//===- GVNPRE.cpp - Eliminate redundant values and expressions ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a hybrid of global value numbering and partial redundancy // elimination, known as GVN-PRE. It performs partial redundancy elimination on // values, rather than lexical expressions, allowing a more comprehensive view // the optimization. It replaces redundant values with uses of earlier // occurences of the same value. While this is beneficial in that it eliminates // unneeded computation, it also increases register pressure by creating large // live ranges, and should be used with caution on platforms that are very // sensitive to register pressure. // // Note that this pass does the value numbering itself, it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "gvnpre" #include "llvm/Value.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // ValueTable Class //===----------------------------------------------------------------------===// namespace { /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. struct Expression { enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, PTRTOINT, INTTOPTR, BITCAST, GEP, EMPTY, TOMBSTONE }; ExpressionOpcode opcode; const Type* type; uint32_t firstVN; uint32_t secondVN; uint32_t thirdVN; SmallVector varargs; Expression() { } explicit Expression(ExpressionOpcode o) : opcode(o) { } bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; else if (opcode == EMPTY || opcode == TOMBSTONE) return true; else if (type != other.type) return false; else if (firstVN != other.firstVN) return false; else if (secondVN != other.secondVN) return false; else if (thirdVN != other.thirdVN) return false; else { if (varargs.size() != other.varargs.size()) return false; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return false; return true; } } bool operator!=(const Expression &other) const { if (opcode != other.opcode) return true; else if (opcode == EMPTY || opcode == TOMBSTONE) return false; else if (type != other.type) return true; else if (firstVN != other.firstVN) return true; else if (secondVN != other.secondVN) return true; else if (thirdVN != other.thirdVN) return true; else { if (varargs.size() != other.varargs.size()) return true; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return true; return false; } } }; } namespace { class VISIBILITY_HIDDEN ValueTable { private: DenseMap valueNumbering; DenseMap expressionNumbering; uint32_t nextValueNumber; Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); Expression::ExpressionOpcode getOpcode(CmpInst* C); Expression::ExpressionOpcode getOpcode(CastInst* C); Expression create_expression(BinaryOperator* BO); Expression create_expression(CmpInst* C); Expression create_expression(ShuffleVectorInst* V); Expression create_expression(ExtractElementInst* C); Expression create_expression(InsertElementInst* V); Expression create_expression(SelectInst* V); Expression create_expression(CastInst* C); Expression create_expression(GetElementPtrInst* G); public: ValueTable() { nextValueNumber = 1; } uint32_t lookup_or_add(Value* V); uint32_t lookup(Value* V) const; void add(Value* V, uint32_t num); void clear(); void erase(Value* v); unsigned size(); }; } namespace llvm { template <> struct DenseMapInfo { static inline Expression getEmptyKey() { return Expression(Expression::EMPTY); } static inline Expression getTombstoneKey() { return Expression(Expression::TOMBSTONE); } static unsigned getHashValue(const Expression e) { unsigned hash = e.opcode; hash = e.firstVN + hash * 37; hash = e.secondVN + hash * 37; hash = e.thirdVN + hash * 37; hash = ((unsigned)((uintptr_t)e.type >> 4) ^ (unsigned)((uintptr_t)e.type >> 9)) + hash * 37; for (SmallVector::const_iterator I = e.varargs.begin(), E = e.varargs.end(); I != E; ++I) hash = *I + hash * 37; return hash; } static bool isEqual(const Expression &LHS, const Expression &RHS) { return LHS == RHS; } static bool isPod() { return true; } }; } //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) { switch(BO->getOpcode()) { case Instruction::Add: return Expression::ADD; case Instruction::Sub: return Expression::SUB; case Instruction::Mul: return Expression::MUL; case Instruction::UDiv: return Expression::UDIV; case Instruction::SDiv: return Expression::SDIV; case Instruction::FDiv: return Expression::FDIV; case Instruction::URem: return Expression::UREM; case Instruction::SRem: return Expression::SREM; case Instruction::FRem: return Expression::FREM; case Instruction::Shl: return Expression::SHL; case Instruction::LShr: return Expression::LSHR; case Instruction::AShr: return Expression::ASHR; case Instruction::And: return Expression::AND; case Instruction::Or: return Expression::OR; case Instruction::Xor: return Expression::XOR; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Binary operator with unknown opcode?"); return Expression::ADD; } } Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { if (C->getOpcode() == Instruction::ICmp) { switch (C->getPredicate()) { case ICmpInst::ICMP_EQ: return Expression::ICMPEQ; case ICmpInst::ICMP_NE: return Expression::ICMPNE; case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; case ICmpInst::ICMP_ULT: return Expression::ICMPULT; case ICmpInst::ICMP_ULE: return Expression::ICMPULE; case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Comparison with unknown predicate?"); return Expression::ICMPEQ; } } else { switch (C->getPredicate()) { case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; case FCmpInst::FCMP_ONE: return Expression::FCMPONE; case FCmpInst::FCMP_ORD: return Expression::FCMPORD; case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; case FCmpInst::FCMP_ULT: return Expression::FCMPULT; case FCmpInst::FCMP_ULE: return Expression::FCMPULE; case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Comparison with unknown predicate?"); return Expression::FCMPOEQ; } } } Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) { switch(C->getOpcode()) { case Instruction::Trunc: return Expression::TRUNC; case Instruction::ZExt: return Expression::ZEXT; case Instruction::SExt: return Expression::SEXT; case Instruction::FPToUI: return Expression::FPTOUI; case Instruction::FPToSI: return Expression::FPTOSI; case Instruction::UIToFP: return Expression::UITOFP; case Instruction::SIToFP: return Expression::SITOFP; case Instruction::FPTrunc: return Expression::FPTRUNC; case Instruction::FPExt: return Expression::FPEXT; case Instruction::PtrToInt: return Expression::PTRTOINT; case Instruction::IntToPtr: return Expression::INTTOPTR; case Instruction::BitCast: return Expression::BITCAST; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Cast operator with unknown opcode?"); return Expression::BITCAST; } } Expression ValueTable::create_expression(BinaryOperator* BO) { Expression e; e.firstVN = lookup_or_add(BO->getOperand(0)); e.secondVN = lookup_or_add(BO->getOperand(1)); e.thirdVN = 0; e.type = BO->getType(); e.opcode = getOpcode(BO); return e; } Expression ValueTable::create_expression(CmpInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = lookup_or_add(C->getOperand(1)); e.thirdVN = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(CastInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = 0; e.thirdVN = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(ShuffleVectorInst* S) { Expression e; e.firstVN = lookup_or_add(S->getOperand(0)); e.secondVN = lookup_or_add(S->getOperand(1)); e.thirdVN = lookup_or_add(S->getOperand(2)); e.type = S->getType(); e.opcode = Expression::SHUFFLE; return e; } Expression ValueTable::create_expression(ExtractElementInst* E) { Expression e; e.firstVN = lookup_or_add(E->getOperand(0)); e.secondVN = lookup_or_add(E->getOperand(1)); e.thirdVN = 0; e.type = E->getType(); e.opcode = Expression::EXTRACT; return e; } Expression ValueTable::create_expression(InsertElementInst* I) { Expression e; e.firstVN = lookup_or_add(I->getOperand(0)); e.secondVN = lookup_or_add(I->getOperand(1)); e.thirdVN = lookup_or_add(I->getOperand(2)); e.type = I->getType(); e.opcode = Expression::INSERT; return e; } Expression ValueTable::create_expression(SelectInst* I) { Expression e; e.firstVN = lookup_or_add(I->getCondition()); e.secondVN = lookup_or_add(I->getTrueValue()); e.thirdVN = lookup_or_add(I->getFalseValue()); e.type = I->getType(); e.opcode = Expression::SELECT; return e; } Expression ValueTable::create_expression(GetElementPtrInst* G) { Expression e; e.firstVN = lookup_or_add(G->getPointerOperand()); e.secondVN = 0; e.thirdVN = 0; e.type = G->getType(); e.opcode = Expression::GEP; for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t ValueTable::lookup_or_add(Value* V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (BinaryOperator* BO = dyn_cast(V)) { Expression e = create_expression(BO); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CmpInst* C = dyn_cast(V)) { Expression e = create_expression(C); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ShuffleVectorInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ExtractElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (InsertElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (SelectInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CastInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (GetElementPtrInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } /// lookup - Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t ValueTable::lookup(Value* V) const { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; else assert(0 && "Value not numbered?"); return 0; } /// add - Add the specified value with the given value number, removing /// its old number, if any void ValueTable::add(Value* V, uint32_t num) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) valueNumbering.erase(VI); valueNumbering.insert(std::make_pair(V, num)); } /// clear - Remove all entries from the ValueTable void ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// erase - Remove a value from the value numbering void ValueTable::erase(Value* V) { valueNumbering.erase(V); } /// size - Return the number of assigned value numbers unsigned ValueTable::size() { // NOTE: zero is never assigned return nextValueNumber; } namespace { //===----------------------------------------------------------------------===// // ValueNumberedSet Class //===----------------------------------------------------------------------===// class ValueNumberedSet { private: SmallPtrSet contents; BitVector numbers; public: ValueNumberedSet() { numbers.resize(1); } ValueNumberedSet(const ValueNumberedSet& other) { numbers = other.numbers; contents = other.contents; } typedef SmallPtrSet::iterator iterator; iterator begin() { return contents.begin(); } iterator end() { return contents.end(); } bool insert(Value* v) { return contents.insert(v); } void insert(iterator I, iterator E) { contents.insert(I, E); } void erase(Value* v) { contents.erase(v); } unsigned count(Value* v) { return contents.count(v); } size_t size() { return contents.size(); } void set(unsigned i) { if (i >= numbers.size()) numbers.resize(i+1); numbers.set(i); } void operator=(const ValueNumberedSet& other) { contents = other.contents; numbers = other.numbers; } void reset(unsigned i) { if (i < numbers.size()) numbers.reset(i); } bool test(unsigned i) { if (i >= numbers.size()) return false; return numbers.test(i); } void clear() { contents.clear(); numbers.clear(); } }; } //===----------------------------------------------------------------------===// // GVNPRE Pass //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN GVNPRE : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid GVNPRE() : FunctionPass(&ID) {} private: ValueTable VN; SmallVector createdExpressions; DenseMap availableOut; DenseMap anticipatedIn; DenseMap generatedPhis; // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(BreakCriticalEdgesID); AU.addRequired(); AU.addRequired(); } // Helper fuctions // FIXME: eliminate or document these better void dump(ValueNumberedSet& s) const ; void clean(ValueNumberedSet& set) ; Value* find_leader(ValueNumberedSet& vals, uint32_t v) ; Value* phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) ; void phi_translate_set(ValueNumberedSet& anticIn, BasicBlock* pred, BasicBlock* succ, ValueNumberedSet& out) ; void topo_sort(ValueNumberedSet& set, SmallVector& vec) ; void cleanup() ; bool elimination() ; void val_insert(ValueNumberedSet& s, Value* v) ; void val_replace(ValueNumberedSet& s, Value* v) ; bool dependsOnInvoke(Value* V) ; void buildsets_availout(BasicBlock::iterator I, ValueNumberedSet& currAvail, ValueNumberedSet& currPhis, ValueNumberedSet& currExps, SmallPtrSet& currTemps); bool buildsets_anticout(BasicBlock* BB, ValueNumberedSet& anticOut, SmallPtrSet& visited); unsigned buildsets_anticin(BasicBlock* BB, ValueNumberedSet& anticOut, ValueNumberedSet& currExps, SmallPtrSet& currTemps, SmallPtrSet& visited); void buildsets(Function& F) ; void insertion_pre(Value* e, BasicBlock* BB, DenseMap& avail, std::map& new_set); unsigned insertion_mergepoint(SmallVector& workList, df_iterator& D, std::map& new_set); bool insertion(Function& F) ; }; char GVNPRE::ID = 0; } // createGVNPREPass - The public interface to this file... FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); } static RegisterPass X("gvnpre", "Global Value Numbering/Partial Redundancy Elimination"); STATISTIC(NumInsertedVals, "Number of values inserted"); STATISTIC(NumInsertedPhis, "Number of PHI nodes inserted"); STATISTIC(NumEliminated, "Number of redundant instructions eliminated"); /// find_leader - Given a set and a value number, return the first /// element of the set with that value number, or 0 if no such element /// is present Value* GVNPRE::find_leader(ValueNumberedSet& vals, uint32_t v) { if (!vals.test(v)) return 0; for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end(); I != E; ++I) if (v == VN.lookup(*I)) return *I; assert(0 && "No leader found, but present bit is set?"); return 0; } /// val_insert - Insert a value into a set only if there is not a value /// with the same value number already in the set void GVNPRE::val_insert(ValueNumberedSet& s, Value* v) { uint32_t num = VN.lookup(v); if (!s.test(num)) s.insert(v); } /// val_replace - Insert a value into a set, replacing any values already in /// the set that have the same value number void GVNPRE::val_replace(ValueNumberedSet& s, Value* v) { if (s.count(v)) return; uint32_t num = VN.lookup(v); Value* leader = find_leader(s, num); if (leader != 0) s.erase(leader); s.insert(v); s.set(num); } /// phi_translate - Given a value, its parent block, and a predecessor of its /// parent, translate the value into legal for the predecessor block. This /// means translating its operands (and recursively, their operands) through /// any phi nodes in the parent into values available in the predecessor Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) { if (V == 0) return 0; // Unary Operations if (CastInst* U = dyn_cast(V)) { Value* newOp1 = 0; if (isa(U->getOperand(0))) newOp1 = phi_translate(U->getOperand(0), pred, succ); else newOp1 = U->getOperand(0); if (newOp1 == 0) return 0; if (newOp1 != U->getOperand(0)) { Instruction* newVal = 0; if (CastInst* C = dyn_cast(U)) newVal = CastInst::Create(C->getOpcode(), newOp1, C->getType(), C->getName()+".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // Binary Operations } if (isa(V) || isa(V) || isa(V)) { User* U = cast(V); Value* newOp1 = 0; if (isa(U->getOperand(0))) newOp1 = phi_translate(U->getOperand(0), pred, succ); else newOp1 = U->getOperand(0); if (newOp1 == 0) return 0; Value* newOp2 = 0; if (isa(U->getOperand(1))) newOp2 = phi_translate(U->getOperand(1), pred, succ); else newOp2 = U->getOperand(1); if (newOp2 == 0) return 0; if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1)) { Instruction* newVal = 0; if (BinaryOperator* BO = dyn_cast(U)) newVal = BinaryOperator::Create(BO->getOpcode(), newOp1, newOp2, BO->getName()+".expr"); else if (CmpInst* C = dyn_cast(U)) newVal = CmpInst::Create(C->getOpcode(), C->getPredicate(), newOp1, newOp2, C->getName()+".expr"); else if (ExtractElementInst* E = dyn_cast(U)) newVal = new ExtractElementInst(newOp1, newOp2, E->getName()+".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // Ternary Operations } else if (isa(V) || isa(V) || isa(V)) { User* U = cast(V); Value* newOp1 = 0; if (isa(U->getOperand(0))) newOp1 = phi_translate(U->getOperand(0), pred, succ); else newOp1 = U->getOperand(0); if (newOp1 == 0) return 0; Value* newOp2 = 0; if (isa(U->getOperand(1))) newOp2 = phi_translate(U->getOperand(1), pred, succ); else newOp2 = U->getOperand(1); if (newOp2 == 0) return 0; Value* newOp3 = 0; if (isa(U->getOperand(2))) newOp3 = phi_translate(U->getOperand(2), pred, succ); else newOp3 = U->getOperand(2); if (newOp3 == 0) return 0; if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1) || newOp3 != U->getOperand(2)) { Instruction* newVal = 0; if (ShuffleVectorInst* S = dyn_cast(U)) newVal = new ShuffleVectorInst(newOp1, newOp2, newOp3, S->getName() + ".expr"); else if (InsertElementInst* I = dyn_cast(U)) newVal = InsertElementInst::Create(newOp1, newOp2, newOp3, I->getName() + ".expr"); else if (SelectInst* I = dyn_cast(U)) newVal = SelectInst::Create(newOp1, newOp2, newOp3, I->getName() + ".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // Varargs operators } else if (GetElementPtrInst* U = dyn_cast(V)) { Value* newOp1 = 0; if (isa(U->getPointerOperand())) newOp1 = phi_translate(U->getPointerOperand(), pred, succ); else newOp1 = U->getPointerOperand(); if (newOp1 == 0) return 0; bool changed_idx = false; SmallVector newIdx; for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); I != E; ++I) if (isa(*I)) { Value* newVal = phi_translate(*I, pred, succ); newIdx.push_back(newVal); if (newVal != *I) changed_idx = true; } else { newIdx.push_back(*I); } if (newOp1 != U->getPointerOperand() || changed_idx) { Instruction* newVal = GetElementPtrInst::Create(newOp1, newIdx.begin(), newIdx.end(), U->getName()+".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // PHI Nodes } else if (PHINode* P = dyn_cast(V)) { if (P->getParent() == succ) return P->getIncomingValueForBlock(pred); } return V; } /// phi_translate_set - Perform phi translation on every element of a set void GVNPRE::phi_translate_set(ValueNumberedSet& anticIn, BasicBlock* pred, BasicBlock* succ, ValueNumberedSet& out) { for (ValueNumberedSet::iterator I = anticIn.begin(), E = anticIn.end(); I != E; ++I) { Value* V = phi_translate(*I, pred, succ); if (V != 0 && !out.test(VN.lookup_or_add(V))) { out.insert(V); out.set(VN.lookup(V)); } } } /// dependsOnInvoke - Test if a value has an phi node as an operand, any of /// whose inputs is an invoke instruction. If this is true, we cannot safely /// PRE the instruction or anything that depends on it. bool GVNPRE::dependsOnInvoke(Value* V) { if (PHINode* p = dyn_cast(V)) { for (PHINode::op_iterator I = p->op_begin(), E = p->op_end(); I != E; ++I) if (isa(*I)) return true; return false; } else { return false; } } /// clean - Remove all non-opaque values from the set whose operands are not /// themselves in the set, as well as all values that depend on invokes (see /// above) void GVNPRE::clean(ValueNumberedSet& set) { SmallVector worklist; worklist.reserve(set.size()); topo_sort(set, worklist); for (unsigned i = 0; i < worklist.size(); ++i) { Value* v = worklist[i]; // Handle unary ops if (CastInst* U = dyn_cast(v)) { bool lhsValid = !isa(U->getOperand(0)); lhsValid |= set.test(VN.lookup(U->getOperand(0))); if (lhsValid) lhsValid = !dependsOnInvoke(U->getOperand(0)); if (!lhsValid) { set.erase(U); set.reset(VN.lookup(U)); } // Handle binary ops } else if (isa(v) || isa(v) || isa(v)) { User* U = cast(v); bool lhsValid = !isa(U->getOperand(0)); lhsValid |= set.test(VN.lookup(U->getOperand(0))); if (lhsValid) lhsValid = !dependsOnInvoke(U->getOperand(0)); bool rhsValid = !isa(U->getOperand(1)); rhsValid |= set.test(VN.lookup(U->getOperand(1))); if (rhsValid) rhsValid = !dependsOnInvoke(U->getOperand(1)); if (!lhsValid || !rhsValid) { set.erase(U); set.reset(VN.lookup(U)); } // Handle ternary ops } else if (isa(v) || isa(v) || isa(v)) { User* U = cast(v); bool lhsValid = !isa(U->getOperand(0)); lhsValid |= set.test(VN.lookup(U->getOperand(0))); if (lhsValid) lhsValid = !dependsOnInvoke(U->getOperand(0)); bool rhsValid = !isa(U->getOperand(1)); rhsValid |= set.test(VN.lookup(U->getOperand(1))); if (rhsValid) rhsValid = !dependsOnInvoke(U->getOperand(1)); bool thirdValid = !isa(U->getOperand(2)); thirdValid |= set.test(VN.lookup(U->getOperand(2))); if (thirdValid) thirdValid = !dependsOnInvoke(U->getOperand(2)); if (!lhsValid || !rhsValid || !thirdValid) { set.erase(U); set.reset(VN.lookup(U)); } // Handle varargs ops } else if (GetElementPtrInst* U = dyn_cast(v)) { bool ptrValid = !isa(U->getPointerOperand()); ptrValid |= set.test(VN.lookup(U->getPointerOperand())); if (ptrValid) ptrValid = !dependsOnInvoke(U->getPointerOperand()); bool varValid = true; for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); I != E; ++I) if (varValid) { varValid &= !isa(*I) || set.test(VN.lookup(*I)); varValid &= !dependsOnInvoke(*I); } if (!ptrValid || !varValid) { set.erase(U); set.reset(VN.lookup(U)); } } } } /// topo_sort - Given a set of values, sort them by topological /// order into the provided vector. void GVNPRE::topo_sort(ValueNumberedSet& set, SmallVector& vec) { SmallPtrSet visited; SmallVector stack; for (ValueNumberedSet::iterator I = set.begin(), E = set.end(); I != E; ++I) { if (visited.count(*I) == 0) stack.push_back(*I); while (!stack.empty()) { Value* e = stack.back(); // Handle unary ops if (CastInst* U = dyn_cast(e)) { Value* l = find_leader(set, VN.lookup(U->getOperand(0))); if (l != 0 && isa(l) && visited.count(l) == 0) stack.push_back(l); else { vec.push_back(e); visited.insert(e); stack.pop_back(); } // Handle binary ops } else if (isa(e) || isa(e) || isa(e)) { User* U = cast(e); Value* l = find_leader(set, VN.lookup(U->getOperand(0))); Value* r = find_leader(set, VN.lookup(U->getOperand(1))); if (l != 0 && isa(l) && visited.count(l) == 0) stack.push_back(l); else if (r != 0 && isa(r) && visited.count(r) == 0) stack.push_back(r); else { vec.push_back(e); visited.insert(e); stack.pop_back(); } // Handle ternary ops } else if (isa(e) || isa(e) || isa(e)) { User* U = cast(e); Value* l = find_leader(set, VN.lookup(U->getOperand(0))); Value* r = find_leader(set, VN.lookup(U->getOperand(1))); Value* m = find_leader(set, VN.lookup(U->getOperand(2))); if (l != 0 && isa(l) && visited.count(l) == 0) stack.push_back(l); else if (r != 0 && isa(r) && visited.count(r) == 0) stack.push_back(r); else if (m != 0 && isa(m) && visited.count(m) == 0) stack.push_back(m); else { vec.push_back(e); visited.insert(e); stack.pop_back(); } // Handle vararg ops } else if (GetElementPtrInst* U = dyn_cast(e)) { Value* p = find_leader(set, VN.lookup(U->getPointerOperand())); if (p != 0 && isa(p) && visited.count(p) == 0) stack.push_back(p); else { bool push_va = false; for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); I != E; ++I) { Value * v = find_leader(set, VN.lookup(*I)); if (v != 0 && isa(v) && visited.count(v) == 0) { stack.push_back(v); push_va = true; } } if (!push_va) { vec.push_back(e); visited.insert(e); stack.pop_back(); } } // Handle opaque ops } else { visited.insert(e); vec.push_back(e); stack.pop_back(); } } stack.clear(); } } /// dump - Dump a set of values to standard error void GVNPRE::dump(ValueNumberedSet& s) const { DOUT << "{ "; for (ValueNumberedSet::iterator I = s.begin(), E = s.end(); I != E; ++I) { DOUT << "" << VN.lookup(*I) << ": "; DEBUG((*I)->dump()); } DOUT << "}\n\n"; } /// elimination - Phase 3 of the main algorithm. Perform full redundancy /// elimination by walking the dominator tree and removing any instruction that /// is dominated by another instruction with the same value number. bool GVNPRE::elimination() { bool changed_function = false; SmallVector, 8> replace; SmallVector erase; DominatorTree& DT = getAnalysis(); for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { BasicBlock* BB = DI->getBlock(); for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { if (isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI)) { if (availableOut[BB].test(VN.lookup(BI)) && !availableOut[BB].count(BI)) { Value *leader = find_leader(availableOut[BB], VN.lookup(BI)); if (Instruction* Instr = dyn_cast(leader)) if (Instr->getParent() != 0 && Instr != BI) { replace.push_back(std::make_pair(BI, leader)); erase.push_back(BI); ++NumEliminated; } } } } } while (!replace.empty()) { std::pair rep = replace.back(); replace.pop_back(); rep.first->replaceAllUsesWith(rep.second); changed_function = true; } for (SmallVector::iterator I = erase.begin(), E = erase.end(); I != E; ++I) (*I)->eraseFromParent(); return changed_function; } /// cleanup - Delete any extraneous values that were created to represent /// expressions without leaders. void GVNPRE::cleanup() { while (!createdExpressions.empty()) { Instruction* I = createdExpressions.back(); createdExpressions.pop_back(); delete I; } } /// buildsets_availout - When calculating availability, handle an instruction /// by inserting it into the appropriate sets void GVNPRE::buildsets_availout(BasicBlock::iterator I, ValueNumberedSet& currAvail, ValueNumberedSet& currPhis, ValueNumberedSet& currExps, SmallPtrSet& currTemps) { // Handle PHI nodes if (PHINode* p = dyn_cast(I)) { unsigned num = VN.lookup_or_add(p); currPhis.insert(p); currPhis.set(num); // Handle unary ops } else if (CastInst* U = dyn_cast(I)) { Value* leftValue = U->getOperand(0); unsigned num = VN.lookup_or_add(U); if (isa(leftValue)) if (!currExps.test(VN.lookup(leftValue))) { currExps.insert(leftValue); currExps.set(VN.lookup(leftValue)); } if (!currExps.test(num)) { currExps.insert(U); currExps.set(num); } // Handle binary ops } else if (isa(I) || isa(I) || isa(I)) { User* U = cast(I); Value* leftValue = U->getOperand(0); Value* rightValue = U->getOperand(1); unsigned num = VN.lookup_or_add(U); if (isa(leftValue)) if (!currExps.test(VN.lookup(leftValue))) { currExps.insert(leftValue); currExps.set(VN.lookup(leftValue)); } if (isa(rightValue)) if (!currExps.test(VN.lookup(rightValue))) { currExps.insert(rightValue); currExps.set(VN.lookup(rightValue)); } if (!currExps.test(num)) { currExps.insert(U); currExps.set(num); } // Handle ternary ops } else if (isa(I) || isa(I) || isa(I)) { User* U = cast(I); Value* leftValue = U->getOperand(0); Value* rightValue = U->getOperand(1); Value* thirdValue = U->getOperand(2); VN.lookup_or_add(U); unsigned num = VN.lookup_or_add(U); if (isa(leftValue)) if (!currExps.test(VN.lookup(leftValue))) { currExps.insert(leftValue); currExps.set(VN.lookup(leftValue)); } if (isa(rightValue)) if (!currExps.test(VN.lookup(rightValue))) { currExps.insert(rightValue); currExps.set(VN.lookup(rightValue)); } if (isa(thirdValue)) if (!currExps.test(VN.lookup(thirdValue))) { currExps.insert(thirdValue); currExps.set(VN.lookup(thirdValue)); } if (!currExps.test(num)) { currExps.insert(U); currExps.set(num); } // Handle vararg ops } else if (GetElementPtrInst* U = dyn_cast(I)) { Value* ptrValue = U->getPointerOperand(); VN.lookup_or_add(U); unsigned num = VN.lookup_or_add(U); if (isa(ptrValue)) if (!currExps.test(VN.lookup(ptrValue))) { currExps.insert(ptrValue); currExps.set(VN.lookup(ptrValue)); } for (GetElementPtrInst::op_iterator OI = U->idx_begin(), OE = U->idx_end(); OI != OE; ++OI) if (isa(*OI) && !currExps.test(VN.lookup(*OI))) { currExps.insert(*OI); currExps.set(VN.lookup(*OI)); } if (!currExps.test(VN.lookup(U))) { currExps.insert(U); currExps.set(num); } // Handle opaque ops } else if (!I->isTerminator()){ VN.lookup_or_add(I); currTemps.insert(I); } if (!I->isTerminator()) if (!currAvail.test(VN.lookup(I))) { currAvail.insert(I); currAvail.set(VN.lookup(I)); } } /// buildsets_anticout - When walking the postdom tree, calculate the ANTIC_OUT /// set as a function of the ANTIC_IN set of the block's predecessors bool GVNPRE::buildsets_anticout(BasicBlock* BB, ValueNumberedSet& anticOut, SmallPtrSet& visited) { if (BB->getTerminator()->getNumSuccessors() == 1) { if (BB->getTerminator()->getSuccessor(0) != BB && visited.count(BB->getTerminator()->getSuccessor(0)) == 0) { return true; } else { phi_translate_set(anticipatedIn[BB->getTerminator()->getSuccessor(0)], BB, BB->getTerminator()->getSuccessor(0), anticOut); } } else if (BB->getTerminator()->getNumSuccessors() > 1) { BasicBlock* first = BB->getTerminator()->getSuccessor(0); for (ValueNumberedSet::iterator I = anticipatedIn[first].begin(), E = anticipatedIn[first].end(); I != E; ++I) { anticOut.insert(*I); anticOut.set(VN.lookup(*I)); } for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); ValueNumberedSet& succAnticIn = anticipatedIn[currSucc]; SmallVector temp; for (ValueNumberedSet::iterator I = anticOut.begin(), E = anticOut.end(); I != E; ++I) if (!succAnticIn.test(VN.lookup(*I))) temp.push_back(*I); for (SmallVector::iterator I = temp.begin(), E = temp.end(); I != E; ++I) { anticOut.erase(*I); anticOut.reset(VN.lookup(*I)); } } } return false; } /// buildsets_anticin - Walk the postdom tree, calculating ANTIC_OUT for /// each block. ANTIC_IN is then a function of ANTIC_OUT and the GEN /// sets populated in buildsets_availout unsigned GVNPRE::buildsets_anticin(BasicBlock* BB, ValueNumberedSet& anticOut, ValueNumberedSet& currExps, SmallPtrSet& currTemps, SmallPtrSet& visited) { ValueNumberedSet& anticIn = anticipatedIn[BB]; unsigned old = anticIn.size(); bool defer = buildsets_anticout(BB, anticOut, visited); if (defer) return 0; anticIn.clear(); for (ValueNumberedSet::iterator I = anticOut.begin(), E = anticOut.end(); I != E; ++I) { anticIn.insert(*I); anticIn.set(VN.lookup(*I)); } for (ValueNumberedSet::iterator I = currExps.begin(), E = currExps.end(); I != E; ++I) { if (!anticIn.test(VN.lookup(*I))) { anticIn.insert(*I); anticIn.set(VN.lookup(*I)); } } for (SmallPtrSet::iterator I = currTemps.begin(), E = currTemps.end(); I != E; ++I) { anticIn.erase(*I); anticIn.reset(VN.lookup(*I)); } clean(anticIn); anticOut.clear(); if (old != anticIn.size()) return 2; else return 1; } /// buildsets - Phase 1 of the main algorithm. Construct the AVAIL_OUT /// and the ANTIC_IN sets. void GVNPRE::buildsets(Function& F) { DenseMap generatedExpressions; DenseMap > generatedTemporaries; DominatorTree &DT = getAnalysis(); // Phase 1, Part 1: calculate AVAIL_OUT // Top-down walk of the dominator tree for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { // Get the sets to update for this block ValueNumberedSet& currExps = generatedExpressions[DI->getBlock()]; ValueNumberedSet& currPhis = generatedPhis[DI->getBlock()]; SmallPtrSet& currTemps = generatedTemporaries[DI->getBlock()]; ValueNumberedSet& currAvail = availableOut[DI->getBlock()]; BasicBlock* BB = DI->getBlock(); // A block inherits AVAIL_OUT from its dominator if (DI->getIDom() != 0) currAvail = availableOut[DI->getIDom()->getBlock()]; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) buildsets_availout(BI, currAvail, currPhis, currExps, currTemps); } // Phase 1, Part 2: calculate ANTIC_IN SmallPtrSet visited; SmallPtrSet block_changed; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) block_changed.insert(FI); bool changed = true; unsigned iterations = 0; while (changed) { changed = false; ValueNumberedSet anticOut; // Postorder walk of the CFG for (po_iterator BBI = po_begin(&F.getEntryBlock()), BBE = po_end(&F.getEntryBlock()); BBI != BBE; ++BBI) { BasicBlock* BB = *BBI; if (block_changed.count(BB) != 0) { unsigned ret = buildsets_anticin(BB, anticOut,generatedExpressions[BB], generatedTemporaries[BB], visited); if (ret == 0) { changed = true; continue; } else { visited.insert(BB); if (ret == 2) for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { block_changed.insert(*PI); } else block_changed.erase(BB); changed |= (ret == 2); } } } iterations++; } } /// insertion_pre - When a partial redundancy has been identified, eliminate it /// by inserting appropriate values into the predecessors and a phi node in /// the main block void GVNPRE::insertion_pre(Value* e, BasicBlock* BB, DenseMap& avail, std::map& new_sets) { for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { Value* e2 = avail[*PI]; if (!availableOut[*PI].test(VN.lookup(e2))) { User* U = cast(e2); Value* s1 = 0; if (isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0))) s1 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(0))); else s1 = U->getOperand(0); Value* s2 = 0; if (isa(U) || isa(U) || isa(U) || isa(U) || isa(U) || isa(U)) { if (isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1))) { s2 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(1))); } else { s2 = U->getOperand(1); } } // Ternary Operators Value* s3 = 0; if (isa(U) || isa(U) || isa(U)) { if (isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2))) { s3 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(2))); } else { s3 = U->getOperand(2); } } // Vararg operators SmallVector sVarargs; if (GetElementPtrInst* G = dyn_cast(U)) { for (GetElementPtrInst::op_iterator OI = G->idx_begin(), OE = G->idx_end(); OI != OE; ++OI) { if (isa(*OI) || isa(*OI) || isa(*OI) || isa(*OI) || isa(*OI) || isa(*OI) || isa(*OI) || isa(*OI)) { sVarargs.push_back(find_leader(availableOut[*PI], VN.lookup(*OI))); } else { sVarargs.push_back(*OI); } } } Value* newVal = 0; if (BinaryOperator* BO = dyn_cast(U)) newVal = BinaryOperator::Create(BO->getOpcode(), s1, s2, BO->getName()+".gvnpre", (*PI)->getTerminator()); else if (CmpInst* C = dyn_cast(U)) newVal = CmpInst::Create(C->getOpcode(), C->getPredicate(), s1, s2, C->getName()+".gvnpre", (*PI)->getTerminator()); else if (ShuffleVectorInst* S = dyn_cast(U)) newVal = new ShuffleVectorInst(s1, s2, s3, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (InsertElementInst* S = dyn_cast(U)) newVal = InsertElementInst::Create(s1, s2, s3, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (ExtractElementInst* S = dyn_cast(U)) newVal = new ExtractElementInst(s1, s2, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (SelectInst* S = dyn_cast(U)) newVal = SelectInst::Create(s1, s2, s3, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (CastInst* C = dyn_cast(U)) newVal = CastInst::Create(C->getOpcode(), s1, C->getType(), C->getName()+".gvnpre", (*PI)->getTerminator()); else if (GetElementPtrInst* G = dyn_cast(U)) newVal = GetElementPtrInst::Create(s1, sVarargs.begin(), sVarargs.end(), G->getName()+".gvnpre", (*PI)->getTerminator()); VN.add(newVal, VN.lookup(U)); ValueNumberedSet& predAvail = availableOut[*PI]; val_replace(predAvail, newVal); val_replace(new_sets[*PI], newVal); predAvail.set(VN.lookup(newVal)); DenseMap::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, newVal)); ++NumInsertedVals; } } PHINode* p = 0; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (p == 0) p = PHINode::Create(avail[*PI]->getType(), "gvnpre-join", BB->begin()); p->addIncoming(avail[*PI], *PI); } VN.add(p, VN.lookup(e)); val_replace(availableOut[BB], p); availableOut[BB].set(VN.lookup(e)); generatedPhis[BB].insert(p); generatedPhis[BB].set(VN.lookup(e)); new_sets[BB].insert(p); new_sets[BB].set(VN.lookup(e)); ++NumInsertedPhis; } /// insertion_mergepoint - When walking the dom tree, check at each merge /// block for the possibility of a partial redundancy. If present, eliminate it unsigned GVNPRE::insertion_mergepoint(SmallVector& workList, df_iterator& D, std::map& new_sets) { bool changed_function = false; bool new_stuff = false; BasicBlock* BB = D->getBlock(); for (unsigned i = 0; i < workList.size(); ++i) { Value* e = workList[i]; if (isa(e) || isa(e) || isa(e) || isa(e) || isa(e) || isa(e) || isa(e) || isa(e)) { if (availableOut[D->getIDom()->getBlock()].test(VN.lookup(e))) continue; DenseMap avail; bool by_some = false; bool all_same = true; Value * first_s = 0; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { Value *e2 = phi_translate(e, *PI, BB); Value *e3 = find_leader(availableOut[*PI], VN.lookup(e2)); if (e3 == 0) { DenseMap::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, e2)); all_same = false; } else { DenseMap::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, e3)); by_some = true; if (first_s == 0) first_s = e3; else if (first_s != e3) all_same = false; } } if (by_some && !all_same && !generatedPhis[BB].test(VN.lookup(e))) { insertion_pre(e, BB, avail, new_sets); changed_function = true; new_stuff = true; } } } unsigned retval = 0; if (changed_function) retval += 1; if (new_stuff) retval += 2; return retval; } /// insert - Phase 2 of the main algorithm. Walk the dominator tree looking for /// merge points. When one is found, check for a partial redundancy. If one is /// present, eliminate it. Repeat this walk until no changes are made. bool GVNPRE::insertion(Function& F) { bool changed_function = false; DominatorTree &DT = getAnalysis(); std::map new_sets; bool new_stuff = true; while (new_stuff) { new_stuff = false; for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { BasicBlock* BB = DI->getBlock(); if (BB == 0) continue; ValueNumberedSet& availOut = availableOut[BB]; ValueNumberedSet& anticIn = anticipatedIn[BB]; // Replace leaders with leaders inherited from dominator if (DI->getIDom() != 0) { ValueNumberedSet& dom_set = new_sets[DI->getIDom()->getBlock()]; for (ValueNumberedSet::iterator I = dom_set.begin(), E = dom_set.end(); I != E; ++I) { val_replace(new_sets[BB], *I); val_replace(availOut, *I); } } // If there is more than one predecessor... if (pred_begin(BB) != pred_end(BB) && ++pred_begin(BB) != pred_end(BB)) { SmallVector workList; workList.reserve(anticIn.size()); topo_sort(anticIn, workList); unsigned result = insertion_mergepoint(workList, DI, new_sets); if (result & 1) changed_function = true; if (result & 2) new_stuff = true; } } } return changed_function; } // GVNPRE::runOnFunction - This is the main transformation entry point for a // function. // bool GVNPRE::runOnFunction(Function &F) { // Clean out global sets from any previous functions VN.clear(); createdExpressions.clear(); availableOut.clear(); anticipatedIn.clear(); generatedPhis.clear(); bool changed_function = false; // Phase 1: BuildSets // This phase calculates the AVAIL_OUT and ANTIC_IN sets buildsets(F); // Phase 2: Insert // This phase inserts values to make partially redundant values // fully redundant changed_function |= insertion(F); // Phase 3: Eliminate // This phase performs trivial full redundancy elimination changed_function |= elimination(); // Phase 4: Cleanup // This phase cleans up values that were created solely // as leaders for expressions cleanup(); return changed_function; }