//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // This transformation makes the following changes to each loop with an // identifiable induction variable: // 1. All loops are transformed to have a SINGLE canonical induction variable // which starts at zero and steps by one. // 2. The canonical induction variable is guaranteed to be the first PHI node // in the loop header block. // 3. Any pointer arithmetic recurrences are raised to use array subscripts. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // // This transformation should be followed by strength reduction after all of the // desired loop transformations have been performed. Additionally, on targets // where it is profitable, the loop could be transformed to count down to zero // (the "do loop" optimization). // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumRemoved , "Number of aux indvars removed"); STATISTIC(NumPointer , "Number of pointer indvars promoted"); STATISTIC(NumInserted, "Number of canonical indvars added"); STATISTIC(NumReplaced, "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); namespace { class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass { LoopInfo *LI; ScalarEvolution *SE; bool Changed; public: static const int ID; // Pass identifcation, replacement for typeid IndVarSimplify() : LoopPass((intptr_t)&ID) {} bool runOnLoop(Loop *L, LPPassManager &LPM); bool doInitialization(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LCSSAID); AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } private: void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, std::set &DeadInsts); Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, SCEVExpander &RW); void RewriteLoopExitValues(Loop *L); void DeleteTriviallyDeadInstructions(std::set &Insts); }; const int IndVarSimplify::ID = 0; RegisterPass X("indvars", "Canonicalize Induction Variables"); } LoopPass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. void IndVarSimplify:: DeleteTriviallyDeadInstructions(std::set &Insts) { while (!Insts.empty()) { Instruction *I = *Insts.begin(); Insts.erase(Insts.begin()); if (isInstructionTriviallyDead(I)) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *U = dyn_cast(I->getOperand(i))) Insts.insert(U); SE->deleteInstructionFromRecords(I); DOUT << "INDVARS: Deleting: " << *I; I->eraseFromParent(); Changed = true; } } } /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer /// recurrence. If so, change it into an integer recurrence, permitting /// analysis by the SCEV routines. void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, std::set &DeadInsts) { assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!"); unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader); unsigned BackedgeIdx = PreheaderIdx^1; if (GetElementPtrInst *GEPI = dyn_cast(PN->getIncomingValue(BackedgeIdx))) if (GEPI->getOperand(0) == PN) { assert(GEPI->getNumOperands() == 2 && "GEP types must match!"); DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI; // Okay, we found a pointer recurrence. Transform this pointer // recurrence into an integer recurrence. Compute the value that gets // added to the pointer at every iteration. Value *AddedVal = GEPI->getOperand(1); // Insert a new integer PHI node into the top of the block. PHINode *NewPhi = new PHINode(AddedVal->getType(), PN->getName()+".rec", PN); NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader); // Create the new add instruction. Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal, GEPI->getName()+".rec", GEPI); NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx)); // Update the existing GEP to use the recurrence. GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx)); // Update the GEP to use the new recurrence we just inserted. GEPI->setOperand(1, NewAdd); // If the incoming value is a constant expr GEP, try peeling out the array // 0 index if possible to make things simpler. if (ConstantExpr *CE = dyn_cast(GEPI->getOperand(0))) if (CE->getOpcode() == Instruction::GetElementPtr) { unsigned NumOps = CE->getNumOperands(); assert(NumOps > 1 && "CE folding didn't work!"); if (CE->getOperand(NumOps-1)->isNullValue()) { // Check to make sure the last index really is an array index. gep_type_iterator GTI = gep_type_begin(CE); for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i, ++GTI) /*empty*/; if (isa(*GTI)) { // Pull the last index out of the constant expr GEP. SmallVector CEIdxs(CE->op_begin()+1, CE->op_end()-1); Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0), &CEIdxs[0], CEIdxs.size()); GetElementPtrInst *NGEPI = new GetElementPtrInst( NCE, Constant::getNullValue(Type::Int32Ty), NewAdd, GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NGEPI); GEPI->eraseFromParent(); GEPI = NGEPI; } } } // Finally, if there are any other users of the PHI node, we must // insert a new GEP instruction that uses the pre-incremented version // of the induction amount. if (!PN->use_empty()) { BasicBlock::iterator InsertPos = PN; ++InsertPos; while (isa(InsertPos)) ++InsertPos; Value *PreInc = new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx), NewPhi, "", InsertPos); PreInc->takeName(PN); PN->replaceAllUsesWith(PreInc); } // Delete the old PHI for sure, and the GEP if its otherwise unused. DeadInsts.insert(PN); ++NumPointer; Changed = true; } } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. /// /// This method returns a "potentially dead" instruction whose computation chain /// should be deleted when convenient. Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, SCEVExpander &RW) { // Find the exit block for the loop. We can currently only handle loops with // a single exit. std::vector ExitBlocks; L->getExitBlocks(ExitBlocks); if (ExitBlocks.size() != 1) return 0; BasicBlock *ExitBlock = ExitBlocks[0]; // Make sure there is only one predecessor block in the loop. BasicBlock *ExitingBlock = 0; for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); PI != PE; ++PI) if (L->contains(*PI)) { if (ExitingBlock == 0) ExitingBlock = *PI; else return 0; // Multiple exits from loop to this block. } assert(ExitingBlock && "Loop info is broken"); if (!isa(ExitingBlock->getTerminator())) return 0; // Can't rewrite non-branch yet BranchInst *BI = cast(ExitingBlock->getTerminator()); assert(BI->isConditional() && "Must be conditional to be part of loop!"); Instruction *PotentiallyDeadInst = dyn_cast(BI->getCondition()); // If the exiting block is not the same as the backedge block, we must compare // against the preincremented value, otherwise we prefer to compare against // the post-incremented value. BasicBlock *Header = L->getHeader(); pred_iterator HPI = pred_begin(Header); assert(HPI != pred_end(Header) && "Loop with zero preds???"); if (!L->contains(*HPI)) ++HPI; assert(HPI != pred_end(Header) && L->contains(*HPI) && "No backedge in loop?"); SCEVHandle TripCount = IterationCount; Value *IndVar; if (*HPI == ExitingBlock) { // The IterationCount expression contains the number of times that the // backedge actually branches to the loop header. This is one less than the // number of times the loop executes, so add one to it. Constant *OneC = ConstantInt::get(IterationCount->getType(), 1); TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC)); IndVar = L->getCanonicalInductionVariableIncrement(); } else { // We have to use the preincremented value... IndVar = L->getCanonicalInductionVariable(); } DOUT << "INDVARS: LFTR: TripCount = " << *TripCount << " IndVar = " << *IndVar << "\n"; // Expand the code for the iteration count into the preheader of the loop. BasicBlock *Preheader = L->getLoopPreheader(); Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(), IndVar->getType()); // Insert a new icmp_ne or icmp_eq instruction before the branch. ICmpInst::Predicate Opcode; if (L->contains(BI->getSuccessor(0))) Opcode = ICmpInst::ICMP_NE; else Opcode = ICmpInst::ICMP_EQ; Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI); BI->setCondition(Cond); ++NumLFTR; Changed = true; return PotentiallyDeadInst; } /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. void IndVarSimplify::RewriteLoopExitValues(Loop *L) { BasicBlock *Preheader = L->getLoopPreheader(); // Scan all of the instructions in the loop, looking at those that have // extra-loop users and which are recurrences. SCEVExpander Rewriter(*SE, *LI); // We insert the code into the preheader of the loop if the loop contains // multiple exit blocks, or in the exit block if there is exactly one. BasicBlock *BlockToInsertInto; std::vector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); if (ExitBlocks.size() == 1) BlockToInsertInto = ExitBlocks[0]; else BlockToInsertInto = Preheader; BasicBlock::iterator InsertPt = BlockToInsertInto->begin(); while (isa(InsertPt)) ++InsertPt; bool HasConstantItCount = isa(SE->getIterationCount(L)); std::set InstructionsToDelete; std::map ExitValues; // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBB = ExitBlocks[i]; // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast(BBI++))) { // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa(InVal) || // SCEV only supports integer expressions for now. !isa(InVal->getType())) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast(InVal); if (!L->contains(Inst->getParent())) continue; // We require that this value either have a computable evolution or that // the loop have a constant iteration count. In the case where the loop // has a constant iteration count, we can sometimes force evaluation of // the exit value through brute force. SCEVHandle SH = SE->getSCEV(Inst); if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount) continue; // Cannot get exit evolution for the loop value. // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (isa(ExitValue) || !ExitValue->isLoopInvariant(L)) continue; Changed = true; ++NumReplaced; // See if we already computed the exit value for the instruction, if so, // just reuse it. Value *&ExitVal = ExitValues[Inst]; if (!ExitVal) ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt,Inst->getType()); DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << " LoopVal = " << *Inst << "\n"; PN->setIncomingValue(i, ExitVal); // If this instruction is dead now, schedule it to be removed. if (Inst->use_empty()) InstructionsToDelete.insert(Inst); // See if this is a single-entry LCSSA PHI node. If so, we can (and // have to) remove // the PHI entirely. This is safe, because the NewVal won't be variant // in the loop, so we don't need an LCSSA phi node anymore. if (NumPreds == 1) { PN->replaceAllUsesWith(ExitVal); PN->eraseFromParent(); break; } } } } DeleteTriviallyDeadInstructions(InstructionsToDelete); } bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) { Changed = false; // First step. Check to see if there are any trivial GEP pointer recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); BasicBlock *Preheader = L->getLoopPreheader(); SE = &LPM.getAnalysis(); std::set DeadInsts; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (isa(PN->getType())) EliminatePointerRecurrence(PN, Preheader, DeadInsts); } if (!DeadInsts.empty()) DeleteTriviallyDeadInstructions(DeadInsts); return Changed; } bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { LI = &getAnalysis(); SE = &getAnalysis(); Changed = false; BasicBlock *Header = L->getHeader(); std::set DeadInsts; // Verify the input to the pass in already in LCSSA form. assert(L->isLCSSAForm()); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // SCEVHandle IterationCount = SE->getIterationCount(L); if (!isa(IterationCount)) RewriteLoopExitValues(L); // Next, analyze all of the induction variables in the loop, canonicalizing // auxillary induction variables. std::vector > IndVars; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable! SCEVHandle SCEV = SE->getSCEV(PN); if (SCEV->hasComputableLoopEvolution(L)) // FIXME: It is an extremely bad idea to indvar substitute anything more // complex than affine induction variables. Doing so will put expensive // polynomial evaluations inside of the loop, and the str reduction pass // currently can only reduce affine polynomials. For now just disable // indvar subst on anything more complex than an affine addrec. if (SCEVAddRecExpr *AR = dyn_cast(SCEV)) if (AR->isAffine()) IndVars.push_back(std::make_pair(PN, SCEV)); } } // If there are no induction variables in the loop, there is nothing more to // do. if (IndVars.empty()) { // Actually, if we know how many times the loop iterates, lets insert a // canonical induction variable to help subsequent passes. if (!isa(IterationCount)) { SCEVExpander Rewriter(*SE, *LI); Rewriter.getOrInsertCanonicalInductionVariable(L, IterationCount->getType()); if (Instruction *I = LinearFunctionTestReplace(L, IterationCount, Rewriter)) { std::set InstructionsToDelete; InstructionsToDelete.insert(I); DeleteTriviallyDeadInstructions(InstructionsToDelete); } } return Changed; } // Compute the type of the largest recurrence expression. // const Type *LargestType = IndVars[0].first->getType(); bool DifferingSizes = false; for (unsigned i = 1, e = IndVars.size(); i != e; ++i) { const Type *Ty = IndVars[i].first->getType(); DifferingSizes |= Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits(); if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits()) LargestType = Ty; } // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE, *LI); // Now that we know the largest of of the induction variables in this loop, // insert a canonical induction variable of the largest size. Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType); ++NumInserted; Changed = true; DOUT << "INDVARS: New CanIV: " << *IndVar; if (!isa(IterationCount)) if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter)) DeadInsts.insert(DI); // Now that we have a canonical induction variable, we can rewrite any // recurrences in terms of the induction variable. Start with the auxillary // induction variables, and recursively rewrite any of their uses. BasicBlock::iterator InsertPt = Header->begin(); while (isa(InsertPt)) ++InsertPt; // If there were induction variables of other sizes, cast the primary // induction variable to the right size for them, avoiding the need for the // code evaluation methods to insert induction variables of different sizes. if (DifferingSizes) { SmallVector InsertedSizes; InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits()); for (unsigned i = 0, e = IndVars.size(); i != e; ++i) { unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits(); if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize) == InsertedSizes.end()) { PHINode *PN = IndVars[i].first; InsertedSizes.push_back(ithSize); Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar", InsertPt); Rewriter.addInsertedValue(New, SE->getSCEV(New)); DOUT << "INDVARS: Made trunc IV for " << *PN << " NewVal = " << *New << "\n"; } } } // Rewrite all induction variables in terms of the canonical induction // variable. std::map InsertedSizes; while (!IndVars.empty()) { PHINode *PN = IndVars.back().first; Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt, PN->getType()); DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN << " into = " << *NewVal << "\n"; NewVal->takeName(PN); // Replace the old PHI Node with the inserted computation. PN->replaceAllUsesWith(NewVal); DeadInsts.insert(PN); IndVars.pop_back(); ++NumRemoved; Changed = true; } #if 0 // Now replace all derived expressions in the loop body with simpler // expressions. for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop... BasicBlock *BB = L->getBlocks()[i]; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (I->getType()->isInteger() && // Is an integer instruction !I->use_empty() && !Rewriter.isInsertedInstruction(I)) { SCEVHandle SH = SE->getSCEV(I); Value *V = Rewriter.expandCodeFor(SH, I, I->getType()); if (V != I) { if (isa(V)) V->takeName(I); I->replaceAllUsesWith(V); DeadInsts.insert(I); ++NumRemoved; Changed = true; } } } #endif DeleteTriviallyDeadInstructions(DeadInsts); assert(L->isLCSSAForm()); return Changed; }