//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if(c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CFG.h" #include #include #include #include using namespace llvm; namespace { static Statistic<> NumLCSSA("lcssa", "Number of live out of a loop variables"); class LCSSA : public FunctionPass { public: LoopInfo *LI; // Loop information DominatorTree *DT; // Dominator Tree for the current Loop... DominanceFrontier *DF; // Current Dominance Frontier virtual bool runOnFunction(Function &F); bool visitSubloop(Loop* L); void processInstruction(Instruction* Instr, const std::vector& LoopBlocks, const std::vector& exitBlocks); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); } private: std::set getLoopValuesUsedOutsideLoop(Loop *L, const std::vector& LoopBlocks); Instruction *getValueDominatingBlock(BasicBlock *BB, std::map PotDoms); }; RegisterOpt X("lcssa", "Loop-Closed SSA Form Pass"); } FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } bool LCSSA::runOnFunction(Function &F) { bool changed = false; LI = &getAnalysis(); DF = &getAnalysis(); DT = &getAnalysis(); for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { changed |= visitSubloop(*I); } return changed; } bool LCSSA::visitSubloop(Loop* L) { for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) visitSubloop(*I); // Speed up queries by creating a sorted list of blocks std::vector LoopBlocks(L->block_begin(), L->block_end()); std::sort(LoopBlocks.begin(), LoopBlocks.end()); std::set AffectedValues = getLoopValuesUsedOutsideLoop(L, LoopBlocks); // If no values are affected, we can save a lot of work, since we know that // nothing will be changed. if (AffectedValues.empty()) return false; std::vector exitBlocks; L->getExitBlocks(exitBlocks); // Iterate over all affected values for this loop and insert Phi nodes // for them in the appropriate exit blocks for (std::set::iterator I = AffectedValues.begin(), E = AffectedValues.end(); I != E; ++I) { processInstruction(*I, LoopBlocks, exitBlocks); } return true; // FIXME: Should be more intelligent in our return value. } /// processInstruction - void LCSSA::processInstruction(Instruction* Instr, const std::vector& LoopBlocks, const std::vector& exitBlocks) { ++NumLCSSA; // We are applying the transformation std::map Phis; Phis[Instr->getParent()] = Instr; // Phi nodes that need to be IDF-processed std::vector workList; for (std::vector::const_iterator BBI = exitBlocks.begin(), BBE = exitBlocks.end(); BBI != BBE; ++BBI) { PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin()); workList.push_back(phi); Phis[*BBI] = phi; // Since LoopSimplify has been run, we know that all of these predecessors // are in the loop, so just hook them up in the obvious manner. //for (pred_iterator PI = pred_begin(*BBI), PE = pred_end(*BBI); PI != PE; // ++PI) // phi->addIncoming(Instr, *PI); } // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where // necessary. Keep track of these new Phi's in Phis. while (!workList.empty()) { PHINode *CurPHI = workList.back(); workList.pop_back(); // Get the current Phi's DF, and insert Phi nodes. Add these new // nodes to our worklist. DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); if (it != DF->end()) { const DominanceFrontier::DomSetType &S = it->second; for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), PE = S.end(); P != PE; ++P) { if (Phis[*P] == 0) { // Still doesn't have operands... PHINode *phi = new PHINode(Instr->getType(), "lcssa"); (*P)->getInstList().insert((*P)->front(), phi); Phis[*P] = phi; workList.push_back(phi); } } } // Get the predecessor blocks of the current Phi, and use them to hook up // the operands of the current Phi to any members of DFPhis that dominate // it. This is a nop for the Phis inserted directly in the exit blocks, // since they are not dominated by any members of DFPhis. for (pred_iterator PI = pred_begin(CurPHI->getParent()), E = pred_end(CurPHI->getParent()); PI != E; ++PI) CurPHI->addIncoming(getValueDominatingBlock(*PI, Phis), *PI); } // Find all uses of the affected value, and replace them with the // appropriate Phi. std::vector Uses; for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); UI != UE; ++UI) { Instruction* use = cast(*UI); // Don't need to update uses within the loop body if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), use->getParent()) && !(std::binary_search(exitBlocks.begin(), exitBlocks.end(), use->getParent()) && isa(use))) Uses.push_back(use); } // Deliberately remove the initial instruction from Phis set. Phis.erase(Instr->getParent()); for (std::vector::iterator II = Uses.begin(), IE = Uses.end(); II != IE; ++II) { (*II)->replaceUsesOfWith(Instr, getValueDominatingBlock((*II)->getParent(), Phis)); } } /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that /// are used by instructions outside of it. std::set LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, const std::vector& LoopBlocks) { // FIXME: For large loops, we may be able to avoid a lot of use-scanning // by using dominance information. In particular, if a block does not // dominate any of the loop exits, then none of the values defined in the // block could be used outside the loop. std::set AffectedValues; for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); BB != E; ++BB) { for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { BasicBlock *UserBB = cast(*UI)->getParent(); if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB)) { AffectedValues.insert(I); break; } } } return AffectedValues; } Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, std::map PotDoms) { for (std::map::iterator MI = PotDoms.begin(), ME = PotDoms.end(); MI != ME; ++MI) if (DT->getNode((*MI).first)->dominates(DT->getNode(BB))) return (*MI).second; // FIXME: Should assert false return 0; }