//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements dead code elimination and basic block merging, along // with a collection of other peephole control flow optimizations. For example: // // * Removes basic blocks with no predecessors. // * Merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor. // * Eliminates a basic block that only contains an unconditional branch. // * Changes invoke instructions to nounwind functions to be calls. // * Change things like "if (x) if (y)" into "if (x&y)". // * etc.. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplifycfg" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Attributes.h" #include "llvm/Support/CFG.h" #include "llvm/Pass.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumSimpl, "Number of blocks simplified"); namespace { struct CFGSimplifyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid CFGSimplifyPass() : FunctionPass(&ID) {} virtual bool runOnFunction(Function &F); }; } char CFGSimplifyPass::ID = 0; static RegisterPass X("simplifycfg", "Simplify the CFG"); // Public interface to the CFGSimplification pass FunctionPass *llvm::createCFGSimplificationPass() { return new CFGSimplifyPass(); } /// ChangeToUnreachable - Insert an unreachable instruction before the specified /// instruction, making it and the rest of the code in the block dead. static void ChangeToUnreachable(Instruction *I) { BasicBlock *BB = I->getParent(); // Loop over all of the successors, removing BB's entry from any PHI // nodes. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) (*SI)->removePredecessor(BB); new UnreachableInst(I->getContext(), I); // All instructions after this are dead. BasicBlock::iterator BBI = I, BBE = BB->end(); while (BBI != BBE) { if (!BBI->use_empty()) BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); BB->getInstList().erase(BBI++); } } /// ChangeToCall - Convert the specified invoke into a normal call. static void ChangeToCall(InvokeInst *II) { BasicBlock *BB = II->getParent(); SmallVector Args(II->op_begin()+3, II->op_end()); CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(), Args.end(), "", II); NewCall->takeName(II); NewCall->setCallingConv(II->getCallingConv()); NewCall->setAttributes(II->getAttributes()); II->replaceAllUsesWith(NewCall); // Follow the call by a branch to the normal destination. BranchInst::Create(II->getNormalDest(), II); // Update PHI nodes in the unwind destination II->getUnwindDest()->removePredecessor(BB); BB->getInstList().erase(II); } static bool MarkAliveBlocks(BasicBlock *BB, SmallPtrSet &Reachable) { SmallVector Worklist; Worklist.push_back(BB); bool Changed = false; do { BB = Worklist.pop_back_val(); if (!Reachable.insert(BB)) continue; // Do a quick scan of the basic block, turning any obviously unreachable // instructions into LLVM unreachable insts. The instruction combining pass // canonicalizes unreachable insts into stores to null or undef. for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ if (CallInst *CI = dyn_cast(BBI)) { if (CI->doesNotReturn()) { // If we found a call to a no-return function, insert an unreachable // instruction after it. Make sure there isn't *already* one there // though. ++BBI; if (!isa(BBI)) { ChangeToUnreachable(BBI); Changed = true; } break; } } // Store to undef and store to null are undefined and used to signal that // they should be changed to unreachable by passes that can't modify the // CFG. if (StoreInst *SI = dyn_cast(BBI)) { Value *Ptr = SI->getOperand(1); if (isa(Ptr) || (isa(Ptr) && SI->getPointerAddressSpace() == 0)) { ChangeToUnreachable(SI); Changed = true; break; } } } // Turn invokes that call 'nounwind' functions into ordinary calls. if (InvokeInst *II = dyn_cast(BB->getTerminator())) if (II->doesNotThrow()) { ChangeToCall(II); Changed = true; } Changed |= ConstantFoldTerminator(BB); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) Worklist.push_back(*SI); } while (!Worklist.empty()); return Changed; } /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even /// if they are in a dead cycle. Return true if a change was made, false /// otherwise. static bool RemoveUnreachableBlocksFromFn(Function &F) { SmallPtrSet Reachable; bool Changed = MarkAliveBlocks(F.begin(), Reachable); // If there are unreachable blocks in the CFG... if (Reachable.size() == F.size()) return Changed; assert(Reachable.size() < F.size()); NumSimpl += F.size()-Reachable.size(); // Loop over all of the basic blocks that are not reachable, dropping all of // their internal references... for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { if (Reachable.count(BB)) continue; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.count(*SI)) (*SI)->removePredecessor(BB); BB->dropAllReferences(); } for (Function::iterator I = ++F.begin(); I != F.end();) if (!Reachable.count(I)) I = F.getBasicBlockList().erase(I); else ++I; return true; } /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi /// node) return blocks, merge them together to promote recursive block merging. static bool MergeEmptyReturnBlocks(Function &F) { bool Changed = false; BasicBlock *RetBlock = 0; // Scan all the blocks in the function, looking for empty return blocks. for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { BasicBlock &BB = *BBI++; // Only look at return blocks. ReturnInst *Ret = dyn_cast(BB.getTerminator()); if (Ret == 0) continue; // Only look at the block if it is empty or the only other thing in it is a // single PHI node that is the operand to the return. if (Ret != &BB.front()) { // Check for something else in the block. BasicBlock::iterator I = Ret; --I; if (!isa(I) || I != BB.begin() || Ret->getNumOperands() == 0 || Ret->getOperand(0) != I) continue; } // If this is the first returning block, remember it and keep going. if (RetBlock == 0) { RetBlock = &BB; continue; } // Otherwise, we found a duplicate return block. Merge the two. Changed = true; // Case when there is no input to the return or when the returned values // agree is trivial. Note that they can't agree if there are phis in the // blocks. if (Ret->getNumOperands() == 0 || Ret->getOperand(0) == cast(RetBlock->getTerminator())->getOperand(0)) { BB.replaceAllUsesWith(RetBlock); BB.eraseFromParent(); continue; } // If the canonical return block has no PHI node, create one now. PHINode *RetBlockPHI = dyn_cast(RetBlock->begin()); if (RetBlockPHI == 0) { Value *InVal = cast(RetBlock->begin())->getOperand(0); RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), "merge", &RetBlock->front()); for (pred_iterator PI = pred_begin(RetBlock), E = pred_end(RetBlock); PI != E; ++PI) RetBlockPHI->addIncoming(InVal, *PI); RetBlock->getTerminator()->setOperand(0, RetBlockPHI); } // Turn BB into a block that just unconditionally branches to the return // block. This handles the case when the two return blocks have a common // predecessor but that return different things. RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); BB.getTerminator()->eraseFromParent(); BranchInst::Create(RetBlock, &BB); } return Changed; } /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function, /// iterating until no more changes are made. static bool IterativeSimplifyCFG(Function &F) { bool Changed = false; bool LocalChange = true; while (LocalChange) { LocalChange = false; // Loop over all of the basic blocks (except the first one) and remove them // if they are unneeded... // for (Function::iterator BBIt = ++F.begin(); BBIt != F.end(); ) { if (SimplifyCFG(BBIt++)) { LocalChange = true; ++NumSimpl; } } Changed |= LocalChange; } return Changed; } // It is possible that we may require multiple passes over the code to fully // simplify the CFG. // bool CFGSimplifyPass::runOnFunction(Function &F) { bool EverChanged = RemoveUnreachableBlocksFromFn(F); EverChanged |= MergeEmptyReturnBlocks(F); EverChanged |= IterativeSimplifyCFG(F); // If neither pass changed anything, we're done. if (!EverChanged) return false; // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens, // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should // iterate between the two optimizations. We structure the code like this to // avoid reruning IterativeSimplifyCFG if the second pass of // RemoveUnreachableBlocksFromFn doesn't do anything. if (!RemoveUnreachableBlocksFromFn(F)) return true; do { EverChanged = IterativeSimplifyCFG(F); EverChanged |= RemoveUnreachableBlocksFromFn(F); } while (EverChanged); return true; }