//===-- LowerGC.cpp - Provide GC support for targets that don't -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements lowering for the llvm.gc* intrinsics for targets that do // not natively support them (which includes the C backend). Note that the code // generated is not as efficient as it would be for targets that natively // support the GC intrinsics, but it is useful for getting new targets // up-and-running quickly. // // This pass implements the code transformation described in this paper: // "Accurate Garbage Collection in an Uncooperative Environment" // Fergus Henderson, ISMM, 2002 // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lowergc" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" using namespace llvm; namespace { class LowerGC : public FunctionPass { /// GCRootInt, GCReadInt, GCWriteInt - The function prototypes for the /// llvm.gcread/llvm.gcwrite/llvm.gcroot intrinsics. Function *GCRootInt, *GCReadInt, *GCWriteInt; /// GCRead/GCWrite - These are the functions provided by the garbage /// collector for read/write barriers. Function *GCRead, *GCWrite; /// RootChain - This is the global linked-list that contains the chain of GC /// roots. GlobalVariable *RootChain; /// MainRootRecordType - This is the type for a function root entry if it /// had zero roots. const Type *MainRootRecordType; public: LowerGC() : GCRootInt(0), GCReadInt(0), GCWriteInt(0), GCRead(0), GCWrite(0), RootChain(0), MainRootRecordType(0) {} virtual bool doInitialization(Module &M); virtual bool runOnFunction(Function &F); private: const StructType *getRootRecordType(unsigned NumRoots); }; RegisterOpt X("lowergc", "Lower GC intrinsics, for GCless code generators"); } /// createLowerGCPass - This function returns an instance of the "lowergc" /// pass, which lowers garbage collection intrinsics to normal LLVM code. FunctionPass *llvm::createLowerGCPass() { return new LowerGC(); } /// getRootRecordType - This function creates and returns the type for a root /// record containing 'NumRoots' roots. const StructType *LowerGC::getRootRecordType(unsigned NumRoots) { // Build a struct that is a type used for meta-data/root pairs. std::vector ST; ST.push_back(GCRootInt->getFunctionType()->getParamType(0)); ST.push_back(GCRootInt->getFunctionType()->getParamType(1)); StructType *PairTy = StructType::get(ST); // Build the array of pairs. ArrayType *PairArrTy = ArrayType::get(PairTy, NumRoots); // Now build the recursive list type. PATypeHolder RootListH = MainRootRecordType ? (Type*)MainRootRecordType : (Type*)OpaqueType::get(); ST.clear(); ST.push_back(PointerType::get(RootListH)); // Prev pointer ST.push_back(Type::UIntTy); // NumElements in array ST.push_back(PairArrTy); // The pairs StructType *RootList = StructType::get(ST); if (MainRootRecordType) return RootList; assert(NumRoots == 0 && "The main struct type should have zero entries!"); cast((Type*)RootListH.get())->refineAbstractTypeTo(RootList); MainRootRecordType = RootListH; return cast(RootListH.get()); } /// doInitialization - If this module uses the GC intrinsics, find them now. If /// not, this pass does not do anything. bool LowerGC::doInitialization(Module &M) { GCRootInt = M.getNamedFunction("llvm.gcroot"); GCReadInt = M.getNamedFunction("llvm.gcread"); GCWriteInt = M.getNamedFunction("llvm.gcwrite"); if (!GCRootInt && !GCReadInt && !GCWriteInt) return false; PointerType *VoidPtr = PointerType::get(Type::SByteTy); PointerType *VoidPtrPtr = PointerType::get(VoidPtr); // If the program is using read/write barriers, find the implementations of // them from the GC runtime library. if (GCReadInt) // Make: sbyte* %llvm_gc_read(sbyte**) GCRead = M.getOrInsertFunction("llvm_gc_read", VoidPtr, VoidPtr, VoidPtrPtr, (Type *)0); if (GCWriteInt) // Make: void %llvm_gc_write(sbyte*, sbyte**) GCWrite = M.getOrInsertFunction("llvm_gc_write", Type::VoidTy, VoidPtr, VoidPtr, VoidPtrPtr, (Type *)0); // If the program has GC roots, get or create the global root list. if (GCRootInt) { const StructType *RootListTy = getRootRecordType(0); const Type *PRLTy = PointerType::get(RootListTy); M.addTypeName("llvm_gc_root_ty", RootListTy); // Get the root chain if it already exists. RootChain = M.getGlobalVariable("llvm_gc_root_chain", PRLTy); if (RootChain == 0) { // If the root chain does not exist, insert a new one with linkonce // linkage! RootChain = new GlobalVariable(PRLTy, false, GlobalValue::LinkOnceLinkage, Constant::getNullValue(PRLTy), "llvm_gc_root_chain", &M); } else if (RootChain->hasExternalLinkage() && RootChain->isExternal()) { RootChain->setInitializer(Constant::getNullValue(PRLTy)); RootChain->setLinkage(GlobalValue::LinkOnceLinkage); } } return true; } /// Coerce - If the specified operand number of the specified instruction does /// not have the specified type, insert a cast. static void Coerce(Instruction *I, unsigned OpNum, Type *Ty) { if (I->getOperand(OpNum)->getType() != Ty) { if (Constant *C = dyn_cast(I->getOperand(OpNum))) I->setOperand(OpNum, ConstantExpr::getCast(C, Ty)); else { CastInst *CI = new CastInst(I->getOperand(OpNum), Ty, "", I); I->setOperand(OpNum, CI); } } } /// runOnFunction - If the program is using GC intrinsics, replace any /// read/write intrinsics with the appropriate read/write barrier calls, then /// inline them. Finally, build the data structures for bool LowerGC::runOnFunction(Function &F) { // Quick exit for programs that are not using GC mechanisms. if (!GCRootInt && !GCReadInt && !GCWriteInt) return false; PointerType *VoidPtr = PointerType::get(Type::SByteTy); PointerType *VoidPtrPtr = PointerType::get(VoidPtr); // If there are read/write barriers in the program, perform a quick pass over // the function eliminating them. While we are at it, remember where we see // calls to llvm.gcroot. std::vector GCRoots; std::vector NormalCalls; bool MadeChange = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) if (CallInst *CI = dyn_cast(II++)) { if (!CI->getCalledFunction() || !CI->getCalledFunction()->getIntrinsicID()) NormalCalls.push_back(CI); // Remember all normal function calls. if (Function *F = CI->getCalledFunction()) if (F == GCRootInt) GCRoots.push_back(CI); else if (F == GCReadInt || F == GCWriteInt) { if (F == GCWriteInt) { // Change a llvm.gcwrite call to call llvm_gc_write instead. CI->setOperand(0, GCWrite); // Insert casts of the operands as needed. Coerce(CI, 1, VoidPtr); Coerce(CI, 2, VoidPtr); Coerce(CI, 3, VoidPtrPtr); } else { Coerce(CI, 1, VoidPtr); Coerce(CI, 2, VoidPtrPtr); if (CI->getType() == VoidPtr) { CI->setOperand(0, GCRead); } else { // Create a whole new call to replace the old one. CallInst *NC = new CallInst(GCRead, CI->getOperand(1), CI->getOperand(2), CI->getName(), CI); Value *NV = new CastInst(NC, CI->getType(), "", CI); CI->replaceAllUsesWith(NV); BB->getInstList().erase(CI); CI = NC; } } MadeChange = true; } } // If there are no GC roots in this function, then there is no need to create // a GC list record for it. if (GCRoots.empty()) return MadeChange; // Okay, there are GC roots in this function. On entry to the function, add a // record to the llvm_gc_root_chain, and remove it on exit. // Create the alloca, and zero it out. const StructType *RootListTy = getRootRecordType(GCRoots.size()); AllocaInst *AI = new AllocaInst(RootListTy, 0, "gcroots", F.begin()->begin()); // Insert the memset call after all of the allocas in the function. BasicBlock::iterator IP = AI; while (isa(IP)) ++IP; Constant *Zero = ConstantUInt::get(Type::UIntTy, 0); Constant *One = ConstantUInt::get(Type::UIntTy, 1); // Get a pointer to the prev pointer. std::vector Par; Par.push_back(Zero); Par.push_back(Zero); Value *PrevPtrPtr = new GetElementPtrInst(AI, Par, "prevptrptr", IP); // Load the previous pointer. Value *PrevPtr = new LoadInst(RootChain, "prevptr", IP); // Store the previous pointer into the prevptrptr new StoreInst(PrevPtr, PrevPtrPtr, IP); // Set the number of elements in this record. Par[1] = ConstantUInt::get(Type::UIntTy, 1); Value *NumEltsPtr = new GetElementPtrInst(AI, Par, "numeltsptr", IP); new StoreInst(ConstantUInt::get(Type::UIntTy, GCRoots.size()), NumEltsPtr,IP); Par[1] = ConstantUInt::get(Type::UIntTy, 2); Par.resize(4); const PointerType *PtrLocTy = cast(GCRootInt->getFunctionType()->getParamType(0)); Constant *Null = ConstantPointerNull::get(PtrLocTy); // Initialize all of the gcroot records now, and eliminate them as we go. for (unsigned i = 0, e = GCRoots.size(); i != e; ++i) { // Initialize the meta-data pointer. Par[2] = ConstantUInt::get(Type::UIntTy, i); Par[3] = One; Value *MetaDataPtr = new GetElementPtrInst(AI, Par, "MetaDataPtr", IP); assert(isa(GCRoots[i]->getOperand(2)) && "Must be a constant"); new StoreInst(GCRoots[i]->getOperand(2), MetaDataPtr, IP); // Initialize the root pointer to null on entry to the function. Par[3] = Zero; Value *RootPtrPtr = new GetElementPtrInst(AI, Par, "RootEntPtr", IP); new StoreInst(Null, RootPtrPtr, IP); // Each occurrance of the llvm.gcroot intrinsic now turns into an // initialization of the slot with the address and a zeroing out of the // address specified. new StoreInst(Constant::getNullValue(PtrLocTy->getElementType()), GCRoots[i]->getOperand(1), GCRoots[i]); new StoreInst(GCRoots[i]->getOperand(1), RootPtrPtr, GCRoots[i]); GCRoots[i]->getParent()->getInstList().erase(GCRoots[i]); } // Now that the record is all initialized, store the pointer into the global // pointer. Value *C = new CastInst(AI, PointerType::get(MainRootRecordType), "", IP); new StoreInst(C, RootChain, IP); // On exit from the function we have to remove the entry from the GC root // chain. Doing this is straight-forward for return and unwind instructions: // just insert the appropriate copy. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (isa(BB->getTerminator()) || isa(BB->getTerminator())) { // We could reuse the PrevPtr loaded on entry to the function, but this // would make the value live for the whole function, which is probably a // bad idea. Just reload the value out of our stack entry. PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", BB->getTerminator()); new StoreInst(PrevPtr, RootChain, BB->getTerminator()); } // If an exception is thrown from a callee we have to make sure to // unconditionally take the record off the stack. For this reason, we turn // all call instructions into invoke whose cleanup pops the entry off the // stack. We only insert one cleanup block, which is shared by all invokes. if (!NormalCalls.empty()) { // Create the shared cleanup block. BasicBlock *Cleanup = new BasicBlock("gc_cleanup", &F); UnwindInst *UI = new UnwindInst(Cleanup); PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", UI); new StoreInst(PrevPtr, RootChain, UI); // Loop over all of the function calls, turning them into invokes. while (!NormalCalls.empty()) { CallInst *CI = NormalCalls.back(); BasicBlock *CBB = CI->getParent(); NormalCalls.pop_back(); // Split the basic block containing the function call. BasicBlock *NewBB = CBB->splitBasicBlock(CI, CBB->getName()+".cont"); // Remove the unconditional branch inserted at the end of the CBB. CBB->getInstList().pop_back(); NewBB->getInstList().remove(CI); // Create a new invoke instruction. Value *II = new InvokeInst(CI->getCalledValue(), NewBB, Cleanup, std::vector(CI->op_begin()+1, CI->op_end()), CI->getName(), CBB); CI->replaceAllUsesWith(II); delete CI; } } return true; }