//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global value numbering to eliminate fully redundant // instructions. It also performs simple dead load elimination. // // Note that this pass does the value numbering itself; it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "gvn" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Function.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Operator.h" #include "llvm/Value.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; STATISTIC(NumGVNInstr, "Number of instructions deleted"); STATISTIC(NumGVNLoad, "Number of loads deleted"); STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); STATISTIC(NumGVNBlocks, "Number of blocks merged"); STATISTIC(NumPRELoad, "Number of loads PRE'd"); static cl::opt EnablePRE("enable-pre", cl::init(true), cl::Hidden); static cl::opt EnableLoadPRE("enable-load-pre", cl::init(true)); //===----------------------------------------------------------------------===// // ValueTable Class //===----------------------------------------------------------------------===// /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. namespace { struct Expression { enum ExpressionOpcode { ADD = Instruction::Add, FADD = Instruction::FAdd, SUB = Instruction::Sub, FSUB = Instruction::FSub, MUL = Instruction::Mul, FMUL = Instruction::FMul, UDIV = Instruction::UDiv, SDIV = Instruction::SDiv, FDIV = Instruction::FDiv, UREM = Instruction::URem, SREM = Instruction::SRem, FREM = Instruction::FRem, SHL = Instruction::Shl, LSHR = Instruction::LShr, ASHR = Instruction::AShr, AND = Instruction::And, OR = Instruction::Or, XOR = Instruction::Xor, TRUNC = Instruction::Trunc, ZEXT = Instruction::ZExt, SEXT = Instruction::SExt, FPTOUI = Instruction::FPToUI, FPTOSI = Instruction::FPToSI, UITOFP = Instruction::UIToFP, SITOFP = Instruction::SIToFP, FPTRUNC = Instruction::FPTrunc, FPEXT = Instruction::FPExt, PTRTOINT = Instruction::PtrToInt, INTTOPTR = Instruction::IntToPtr, BITCAST = Instruction::BitCast, ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, SHUFFLE, SELECT, GEP, CALL, CONSTANT, INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE }; ExpressionOpcode opcode; const Type* type; SmallVector varargs; Value *function; Expression() { } Expression(ExpressionOpcode o) : opcode(o) { } bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; else if (opcode == EMPTY || opcode == TOMBSTONE) return true; else if (type != other.type) return false; else if (function != other.function) return false; else { if (varargs.size() != other.varargs.size()) return false; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return false; return true; } } bool operator!=(const Expression &other) const { return !(*this == other); } }; class ValueTable { private: DenseMap valueNumbering; DenseMap expressionNumbering; AliasAnalysis* AA; MemoryDependenceAnalysis* MD; DominatorTree* DT; uint32_t nextValueNumber; Expression::ExpressionOpcode getOpcode(CmpInst* C); Expression create_expression(BinaryOperator* BO); Expression create_expression(CmpInst* C); Expression create_expression(ShuffleVectorInst* V); Expression create_expression(ExtractElementInst* C); Expression create_expression(InsertElementInst* V); Expression create_expression(SelectInst* V); Expression create_expression(CastInst* C); Expression create_expression(GetElementPtrInst* G); Expression create_expression(CallInst* C); Expression create_expression(Constant* C); Expression create_expression(ExtractValueInst* C); Expression create_expression(InsertValueInst* C); uint32_t lookup_or_add_call(CallInst* C); public: ValueTable() : nextValueNumber(1) { } uint32_t lookup_or_add(Value *V); uint32_t lookup(Value *V) const; void add(Value *V, uint32_t num); void clear(); void erase(Value *v); unsigned size(); void setAliasAnalysis(AliasAnalysis* A) { AA = A; } AliasAnalysis *getAliasAnalysis() const { return AA; } void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } void setDomTree(DominatorTree* D) { DT = D; } uint32_t getNextUnusedValueNumber() { return nextValueNumber; } void verifyRemoved(const Value *) const; }; } namespace llvm { template <> struct DenseMapInfo { static inline Expression getEmptyKey() { return Expression(Expression::EMPTY); } static inline Expression getTombstoneKey() { return Expression(Expression::TOMBSTONE); } static unsigned getHashValue(const Expression e) { unsigned hash = e.opcode; hash = ((unsigned)((uintptr_t)e.type >> 4) ^ (unsigned)((uintptr_t)e.type >> 9)); for (SmallVector::const_iterator I = e.varargs.begin(), E = e.varargs.end(); I != E; ++I) hash = *I + hash * 37; hash = ((unsigned)((uintptr_t)e.function >> 4) ^ (unsigned)((uintptr_t)e.function >> 9)) + hash * 37; return hash; } static bool isEqual(const Expression &LHS, const Expression &RHS) { return LHS == RHS; } }; template <> struct isPodLike { static const bool value = true; }; } //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { if (isa(C)) { switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN llvm_unreachable("Comparison with unknown predicate?"); case ICmpInst::ICMP_EQ: return Expression::ICMPEQ; case ICmpInst::ICMP_NE: return Expression::ICMPNE; case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; case ICmpInst::ICMP_ULT: return Expression::ICMPULT; case ICmpInst::ICMP_ULE: return Expression::ICMPULE; case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; } } else { switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN llvm_unreachable("Comparison with unknown predicate?"); case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; case FCmpInst::FCMP_ONE: return Expression::FCMPONE; case FCmpInst::FCMP_ORD: return Expression::FCMPORD; case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; case FCmpInst::FCMP_ULT: return Expression::FCMPULT; case FCmpInst::FCMP_ULE: return Expression::FCMPULE; case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; } } } Expression ValueTable::create_expression(CallInst* C) { Expression e; e.type = C->getType(); e.function = C->getCalledFunction(); e.opcode = Expression::CALL; for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } Expression ValueTable::create_expression(BinaryOperator* BO) { Expression e; e.varargs.push_back(lookup_or_add(BO->getOperand(0))); e.varargs.push_back(lookup_or_add(BO->getOperand(1))); e.function = 0; e.type = BO->getType(); e.opcode = static_cast(BO->getOpcode()); return e; } Expression ValueTable::create_expression(CmpInst* C) { Expression e; e.varargs.push_back(lookup_or_add(C->getOperand(0))); e.varargs.push_back(lookup_or_add(C->getOperand(1))); e.function = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(CastInst* C) { Expression e; e.varargs.push_back(lookup_or_add(C->getOperand(0))); e.function = 0; e.type = C->getType(); e.opcode = static_cast(C->getOpcode()); return e; } Expression ValueTable::create_expression(ShuffleVectorInst* S) { Expression e; e.varargs.push_back(lookup_or_add(S->getOperand(0))); e.varargs.push_back(lookup_or_add(S->getOperand(1))); e.varargs.push_back(lookup_or_add(S->getOperand(2))); e.function = 0; e.type = S->getType(); e.opcode = Expression::SHUFFLE; return e; } Expression ValueTable::create_expression(ExtractElementInst* E) { Expression e; e.varargs.push_back(lookup_or_add(E->getOperand(0))); e.varargs.push_back(lookup_or_add(E->getOperand(1))); e.function = 0; e.type = E->getType(); e.opcode = Expression::EXTRACT; return e; } Expression ValueTable::create_expression(InsertElementInst* I) { Expression e; e.varargs.push_back(lookup_or_add(I->getOperand(0))); e.varargs.push_back(lookup_or_add(I->getOperand(1))); e.varargs.push_back(lookup_or_add(I->getOperand(2))); e.function = 0; e.type = I->getType(); e.opcode = Expression::INSERT; return e; } Expression ValueTable::create_expression(SelectInst* I) { Expression e; e.varargs.push_back(lookup_or_add(I->getCondition())); e.varargs.push_back(lookup_or_add(I->getTrueValue())); e.varargs.push_back(lookup_or_add(I->getFalseValue())); e.function = 0; e.type = I->getType(); e.opcode = Expression::SELECT; return e; } Expression ValueTable::create_expression(GetElementPtrInst* G) { Expression e; e.varargs.push_back(lookup_or_add(G->getPointerOperand())); e.function = 0; e.type = G->getType(); e.opcode = Expression::GEP; for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } Expression ValueTable::create_expression(ExtractValueInst* E) { Expression e; e.varargs.push_back(lookup_or_add(E->getAggregateOperand())); for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); II != IE; ++II) e.varargs.push_back(*II); e.function = 0; e.type = E->getType(); e.opcode = Expression::EXTRACTVALUE; return e; } Expression ValueTable::create_expression(InsertValueInst* E) { Expression e; e.varargs.push_back(lookup_or_add(E->getAggregateOperand())); e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand())); for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); II != IE; ++II) e.varargs.push_back(*II); e.function = 0; e.type = E->getType(); e.opcode = Expression::INSERTVALUE; return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// /// add - Insert a value into the table with a specified value number. void ValueTable::add(Value *V, uint32_t num) { valueNumbering.insert(std::make_pair(V, num)); } uint32_t ValueTable::lookup_or_add_call(CallInst* C) { if (AA->doesNotAccessMemory(C)) { Expression exp = create_expression(C); uint32_t& e = expressionNumbering[exp]; if (!e) e = nextValueNumber++; valueNumbering[C] = e; return e; } else if (AA->onlyReadsMemory(C)) { Expression exp = create_expression(C); uint32_t& e = expressionNumbering[exp]; if (!e) { e = nextValueNumber++; valueNumbering[C] = e; return e; } if (!MD) { e = nextValueNumber++; valueNumbering[C] = e; return e; } MemDepResult local_dep = MD->getDependency(C); if (!local_dep.isDef() && !local_dep.isNonLocal()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (local_dep.isDef()) { CallInst* local_cdep = cast(local_dep.getInst()); if (local_cdep->getNumOperands() != C->getNumOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookup_or_add(local_cdep); valueNumbering[C] = v; return v; } // Non-local case. const MemoryDependenceAnalysis::NonLocalDepInfo &deps = MD->getNonLocalCallDependency(CallSite(C)); // FIXME: call/call dependencies for readonly calls should return def, not // clobber! Move the checking logic to MemDep! CallInst* cdep = 0; // Check to see if we have a single dominating call instruction that is // identical to C. for (unsigned i = 0, e = deps.size(); i != e; ++i) { const NonLocalDepEntry *I = &deps[i]; // Ignore non-local dependencies. if (I->getResult().isNonLocal()) continue; // We don't handle non-depedencies. If we already have a call, reject // instruction dependencies. if (I->getResult().isClobber() || cdep != 0) { cdep = 0; break; } CallInst *NonLocalDepCall = dyn_cast(I->getResult().getInst()); // FIXME: All duplicated with non-local case. if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ cdep = NonLocalDepCall; continue; } cdep = 0; break; } if (!cdep) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (cdep->getNumOperands() != C->getNumOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookup_or_add(cdep); valueNumbering[C] = v; return v; } else { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t ValueTable::lookup_or_add(Value *V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (!isa(V)) { valueNumbering[V] = nextValueNumber; return nextValueNumber++; } Instruction* I = cast(V); Expression exp; switch (I->getOpcode()) { case Instruction::Call: return lookup_or_add_call(cast(I)); case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or : case Instruction::Xor: exp = create_expression(cast(I)); break; case Instruction::ICmp: case Instruction::FCmp: exp = create_expression(cast(I)); break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: exp = create_expression(cast(I)); break; case Instruction::Select: exp = create_expression(cast(I)); break; case Instruction::ExtractElement: exp = create_expression(cast(I)); break; case Instruction::InsertElement: exp = create_expression(cast(I)); break; case Instruction::ShuffleVector: exp = create_expression(cast(I)); break; case Instruction::ExtractValue: exp = create_expression(cast(I)); break; case Instruction::InsertValue: exp = create_expression(cast(I)); break; case Instruction::GetElementPtr: exp = create_expression(cast(I)); break; default: valueNumbering[V] = nextValueNumber; return nextValueNumber++; } uint32_t& e = expressionNumbering[exp]; if (!e) e = nextValueNumber++; valueNumbering[V] = e; return e; } /// lookup - Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t ValueTable::lookup(Value *V) const { DenseMap::const_iterator VI = valueNumbering.find(V); assert(VI != valueNumbering.end() && "Value not numbered?"); return VI->second; } /// clear - Remove all entries from the ValueTable void ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// erase - Remove a value from the value numbering void ValueTable::erase(Value *V) { valueNumbering.erase(V); } /// verifyRemoved - Verify that the value is removed from all internal data /// structures. void ValueTable::verifyRemoved(const Value *V) const { for (DenseMap::const_iterator I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { assert(I->first != V && "Inst still occurs in value numbering map!"); } } //===----------------------------------------------------------------------===// // GVN Pass //===----------------------------------------------------------------------===// namespace { struct ValueNumberScope { ValueNumberScope* parent; DenseMap table; ValueNumberScope(ValueNumberScope* p) : parent(p) { } }; } namespace { class GVN : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid explicit GVN(bool nopre = false, bool noloads = false) : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { } private: bool NoPRE; bool NoLoads; MemoryDependenceAnalysis *MD; DominatorTree *DT; ValueTable VN; DenseMap localAvail; // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); if (!NoLoads) AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } // Helper fuctions // FIXME: eliminate or document these better bool processLoad(LoadInst* L, SmallVectorImpl &toErase); bool processInstruction(Instruction *I, SmallVectorImpl &toErase); bool processNonLocalLoad(LoadInst* L, SmallVectorImpl &toErase); bool processBlock(BasicBlock *BB); void dump(DenseMap& d); bool iterateOnFunction(Function &F); Value *CollapsePhi(PHINode* p); bool performPRE(Function& F); Value *lookupNumber(BasicBlock *BB, uint32_t num); void cleanupGlobalSets(); void verifyRemoved(const Instruction *I) const; }; char GVN::ID = 0; } // createGVNPass - The public interface to this file... FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) { return new GVN(NoPRE, NoLoads); } static RegisterPass X("gvn", "Global Value Numbering"); void GVN::dump(DenseMap& d) { errs() << "{\n"; for (DenseMap::iterator I = d.begin(), E = d.end(); I != E; ++I) { errs() << I->first << "\n"; I->second->dump(); } errs() << "}\n"; } static bool isSafeReplacement(PHINode* p, Instruction *inst) { if (!isa(inst)) return true; for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end(); UI != E; ++UI) if (PHINode* use_phi = dyn_cast(UI)) if (use_phi->getParent() == inst->getParent()) return false; return true; } Value *GVN::CollapsePhi(PHINode *PN) { Value *ConstVal = PN->hasConstantValue(DT); if (!ConstVal) return 0; Instruction *Inst = dyn_cast(ConstVal); if (!Inst) return ConstVal; if (DT->dominates(Inst, PN)) if (isSafeReplacement(PN, Inst)) return Inst; return 0; } /// IsValueFullyAvailableInBlock - Return true if we can prove that the value /// we're analyzing is fully available in the specified block. As we go, keep /// track of which blocks we know are fully alive in FullyAvailableBlocks. This /// map is actually a tri-state map with the following values: /// 0) we know the block *is not* fully available. /// 1) we know the block *is* fully available. /// 2) we do not know whether the block is fully available or not, but we are /// currently speculating that it will be. /// 3) we are speculating for this block and have used that to speculate for /// other blocks. static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap &FullyAvailableBlocks) { // Optimistically assume that the block is fully available and check to see // if we already know about this block in one lookup. std::pair::iterator, char> IV = FullyAvailableBlocks.insert(std::make_pair(BB, 2)); // If the entry already existed for this block, return the precomputed value. if (!IV.second) { // If this is a speculative "available" value, mark it as being used for // speculation of other blocks. if (IV.first->second == 2) IV.first->second = 3; return IV.first->second != 0; } // Otherwise, see if it is fully available in all predecessors. pred_iterator PI = pred_begin(BB), PE = pred_end(BB); // If this block has no predecessors, it isn't live-in here. if (PI == PE) goto SpeculationFailure; for (; PI != PE; ++PI) // If the value isn't fully available in one of our predecessors, then it // isn't fully available in this block either. Undo our previous // optimistic assumption and bail out. if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) goto SpeculationFailure; return true; // SpeculationFailure - If we get here, we found out that this is not, after // all, a fully-available block. We have a problem if we speculated on this and // used the speculation to mark other blocks as available. SpeculationFailure: char &BBVal = FullyAvailableBlocks[BB]; // If we didn't speculate on this, just return with it set to false. if (BBVal == 2) { BBVal = 0; return false; } // If we did speculate on this value, we could have blocks set to 1 that are // incorrect. Walk the (transitive) successors of this block and mark them as // 0 if set to one. SmallVector BBWorklist; BBWorklist.push_back(BB); do { BasicBlock *Entry = BBWorklist.pop_back_val(); // Note that this sets blocks to 0 (unavailable) if they happen to not // already be in FullyAvailableBlocks. This is safe. char &EntryVal = FullyAvailableBlocks[Entry]; if (EntryVal == 0) continue; // Already unavailable. // Mark as unavailable. EntryVal = 0; for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) BBWorklist.push_back(*I); } while (!BBWorklist.empty()); return false; } /// CanCoerceMustAliasedValueToLoad - Return true if /// CoerceAvailableValueToLoadType will succeed. static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, const Type *LoadTy, const TargetData &TD) { // If the loaded or stored value is an first class array or struct, don't try // to transform them. We need to be able to bitcast to integer. if (isa(LoadTy) || isa(LoadTy) || isa(StoredVal->getType()) || isa(StoredVal->getType())) return false; // The store has to be at least as big as the load. if (TD.getTypeSizeInBits(StoredVal->getType()) < TD.getTypeSizeInBits(LoadTy)) return false; return true; } /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and /// then a load from a must-aliased pointer of a different type, try to coerce /// the stored value. LoadedTy is the type of the load we want to replace and /// InsertPt is the place to insert new instructions. /// /// If we can't do it, return null. static Value *CoerceAvailableValueToLoadType(Value *StoredVal, const Type *LoadedTy, Instruction *InsertPt, const TargetData &TD) { if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD)) return 0; const Type *StoredValTy = StoredVal->getType(); uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy); uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy); // If the store and reload are the same size, we can always reuse it. if (StoreSize == LoadSize) { if (isa(StoredValTy) && isa(LoadedTy)) { // Pointer to Pointer -> use bitcast. return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); } // Convert source pointers to integers, which can be bitcast. if (isa(StoredValTy)) { StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); } const Type *TypeToCastTo = LoadedTy; if (isa(TypeToCastTo)) TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext()); if (StoredValTy != TypeToCastTo) StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); // Cast to pointer if the load needs a pointer type. if (isa(LoadedTy)) StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); return StoredVal; } // If the loaded value is smaller than the available value, then we can // extract out a piece from it. If the available value is too small, then we // can't do anything. assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); // Convert source pointers to integers, which can be manipulated. if (isa(StoredValTy)) { StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); } // Convert vectors and fp to integer, which can be manipulated. if (!isa(StoredValTy)) { StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize); StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt); } // If this is a big-endian system, we need to shift the value down to the low // bits so that a truncate will work. if (TD.isBigEndian()) { Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize); StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt); } // Truncate the integer to the right size now. const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize); StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt); if (LoadedTy == NewIntTy) return StoredVal; // If the result is a pointer, inttoptr. if (isa(LoadedTy)) return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); // Otherwise, bitcast. return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt); } /// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can /// be expressed as a base pointer plus a constant offset. Return the base and /// offset to the caller. static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const TargetData &TD) { Operator *PtrOp = dyn_cast(Ptr); if (PtrOp == 0) return Ptr; // Just look through bitcasts. if (PtrOp->getOpcode() == Instruction::BitCast) return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); // If this is a GEP with constant indices, we can look through it. GEPOperator *GEP = dyn_cast(PtrOp); if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; ++I, ++GTI) { ConstantInt *OpC = cast(*I); if (OpC->isZero()) continue; // Handle a struct and array indices which add their offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); } else { uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); Offset += OpC->getSExtValue()*Size; } } // Re-sign extend from the pointer size if needed to get overflow edge cases // right. unsigned PtrSize = TD.getPointerSizeInBits(); if (PtrSize < 64) Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); } /// AnalyzeLoadFromClobberingWrite - This function is called when we have a /// memdep query of a load that ends up being a clobbering memory write (store, /// memset, memcpy, memmove). This means that the write *may* provide bits used /// by the load but we can't be sure because the pointers don't mustalias. /// /// Check this case to see if there is anything more we can do before we give /// up. This returns -1 if we have to give up, or a byte number in the stored /// value of the piece that feeds the load. static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const TargetData &TD) { // If the loaded or stored value is an first class array or struct, don't try // to transform them. We need to be able to bitcast to integer. if (isa(LoadTy) || isa(LoadTy)) return -1; int64_t StoreOffset = 0, LoadOffset = 0; Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD); Value *LoadBase = GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD); if (StoreBase != LoadBase) return -1; // If the load and store are to the exact same address, they should have been // a must alias. AA must have gotten confused. // FIXME: Study to see if/when this happens. if (LoadOffset == StoreOffset) { #if 0 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" << "Base = " << *StoreBase << "\n" << "Store Ptr = " << *WritePtr << "\n" << "Store Offs = " << StoreOffset << "\n" << "Load Ptr = " << *LoadPtr << "\n"; abort(); #endif return -1; } // If the load and store don't overlap at all, the store doesn't provide // anything to the load. In this case, they really don't alias at all, AA // must have gotten confused. // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then // remove this check, as it is duplicated with what we have below. uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy); if ((WriteSizeInBits & 7) | (LoadSize & 7)) return -1; uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. LoadSize >>= 3; bool isAAFailure = false; if (StoreOffset < LoadOffset) { isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; } else { isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; } if (isAAFailure) { #if 0 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" << "Base = " << *StoreBase << "\n" << "Store Ptr = " << *WritePtr << "\n" << "Store Offs = " << StoreOffset << "\n" << "Load Ptr = " << *LoadPtr << "\n"; abort(); #endif return -1; } // If the Load isn't completely contained within the stored bits, we don't // have all the bits to feed it. We could do something crazy in the future // (issue a smaller load then merge the bits in) but this seems unlikely to be // valuable. if (StoreOffset > LoadOffset || StoreOffset+StoreSize < LoadOffset+LoadSize) return -1; // Okay, we can do this transformation. Return the number of bytes into the // store that the load is. return LoadOffset-StoreOffset; } /// AnalyzeLoadFromClobberingStore - This function is called when we have a /// memdep query of a load that ends up being a clobbering store. static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const TargetData &TD) { // Cannot handle reading from store of first-class aggregate yet. if (isa(DepSI->getOperand(0)->getType()) || isa(DepSI->getOperand(0)->getType())) return -1; Value *StorePtr = DepSI->getPointerOperand(); uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType()); return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, TD); } static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr, MemIntrinsic *MI, const TargetData &TD) { // If the mem operation is a non-constant size, we can't handle it. ConstantInt *SizeCst = dyn_cast(MI->getLength()); if (SizeCst == 0) return -1; uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; // If this is memset, we just need to see if the offset is valid in the size // of the memset.. if (MI->getIntrinsicID() == Intrinsic::memset) return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), MemSizeInBits, TD); // If we have a memcpy/memmove, the only case we can handle is if this is a // copy from constant memory. In that case, we can read directly from the // constant memory. MemTransferInst *MTI = cast(MI); Constant *Src = dyn_cast(MTI->getSource()); if (Src == 0) return -1; GlobalVariable *GV = dyn_cast(Src->getUnderlyingObject()); if (GV == 0 || !GV->isConstant()) return -1; // See if the access is within the bounds of the transfer. int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), MemSizeInBits, TD); if (Offset == -1) return Offset; // Otherwise, see if we can constant fold a load from the constant with the // offset applied as appropriate. Src = ConstantExpr::getBitCast(Src, llvm::Type::getInt8PtrTy(Src->getContext())); Constant *OffsetCst = ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1); Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); if (ConstantFoldLoadFromConstPtr(Src, &TD)) return Offset; return -1; } /// GetStoreValueForLoad - This function is called when we have a /// memdep query of a load that ends up being a clobbering store. This means /// that the store *may* provide bits used by the load but we can't be sure /// because the pointers don't mustalias. Check this case to see if there is /// anything more we can do before we give up. static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, const Type *LoadTy, Instruction *InsertPt, const TargetData &TD){ LLVMContext &Ctx = SrcVal->getType()->getContext(); uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8; uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; IRBuilder<> Builder(InsertPt->getParent(), InsertPt); // Compute which bits of the stored value are being used by the load. Convert // to an integer type to start with. if (isa(SrcVal->getType())) SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp"); if (!isa(SrcVal->getType())) SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8), "tmp"); // Shift the bits to the least significant depending on endianness. unsigned ShiftAmt; if (TD.isLittleEndian()) ShiftAmt = Offset*8; else ShiftAmt = (StoreSize-LoadSize-Offset)*8; if (ShiftAmt) SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp"); if (LoadSize != StoreSize) SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8), "tmp"); return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); } /// GetMemInstValueForLoad - This function is called when we have a /// memdep query of a load that ends up being a clobbering mem intrinsic. static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, const Type *LoadTy, Instruction *InsertPt, const TargetData &TD){ LLVMContext &Ctx = LoadTy->getContext(); uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; IRBuilder<> Builder(InsertPt->getParent(), InsertPt); // We know that this method is only called when the mem transfer fully // provides the bits for the load. if (MemSetInst *MSI = dyn_cast(SrcInst)) { // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and // independently of what the offset is. Value *Val = MSI->getValue(); if (LoadSize != 1) Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); Value *OneElt = Val; // Splat the value out to the right number of bits. for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { // If we can double the number of bytes set, do it. if (NumBytesSet*2 <= LoadSize) { Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); Val = Builder.CreateOr(Val, ShVal); NumBytesSet <<= 1; continue; } // Otherwise insert one byte at a time. Value *ShVal = Builder.CreateShl(Val, 1*8); Val = Builder.CreateOr(OneElt, ShVal); ++NumBytesSet; } return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD); } // Otherwise, this is a memcpy/memmove from a constant global. MemTransferInst *MTI = cast(SrcInst); Constant *Src = cast(MTI->getSource()); // Otherwise, see if we can constant fold a load from the constant with the // offset applied as appropriate. Src = ConstantExpr::getBitCast(Src, llvm::Type::getInt8PtrTy(Src->getContext())); Constant *OffsetCst = ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1); Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); return ConstantFoldLoadFromConstPtr(Src, &TD); } struct AvailableValueInBlock { /// BB - The basic block in question. BasicBlock *BB; enum ValType { SimpleVal, // A simple offsetted value that is accessed. MemIntrin // A memory intrinsic which is loaded from. }; /// V - The value that is live out of the block. PointerIntPair Val; /// Offset - The byte offset in Val that is interesting for the load query. unsigned Offset; static AvailableValueInBlock get(BasicBlock *BB, Value *V, unsigned Offset = 0) { AvailableValueInBlock Res; Res.BB = BB; Res.Val.setPointer(V); Res.Val.setInt(SimpleVal); Res.Offset = Offset; return Res; } static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI, unsigned Offset = 0) { AvailableValueInBlock Res; Res.BB = BB; Res.Val.setPointer(MI); Res.Val.setInt(MemIntrin); Res.Offset = Offset; return Res; } bool isSimpleValue() const { return Val.getInt() == SimpleVal; } Value *getSimpleValue() const { assert(isSimpleValue() && "Wrong accessor"); return Val.getPointer(); } MemIntrinsic *getMemIntrinValue() const { assert(!isSimpleValue() && "Wrong accessor"); return cast(Val.getPointer()); } /// MaterializeAdjustedValue - Emit code into this block to adjust the value /// defined here to the specified type. This handles various coercion cases. Value *MaterializeAdjustedValue(const Type *LoadTy, const TargetData *TD) const { Value *Res; if (isSimpleValue()) { Res = getSimpleValue(); if (Res->getType() != LoadTy) { assert(TD && "Need target data to handle type mismatch case"); Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), *TD); DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " << *getSimpleValue() << '\n' << *Res << '\n' << "\n\n\n"); } } else { Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, BB->getTerminator(), *TD); DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset << " " << *getMemIntrinValue() << '\n' << *Res << '\n' << "\n\n\n"); } return Res; } }; /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock, /// construct SSA form, allowing us to eliminate LI. This returns the value /// that should be used at LI's definition site. static Value *ConstructSSAForLoadSet(LoadInst *LI, SmallVectorImpl &ValuesPerBlock, const TargetData *TD, const DominatorTree &DT, AliasAnalysis *AA) { // Check for the fully redundant, dominating load case. In this case, we can // just use the dominating value directly. if (ValuesPerBlock.size() == 1 && DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent())) return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD); // Otherwise, we have to construct SSA form. SmallVector NewPHIs; SSAUpdater SSAUpdate(&NewPHIs); SSAUpdate.Initialize(LI); const Type *LoadTy = LI->getType(); for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { const AvailableValueInBlock &AV = ValuesPerBlock[i]; BasicBlock *BB = AV.BB; if (SSAUpdate.HasValueForBlock(BB)) continue; SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD)); } // Perform PHI construction. Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); // If new PHI nodes were created, notify alias analysis. if (isa(V->getType())) for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) AA->copyValue(LI, NewPHIs[i]); return V; } static bool isLifetimeStart(Instruction *Inst) { if (IntrinsicInst* II = dyn_cast(Inst)) return II->getIntrinsicID() == Intrinsic::lifetime_start; return false; } /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are /// non-local by performing PHI construction. bool GVN::processNonLocalLoad(LoadInst *LI, SmallVectorImpl &toErase) { // Find the non-local dependencies of the load. SmallVector Deps; MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(), Deps); //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: " // << Deps.size() << *LI << '\n'); // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. if (Deps.size() > 100) return false; // If we had a phi translation failure, we'll have a single entry which is a // clobber in the current block. Reject this early. if (Deps.size() == 1 && Deps[0].getResult().isClobber()) { DEBUG( dbgs() << "GVN: non-local load "; WriteAsOperand(dbgs(), LI); dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n'; ); return false; } // Filter out useless results (non-locals, etc). Keep track of the blocks // where we have a value available in repl, also keep track of whether we see // dependencies that produce an unknown value for the load (such as a call // that could potentially clobber the load). SmallVector ValuesPerBlock; SmallVector UnavailableBlocks; const TargetData *TD = 0; for (unsigned i = 0, e = Deps.size(); i != e; ++i) { BasicBlock *DepBB = Deps[i].getBB(); MemDepResult DepInfo = Deps[i].getResult(); if (DepInfo.isClobber()) { // The address being loaded in this non-local block may not be the same as // the pointer operand of the load if PHI translation occurs. Make sure // to consider the right address. Value *Address = Deps[i].getAddress(); // If the dependence is to a store that writes to a superset of the bits // read by the load, we can extract the bits we need for the load from the // stored value. if (StoreInst *DepSI = dyn_cast(DepInfo.getInst())) { if (TD == 0) TD = getAnalysisIfAvailable(); if (TD && Address) { int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, *TD); if (Offset != -1) { ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, DepSI->getOperand(0), Offset)); continue; } } } // If the clobbering value is a memset/memcpy/memmove, see if we can // forward a value on from it. if (MemIntrinsic *DepMI = dyn_cast(DepInfo.getInst())) { if (TD == 0) TD = getAnalysisIfAvailable(); if (TD && Address) { int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, DepMI, *TD); if (Offset != -1) { ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI, Offset)); continue; } } } UnavailableBlocks.push_back(DepBB); continue; } Instruction *DepInst = DepInfo.getInst(); // Loading the allocation -> undef. if (isa(DepInst) || isMalloc(DepInst) || // Loading immediately after lifetime begin -> undef. isLifetimeStart(DepInst)) { ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, UndefValue::get(LI->getType()))); continue; } if (StoreInst *S = dyn_cast(DepInst)) { // Reject loads and stores that are to the same address but are of // different types if we have to. if (S->getOperand(0)->getType() != LI->getType()) { if (TD == 0) TD = getAnalysisIfAvailable(); // If the stored value is larger or equal to the loaded value, we can // reuse it. if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0), LI->getType(), *TD)) { UnavailableBlocks.push_back(DepBB); continue; } } ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, S->getOperand(0))); continue; } if (LoadInst *LD = dyn_cast(DepInst)) { // If the types mismatch and we can't handle it, reject reuse of the load. if (LD->getType() != LI->getType()) { if (TD == 0) TD = getAnalysisIfAvailable(); // If the stored value is larger or equal to the loaded value, we can // reuse it. if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){ UnavailableBlocks.push_back(DepBB); continue; } } ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD)); continue; } UnavailableBlocks.push_back(DepBB); continue; } // If we have no predecessors that produce a known value for this load, exit // early. if (ValuesPerBlock.empty()) return false; // If all of the instructions we depend on produce a known value for this // load, then it is fully redundant and we can use PHI insertion to compute // its value. Insert PHIs and remove the fully redundant value now. if (UnavailableBlocks.empty()) { DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); // Perform PHI construction. Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT, VN.getAliasAnalysis()); LI->replaceAllUsesWith(V); if (isa(V)) V->takeName(LI); if (isa(V->getType())) MD->invalidateCachedPointerInfo(V); toErase.push_back(LI); NumGVNLoad++; return true; } if (!EnablePRE || !EnableLoadPRE) return false; // Okay, we have *some* definitions of the value. This means that the value // is available in some of our (transitive) predecessors. Lets think about // doing PRE of this load. This will involve inserting a new load into the // predecessor when it's not available. We could do this in general, but // prefer to not increase code size. As such, we only do this when we know // that we only have to insert *one* load (which means we're basically moving // the load, not inserting a new one). SmallPtrSet Blockers; for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) Blockers.insert(UnavailableBlocks[i]); // Lets find first basic block with more than one predecessor. Walk backwards // through predecessors if needed. BasicBlock *LoadBB = LI->getParent(); BasicBlock *TmpBB = LoadBB; bool isSinglePred = false; bool allSingleSucc = true; while (TmpBB->getSinglePredecessor()) { isSinglePred = true; TmpBB = TmpBB->getSinglePredecessor(); if (!TmpBB) // If haven't found any, bail now. return false; if (TmpBB == LoadBB) // Infinite (unreachable) loop. return false; if (Blockers.count(TmpBB)) return false; if (TmpBB->getTerminator()->getNumSuccessors() != 1) allSingleSucc = false; } assert(TmpBB); LoadBB = TmpBB; // If we have a repl set with LI itself in it, this means we have a loop where // at least one of the values is LI. Since this means that we won't be able // to eliminate LI even if we insert uses in the other predecessors, we will // end up increasing code size. Reject this by scanning for LI. for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) if (ValuesPerBlock[i].isSimpleValue() && ValuesPerBlock[i].getSimpleValue() == LI) return false; // FIXME: It is extremely unclear what this loop is doing, other than // artificially restricting loadpre. if (isSinglePred) { bool isHot = false; for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { const AvailableValueInBlock &AV = ValuesPerBlock[i]; if (AV.isSimpleValue()) // "Hot" Instruction is in some loop (because it dominates its dep. // instruction). if (Instruction *I = dyn_cast(AV.getSimpleValue())) if (DT->dominates(LI, I)) { isHot = true; break; } } // We are interested only in "hot" instructions. We don't want to do any // mis-optimizations here. if (!isHot) return false; } // Okay, we have some hope :). Check to see if the loaded value is fully // available in all but one predecessor. // FIXME: If we could restructure the CFG, we could make a common pred with // all the preds that don't have an available LI and insert a new load into // that one block. BasicBlock *UnavailablePred = 0; DenseMap FullyAvailableBlocks; for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) FullyAvailableBlocks[ValuesPerBlock[i].BB] = true; for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) FullyAvailableBlocks[UnavailableBlocks[i]] = false; for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) { if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) continue; // If this load is not available in multiple predecessors, reject it. if (UnavailablePred && UnavailablePred != *PI) return false; UnavailablePred = *PI; } assert(UnavailablePred != 0 && "Fully available value should be eliminated above!"); // We don't currently handle critical edges :( if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) { DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '" << UnavailablePred->getName() << "': " << *LI << '\n'); return false; } // Do PHI translation to get its value in the predecessor if necessary. The // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. // SmallVector NewInsts; // If all preds have a single successor, then we know it is safe to insert the // load on the pred (?!?), so we can insert code to materialize the pointer if // it is not available. PHITransAddr Address(LI->getOperand(0), TD); Value *LoadPtr = 0; if (allSingleSucc) { LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, NewInsts); } else { Address.PHITranslateValue(LoadBB, UnavailablePred); LoadPtr = Address.getAddr(); // Make sure the value is live in the predecessor. if (Instruction *Inst = dyn_cast_or_null(LoadPtr)) if (!DT->dominates(Inst->getParent(), UnavailablePred)) LoadPtr = 0; } // If we couldn't find or insert a computation of this phi translated value, // we fail PRE. if (LoadPtr == 0) { assert(NewInsts.empty() && "Shouldn't insert insts on failure"); DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " << *LI->getOperand(0) << "\n"); return false; } // Assign value numbers to these new instructions. for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) { // FIXME: We really _ought_ to insert these value numbers into their // parent's availability map. However, in doing so, we risk getting into // ordering issues. If a block hasn't been processed yet, we would be // marking a value as AVAIL-IN, which isn't what we intend. VN.lookup_or_add(NewInsts[i]); } // Make sure it is valid to move this load here. We have to watch out for: // @1 = getelementptr (i8* p, ... // test p and branch if == 0 // load @1 // It is valid to have the getelementptr before the test, even if p can be 0, // as getelementptr only does address arithmetic. // If we are not pushing the value through any multiple-successor blocks // we do not have this case. Otherwise, check that the load is safe to // put anywhere; this can be improved, but should be conservatively safe. if (!allSingleSucc && // FIXME: REEVALUTE THIS. !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) { assert(NewInsts.empty() && "Should not have inserted instructions"); return false; } // Okay, we can eliminate this load by inserting a reload in the predecessor // and using PHI construction to get the value in the other predecessors, do // it. DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() << '\n'); Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, LI->getAlignment(), UnavailablePred->getTerminator()); // Add the newly created load. ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad)); // Perform PHI construction. Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT, VN.getAliasAnalysis()); LI->replaceAllUsesWith(V); if (isa(V)) V->takeName(LI); if (isa(V->getType())) MD->invalidateCachedPointerInfo(V); toErase.push_back(LI); NumPRELoad++; return true; } /// processLoad - Attempt to eliminate a load, first by eliminating it /// locally, and then attempting non-local elimination if that fails. bool GVN::processLoad(LoadInst *L, SmallVectorImpl &toErase) { if (!MD) return false; if (L->isVolatile()) return false; // ... to a pointer that has been loaded from before... MemDepResult Dep = MD->getDependency(L); // If the value isn't available, don't do anything! if (Dep.isClobber()) { // Check to see if we have something like this: // store i32 123, i32* %P // %A = bitcast i32* %P to i8* // %B = gep i8* %A, i32 1 // %C = load i8* %B // // We could do that by recognizing if the clobber instructions are obviously // a common base + constant offset, and if the previous store (or memset) // completely covers this load. This sort of thing can happen in bitfield // access code. Value *AvailVal = 0; if (StoreInst *DepSI = dyn_cast(Dep.getInst())) if (const TargetData *TD = getAnalysisIfAvailable()) { int Offset = AnalyzeLoadFromClobberingStore(L->getType(), L->getPointerOperand(), DepSI, *TD); if (Offset != -1) AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset, L->getType(), L, *TD); } // If the clobbering value is a memset/memcpy/memmove, see if we can forward // a value on from it. if (MemIntrinsic *DepMI = dyn_cast(Dep.getInst())) { if (const TargetData *TD = getAnalysisIfAvailable()) { int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(), L->getPointerOperand(), DepMI, *TD); if (Offset != -1) AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD); } } if (AvailVal) { DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n' << *AvailVal << '\n' << *L << "\n\n\n"); // Replace the load! L->replaceAllUsesWith(AvailVal); if (isa(AvailVal->getType())) MD->invalidateCachedPointerInfo(AvailVal); toErase.push_back(L); NumGVNLoad++; return true; } DEBUG( // fast print dep, using operator<< on instruction would be too slow dbgs() << "GVN: load "; WriteAsOperand(dbgs(), L); Instruction *I = Dep.getInst(); dbgs() << " is clobbered by " << *I << '\n'; ); return false; } // If it is defined in another block, try harder. if (Dep.isNonLocal()) return processNonLocalLoad(L, toErase); Instruction *DepInst = Dep.getInst(); if (StoreInst *DepSI = dyn_cast(DepInst)) { Value *StoredVal = DepSI->getOperand(0); // The store and load are to a must-aliased pointer, but they may not // actually have the same type. See if we know how to reuse the stored // value (depending on its type). const TargetData *TD = 0; if (StoredVal->getType() != L->getType()) { if ((TD = getAnalysisIfAvailable())) { StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, *TD); if (StoredVal == 0) return false; DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal << '\n' << *L << "\n\n\n"); } else return false; } // Remove it! L->replaceAllUsesWith(StoredVal); if (isa(StoredVal->getType())) MD->invalidateCachedPointerInfo(StoredVal); toErase.push_back(L); NumGVNLoad++; return true; } if (LoadInst *DepLI = dyn_cast(DepInst)) { Value *AvailableVal = DepLI; // The loads are of a must-aliased pointer, but they may not actually have // the same type. See if we know how to reuse the previously loaded value // (depending on its type). const TargetData *TD = 0; if (DepLI->getType() != L->getType()) { if ((TD = getAnalysisIfAvailable())) { AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD); if (AvailableVal == 0) return false; DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal << "\n" << *L << "\n\n\n"); } else return false; } // Remove it! L->replaceAllUsesWith(AvailableVal); if (isa(DepLI->getType())) MD->invalidateCachedPointerInfo(DepLI); toErase.push_back(L); NumGVNLoad++; return true; } // If this load really doesn't depend on anything, then we must be loading an // undef value. This can happen when loading for a fresh allocation with no // intervening stores, for example. if (isa(DepInst) || isMalloc(DepInst)) { L->replaceAllUsesWith(UndefValue::get(L->getType())); toErase.push_back(L); NumGVNLoad++; return true; } // If this load occurs either right after a lifetime begin, // then the loaded value is undefined. if (IntrinsicInst* II = dyn_cast(DepInst)) { if (II->getIntrinsicID() == Intrinsic::lifetime_start) { L->replaceAllUsesWith(UndefValue::get(L->getType())); toErase.push_back(L); NumGVNLoad++; return true; } } return false; } Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) { DenseMap::iterator I = localAvail.find(BB); if (I == localAvail.end()) return 0; ValueNumberScope *Locals = I->second; while (Locals) { DenseMap::iterator I = Locals->table.find(num); if (I != Locals->table.end()) return I->second; Locals = Locals->parent; } return 0; } /// processInstruction - When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction *I, SmallVectorImpl &toErase) { if (LoadInst *LI = dyn_cast(I)) { bool Changed = processLoad(LI, toErase); if (!Changed) { unsigned Num = VN.lookup_or_add(LI); localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI)); } return Changed; } uint32_t NextNum = VN.getNextUnusedValueNumber(); unsigned Num = VN.lookup_or_add(I); if (BranchInst *BI = dyn_cast(I)) { localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); if (!BI->isConditional() || isa(BI->getCondition())) return false; Value *BranchCond = BI->getCondition(); uint32_t CondVN = VN.lookup_or_add(BranchCond); BasicBlock *TrueSucc = BI->getSuccessor(0); BasicBlock *FalseSucc = BI->getSuccessor(1); if (TrueSucc->getSinglePredecessor()) localAvail[TrueSucc]->table[CondVN] = ConstantInt::getTrue(TrueSucc->getContext()); if (FalseSucc->getSinglePredecessor()) localAvail[FalseSucc]->table[CondVN] = ConstantInt::getFalse(TrueSucc->getContext()); return false; // Allocations are always uniquely numbered, so we can save time and memory // by fast failing them. } else if (isa(I) || isa(I)) { localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); return false; } // Collapse PHI nodes if (PHINode* p = dyn_cast(I)) { Value *constVal = CollapsePhi(p); if (constVal) { p->replaceAllUsesWith(constVal); if (MD && isa(constVal->getType())) MD->invalidateCachedPointerInfo(constVal); VN.erase(p); toErase.push_back(p); } else { localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); } // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! } else if (Num == NextNum) { localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); // Perform fast-path value-number based elimination of values inherited from // dominators. } else if (Value *repl = lookupNumber(I->getParent(), Num)) { // Remove it! VN.erase(I); I->replaceAllUsesWith(repl); if (MD && isa(repl->getType())) MD->invalidateCachedPointerInfo(repl); toErase.push_back(I); return true; } else { localAvail[I->getParent()]->table.insert(std::make_pair(Num, I)); } return false; } /// runOnFunction - This is the main transformation entry point for a function. bool GVN::runOnFunction(Function& F) { if (!NoLoads) MD = &getAnalysis(); DT = &getAnalysis(); VN.setAliasAnalysis(&getAnalysis()); VN.setMemDep(MD); VN.setDomTree(DT); bool Changed = false; bool ShouldContinue = true; // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { BasicBlock *BB = FI; ++FI; bool removedBlock = MergeBlockIntoPredecessor(BB, this); if (removedBlock) NumGVNBlocks++; Changed |= removedBlock; } unsigned Iteration = 0; while (ShouldContinue) { DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); ShouldContinue = iterateOnFunction(F); Changed |= ShouldContinue; ++Iteration; } if (EnablePRE) { bool PREChanged = true; while (PREChanged) { PREChanged = performPRE(F); Changed |= PREChanged; } } // FIXME: Should perform GVN again after PRE does something. PRE can move // computations into blocks where they become fully redundant. Note that // we can't do this until PRE's critical edge splitting updates memdep. // Actually, when this happens, we should just fully integrate PRE into GVN. cleanupGlobalSets(); return Changed; } bool GVN::processBlock(BasicBlock *BB) { // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and // incrementing BI before processing an instruction). SmallVector toErase; bool ChangedFunction = false; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { ChangedFunction |= processInstruction(BI, toErase); if (toErase.empty()) { ++BI; continue; } // If we need some instructions deleted, do it now. NumGVNInstr += toErase.size(); // Avoid iterator invalidation. bool AtStart = BI == BB->begin(); if (!AtStart) --BI; for (SmallVector::iterator I = toErase.begin(), E = toErase.end(); I != E; ++I) { DEBUG(dbgs() << "GVN removed: " << **I << '\n'); if (MD) MD->removeInstruction(*I); (*I)->eraseFromParent(); DEBUG(verifyRemoved(*I)); } toErase.clear(); if (AtStart) BI = BB->begin(); else ++BI; } return ChangedFunction; } /// performPRE - Perform a purely local form of PRE that looks for diamond /// control flow patterns and attempts to perform simple PRE at the join point. bool GVN::performPRE(Function &F) { bool Changed = false; SmallVector, 4> toSplit; DenseMap predMap; for (df_iterator DI = df_begin(&F.getEntryBlock()), DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { BasicBlock *CurrentBlock = *DI; // Nothing to PRE in the entry block. if (CurrentBlock == &F.getEntryBlock()) continue; for (BasicBlock::iterator BI = CurrentBlock->begin(), BE = CurrentBlock->end(); BI != BE; ) { Instruction *CurInst = BI++; if (isa(CurInst) || isa(CurInst) || isa(CurInst) || CurInst->getType()->isVoidTy() || CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || isa(CurInst)) continue; uint32_t ValNo = VN.lookup(CurInst); // Look for the predecessors for PRE opportunities. We're // only trying to solve the basic diamond case, where // a value is computed in the successor and one predecessor, // but not the other. We also explicitly disallow cases // where the successor is its own predecessor, because they're // more complicated to get right. unsigned NumWith = 0; unsigned NumWithout = 0; BasicBlock *PREPred = 0; predMap.clear(); for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) { // We're not interested in PRE where the block is its // own predecessor, on in blocks with predecessors // that are not reachable. if (*PI == CurrentBlock) { NumWithout = 2; break; } else if (!localAvail.count(*PI)) { NumWithout = 2; break; } DenseMap::iterator predV = localAvail[*PI]->table.find(ValNo); if (predV == localAvail[*PI]->table.end()) { PREPred = *PI; NumWithout++; } else if (predV->second == CurInst) { NumWithout = 2; } else { predMap[*PI] = predV->second; NumWith++; } } // Don't do PRE when it might increase code size, i.e. when // we would need to insert instructions in more than one pred. if (NumWithout != 1 || NumWith == 0) continue; // Don't do PRE across indirect branch. if (isa(PREPred->getTerminator())) continue; // We can't do PRE safely on a critical edge, so instead we schedule // the edge to be split and perform the PRE the next time we iterate // on the function. unsigned SuccNum = 0; for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors(); i != e; ++i) if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) { SuccNum = i; break; } if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); continue; } // Instantiate the expression the in predecessor that lacked it. // Because we are going top-down through the block, all value numbers // will be available in the predecessor by the time we need them. Any // that weren't original present will have been instantiated earlier // in this loop. Instruction *PREInstr = CurInst->clone(); bool success = true; for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { Value *Op = PREInstr->getOperand(i); if (isa(Op) || isa(Op) || isa(Op)) continue; if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) { PREInstr->setOperand(i, V); } else { success = false; break; } } // Fail out if we encounter an operand that is not available in // the PRE predecessor. This is typically because of loads which // are not value numbered precisely. if (!success) { delete PREInstr; DEBUG(verifyRemoved(PREInstr)); continue; } PREInstr->insertBefore(PREPred->getTerminator()); PREInstr->setName(CurInst->getName() + ".pre"); predMap[PREPred] = PREInstr; VN.add(PREInstr, ValNo); NumGVNPRE++; // Update the availability map to include the new instruction. localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr)); // Create a PHI to make the value available in this block. PHINode* Phi = PHINode::Create(CurInst->getType(), CurInst->getName() + ".pre-phi", CurrentBlock->begin()); for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) Phi->addIncoming(predMap[*PI], *PI); VN.add(Phi, ValNo); localAvail[CurrentBlock]->table[ValNo] = Phi; CurInst->replaceAllUsesWith(Phi); if (MD && isa(Phi->getType())) MD->invalidateCachedPointerInfo(Phi); VN.erase(CurInst); DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); if (MD) MD->removeInstruction(CurInst); CurInst->eraseFromParent(); DEBUG(verifyRemoved(CurInst)); Changed = true; } } for (SmallVector, 4>::iterator I = toSplit.begin(), E = toSplit.end(); I != E; ++I) SplitCriticalEdge(I->first, I->second, this); return Changed || toSplit.size(); } /// iterateOnFunction - Executes one iteration of GVN bool GVN::iterateOnFunction(Function &F) { cleanupGlobalSets(); for (df_iterator DI = df_begin(DT->getRootNode()), DE = df_end(DT->getRootNode()); DI != DE; ++DI) { if (DI->getIDom()) localAvail[DI->getBlock()] = new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]); else localAvail[DI->getBlock()] = new ValueNumberScope(0); } // Top-down walk of the dominator tree bool Changed = false; #if 0 // Needed for value numbering with phi construction to work. ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) Changed |= processBlock(*RI); #else for (df_iterator DI = df_begin(DT->getRootNode()), DE = df_end(DT->getRootNode()); DI != DE; ++DI) Changed |= processBlock(DI->getBlock()); #endif return Changed; } void GVN::cleanupGlobalSets() { VN.clear(); for (DenseMap::iterator I = localAvail.begin(), E = localAvail.end(); I != E; ++I) delete I->second; localAvail.clear(); } /// verifyRemoved - Verify that the specified instruction does not occur in our /// internal data structures. void GVN::verifyRemoved(const Instruction *Inst) const { VN.verifyRemoved(Inst); // Walk through the value number scope to make sure the instruction isn't // ferreted away in it. for (DenseMap::const_iterator I = localAvail.begin(), E = localAvail.end(); I != E; ++I) { const ValueNumberScope *VNS = I->second; while (VNS) { for (DenseMap::const_iterator II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) { assert(II->second != Inst && "Inst still in value numbering scope!"); } VNS = VNS->parent; } } }