for (unsigned i = 0; i < BI->getNumOperands(); ++i) { Value* op = BI->getOperand(i); if (isa(op) || isa(op) || isa(op)) PREInstr->setOperand(i, op); else { Value* V = lookupNumber(PREPred, VN.lookup(op)); if (!V) { success = false; break; } else PREInstr->setOperand(i, V); } } // Fail out if we encounter an operand that is not available in // the PRE predecessor. This is typically because of loads which // are not value numbered precisely. if (!success) { delete PREInstr; BI++; continue; } PREInstr->insertBefore(PREPred->getTerminator()); PREInstr->setName(BI->getName() + ".pre"); predMap[PREPred] = PREInstr; VN.add(PREInstr, valno); NumGVNPRE++; // Update the availability map to include the new instruction. localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr)); // Create a PHI to make the value available in this block. PHINode* Phi = PHINode::Create(BI->getType(), BI->getName() + ".pre-phi", CurrentBlock->begin()); for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) Phi->addIncoming(predMap[*PI], *PI); VN.add(Phi, valno); localAvail[CurrentBlock]->table[valno] = Phi; BI->replaceAllUsesWith(Phi); VN.erase(BI); Instruction* erase = BI; BI++; erase->eraseFromParent(); changed = true; } } for (SmallVector, 4>::iterator I = toSplit.begin(), E = toSplit.end(); I != E; ++I) SplitCriticalEdge(I->first, I->second, this); return changed || toSplit.size(); } // iterateOnFunction - Executes one iteration of GVN bool GVN::iterateOnFunction(Function &F) { // Clean out global sets from any previous functions VN.clear(); phiMap.clear(); for (DenseMap::iterator I = localAvail.begin(), E = localAvail.end(); I != E; ++I) delete I->second; localAvail.clear(); DominatorTree &DT = getAnalysis(); // Top-down walk of the dominator tree bool changed = false; for (df_iterator DI = df_begin(DT.getRootNode()), DE = df_end(DT.getRootNode()); DI != DE; ++DI) changed |= processBlock(*DI); return changed; }