//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop unroller. It works best when loops have // been canonicalized by the -indvars pass, allowing it to determine the trip // counts of loops easily. // // This pass will multi-block loops only if they contain no non-unrolled // subloops. The process of unrolling can produce extraneous basic blocks // linked with unconditional branches. This will be corrected in the future. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/IntrinsicInst.h" #include #include using namespace llvm; STATISTIC(NumUnrolled, "Number of loops completely unrolled"); namespace { cl::opt UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden, cl::desc("The cut-off point for loop unrolling")); class VISIBILITY_HIDDEN LoopUnroll : public LoopPass { LoopInfo *LI; // The current loop information public: static const char ID; // Pass ID, replacement for typeid LoopUnroll() : LoopPass((intptr_t)&ID) {} bool runOnLoop(Loop *L, LPPassManager &LPM); BasicBlock* FoldBlockIntoPredecessor(BasicBlock* BB); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addPreservedID(LCSSAID); AU.addPreserved(); } }; const char LoopUnroll::ID = 0; RegisterPass X("loop-unroll", "Unroll loops"); } LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); } /// ApproximateLoopSize - Approximate the size of the loop after it has been /// unrolled. static unsigned ApproximateLoopSize(const Loop *L) { unsigned Size = 0; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { BasicBlock *BB = L->getBlocks()[i]; Instruction *Term = BB->getTerminator(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (isa(I) && BB == L->getHeader()) { // Ignore PHI nodes in the header. } else if (I->hasOneUse() && I->use_back() == Term) { // Ignore instructions only used by the loop terminator. } else if (isa(I)) { // Ignore debug instructions } else { ++Size; } // TODO: Ignore expressions derived from PHI and constants if inval of phi // is a constant, or if operation is associative. This will get induction // variables. } } return Size; } // RemapInstruction - Convert the instruction operands from referencing the // current values into those specified by ValueMap. // static inline void RemapInstruction(Instruction *I, DenseMap &ValueMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); DenseMap::iterator It = ValueMap.find(Op); if (It != ValueMap.end()) Op = It->second; I->setOperand(op, Op); } } // FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it // only has one predecessor, and that predecessor only has one successor. // Returns the new combined block. BasicBlock* LoopUnroll::FoldBlockIntoPredecessor(BasicBlock* BB) { // Merge basic blocks into their predecessor if there is only one distinct // pred, and if there is only one distinct successor of the predecessor, and // if there are no PHI nodes. // BasicBlock *OnlyPred = BB->getSinglePredecessor(); if (!OnlyPred) return 0; if (OnlyPred->getTerminator()->getNumSuccessors() != 1) return 0; DOUT << "Merging: " << *BB << "into: " << *OnlyPred; // Resolve any PHI nodes at the start of the block. They are all // guaranteed to have exactly one entry if they exist, unless there are // multiple duplicate (but guaranteed to be equal) entries for the // incoming edges. This occurs when there are multiple edges from // OnlyPred to OnlySucc. // while (PHINode *PN = dyn_cast(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... OnlyPred->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(OnlyPred); std::string OldName = BB->getName(); // Erase basic block from the function... LI->removeBlock(BB); BB->eraseFromParent(); // Inherit predecessors name if it exists... if (!OldName.empty() && !OnlyPred->hasName()) OnlyPred->setName(OldName); return OnlyPred; } bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { bool Changed = false; LI = &getAnalysis(); BasicBlock* Header = L->getHeader(); BasicBlock* LatchBlock = L->getLoopLatch(); BranchInst *BI = dyn_cast(LatchBlock->getTerminator()); if (BI == 0) return Changed; // Must end in a conditional branch ConstantInt *TripCountC = dyn_cast_or_null(L->getTripCount()); if (!TripCountC) return Changed; // Must have constant trip count! // Guard against huge trip counts. This also guards against assertions in // APInt from the use of getZExtValue, below. if (TripCountC->getValue().getActiveBits() > 32) return Changed; // More than 2^32 iterations??? uint64_t TripCountFull = TripCountC->getZExtValue(); if (TripCountFull == 0) return Changed; // Zero iteraitons? unsigned LoopSize = ApproximateLoopSize(L); DOUT << "Loop Unroll: F[" << Header->getParent()->getName() << "] Loop %" << Header->getName() << " Loop Size = " << LoopSize << " Trip Count = " << TripCountFull << " - "; uint64_t Size = (uint64_t)LoopSize*TripCountFull; if (Size > UnrollThreshold) { DOUT << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n"; return Changed; } DOUT << "UNROLLING!\n"; std::vector LoopBlocks = L->getBlocks(); unsigned TripCount = (unsigned)TripCountFull; BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0))); // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. DenseMap LastValueMap; std::vector OrigPHINode; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); OrigPHINode.push_back(PN); if (Instruction *I = dyn_cast(PN->getIncomingValueForBlock(LatchBlock))) if (L->contains(I->getParent())) LastValueMap[I] = I; } // Remove the exit branch from the loop LatchBlock->getInstList().erase(BI); std::vector Headers; std::vector Latches; Headers.push_back(Header); Latches.push_back(LatchBlock); assert(TripCount != 0 && "Trip count of 0 is impossible!"); for (unsigned It = 1; It != TripCount; ++It) { char SuffixBuffer[100]; sprintf(SuffixBuffer, ".%d", It); std::vector NewBlocks; for (std::vector::iterator BB = LoopBlocks.begin(), E = LoopBlocks.end(); BB != E; ++BB) { DenseMap ValueMap; BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer); Header->getParent()->getBasicBlockList().push_back(New); // Loop over all of the PHI nodes in the block, changing them to use the // incoming values from the previous block. if (*BB == Header) for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *NewPHI = cast(ValueMap[OrigPHINode[i]]); Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); if (Instruction *InValI = dyn_cast(InVal)) if (It > 1 && L->contains(InValI->getParent())) InVal = LastValueMap[InValI]; ValueMap[OrigPHINode[i]] = InVal; New->getInstList().erase(NewPHI); } // Update our running map of newest clones LastValueMap[*BB] = New; for (DenseMap::iterator VI = ValueMap.begin(), VE = ValueMap.end(); VI != VE; ++VI) LastValueMap[VI->first] = VI->second; L->addBasicBlockToLoop(New, *LI); // Add phi entries for newly created values to all exit blocks except // the successor of the latch block. The successor of the exit block will // be updated specially after unrolling all the way. if (*BB != LatchBlock) for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); UI != UE; ++UI) { Instruction* UseInst = cast(*UI); if (isa(UseInst) && !L->contains(UseInst->getParent())) { PHINode* phi = cast(UseInst); Value* Incoming = phi->getIncomingValueForBlock(*BB); if (isa(Incoming)) Incoming = LastValueMap[Incoming]; phi->addIncoming(Incoming, New); } } // Keep track of new headers and latches as we create them, so that // we can insert the proper branches later. if (*BB == Header) Headers.push_back(New); if (*BB == LatchBlock) Latches.push_back(New); NewBlocks.push_back(New); } // Remap all instructions in the most recent iteration for (unsigned i = 0; i < NewBlocks.size(); ++i) for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) RemapInstruction(I, LastValueMap); } // Update PHI nodes that reference the final latch block if (TripCount > 1) { SmallPtrSet Users; for (Value::use_iterator UI = LatchBlock->use_begin(), UE = LatchBlock->use_end(); UI != UE; ++UI) if (PHINode* phi = dyn_cast(*UI)) Users.insert(phi); for (SmallPtrSet::iterator SI = Users.begin(), SE = Users.end(); SI != SE; ++SI) { Value* InVal = (*SI)->getIncomingValueForBlock(LatchBlock); if (isa(InVal)) InVal = LastValueMap[InVal]; (*SI)->removeIncomingValue(LatchBlock, false); if (InVal) (*SI)->addIncoming(InVal, cast(LastValueMap[LatchBlock])); if ((*SI)->getNumIncomingValues() == 0) { // Remove this phi node. // If anyone is using this PHI, make them use a dummy value instead... (*SI)->replaceAllUsesWith(UndefValue::get((*SI)->getType())); (*SI)->eraseFromParent(); } } } // Now loop over the PHI nodes in the original block, setting them to their // incoming values. BasicBlock *Preheader = L->getLoopPreheader(); for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *PN = OrigPHINode[i]; PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); Header->getInstList().erase(PN); } // Insert the branches that link the different iterations together for (unsigned i = 0; i < Latches.size()-1; ++i) { new BranchInst(Headers[i+1], Latches[i]); if(BasicBlock* Fold = FoldBlockIntoPredecessor(Headers[i+1])) { std::replace(Latches.begin(), Latches.end(), Headers[i+1], Fold); std::replace(Headers.begin(), Headers.end(), Headers[i+1], Fold); } } // Finally, add an unconditional branch to the block to continue into the exit // block. new BranchInst(LoopExit, Latches[Latches.size()-1]); FoldBlockIntoPredecessor(LoopExit); // At this point, the code is well formed. We now do a quick sweep over the // inserted code, doing constant propagation and dead code elimination as we // go. const std::vector &NewLoopBlocks = L->getBlocks(); for (std::vector::const_iterator BB = NewLoopBlocks.begin(), BBE = NewLoopBlocks.end(); BB != BBE; ++BB) for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { Instruction *Inst = I++; if (isInstructionTriviallyDead(Inst)) (*BB)->getInstList().erase(Inst); else if (Constant *C = ConstantFoldInstruction(Inst)) { Inst->replaceAllUsesWith(C); (*BB)->getInstList().erase(Inst); } } // Update the loop information for this loop. // Remove the loop from the parent. LPM.deleteLoopFromQueue(L); ++NumUnrolled; return true; }