//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file promote memory references to be register references. It promotes // alloca instructions which only have loads and stores as uses. An alloca is // transformed by using dominator frontiers to place PHI nodes, then traversing // the function in depth-first order to rewrite loads and stores as appropriate. // This is just the standard SSA construction algorithm to construct "pruned" // SSA form. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include using namespace llvm; // Provide DenseMapKeyInfo for all pointers. namespace llvm { template<> struct DenseMapKeyInfo > { static inline std::pair getEmptyKey() { return std::make_pair((BasicBlock*)-1, ~0U); } static inline std::pair getTombstoneKey() { return std::make_pair((BasicBlock*)-2, 0U); } static unsigned getHashValue(const std::pair &Val) { return DenseMapKeyInfo::getHashValue(Val.first) + Val.second*2; } static bool isPod() { return true; } }; } /// isAllocaPromotable - Return true if this alloca is legal for promotion. /// This is true if there are only loads and stores to the alloca. /// bool llvm::isAllocaPromotable(const AllocaInst *AI) { // FIXME: If the memory unit is of pointer or integer type, we can permit // assignments to subsections of the memory unit. // Only allow direct loads and stores... for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) // Loop over all of the uses of the alloca if (isa(*UI)) { // noop } else if (const StoreInst *SI = dyn_cast(*UI)) { if (SI->getOperand(0) == AI) return false; // Don't allow a store OF the AI, only INTO the AI. } else { return false; // Not a load or store. } return true; } namespace { // Data package used by RenamePass() class VISIBILITY_HIDDEN RenamePassData { public: RenamePassData(BasicBlock *B, BasicBlock *P, const std::vector &V) : BB(B), Pred(P), Values(V) {} BasicBlock *BB; BasicBlock *Pred; std::vector Values; }; struct VISIBILITY_HIDDEN PromoteMem2Reg { /// Allocas - The alloca instructions being promoted. /// std::vector Allocas; SmallVector &RetryList; ETForest &ET; DominanceFrontier &DF; /// AST - An AliasSetTracker object to update. If null, don't update it. /// AliasSetTracker *AST; /// AllocaLookup - Reverse mapping of Allocas. /// std::map AllocaLookup; /// NewPhiNodes - The PhiNodes we're adding. /// DenseMap, PHINode*> NewPhiNodes; /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas /// it corresponds to. DenseMap PhiToAllocaMap; /// PointerAllocaValues - If we are updating an AliasSetTracker, then for /// each alloca that is of pointer type, we keep track of what to copyValue /// to the inserted PHI nodes here. /// std::vector PointerAllocaValues; /// Visited - The set of basic blocks the renamer has already visited. /// SmallPtrSet Visited; /// BBNumbers - Contains a stable numbering of basic blocks to avoid /// non-determinstic behavior. DenseMap BBNumbers; /// RenamePassWorkList - Worklist used by RenamePass() std::vector RenamePassWorkList; public: PromoteMem2Reg(const std::vector &A, SmallVector &Retry, ETForest &et, DominanceFrontier &df, AliasSetTracker *ast) : Allocas(A), RetryList(Retry), ET(et), DF(df), AST(ast) {} void run(); /// properlyDominates - Return true if I1 properly dominates I2. /// bool properlyDominates(Instruction *I1, Instruction *I2) const { if (InvokeInst *II = dyn_cast(I1)) I1 = II->getNormalDest()->begin(); return ET.properlyDominates(I1->getParent(), I2->getParent()); } /// dominates - Return true if BB1 dominates BB2 using the ETForest. /// bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { return ET.dominates(BB1, BB2); } private: void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum, SmallPtrSet &DeadPHINodes); bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI); void PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector &AIs); void RenamePass(BasicBlock *BB, BasicBlock *Pred, std::vector &IncVals); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version, SmallPtrSet &InsertedPHINodes); }; } // end of anonymous namespace void PromoteMem2Reg::run() { Function &F = *DF.getRoot()->getParent(); // LocallyUsedAllocas - Keep track of all of the alloca instructions which are // only used in a single basic block. These instructions can be efficiently // promoted by performing a single linear scan over that one block. Since // individual basic blocks are sometimes large, we group together all allocas // that are live in a single basic block by the basic block they are live in. std::map > LocallyUsedAllocas; if (AST) PointerAllocaValues.resize(Allocas.size()); for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. if (AST) AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed Allocas[AllocaNum] = Allocas.back(); Allocas.pop_back(); --AllocaNum; continue; } // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. std::vector DefiningBlocks; std::vector UsingBlocks; StoreInst *OnlyStore = 0; BasicBlock *OnlyBlock = 0; bool OnlyUsedInOneBlock = true; // As we scan the uses of the alloca instruction, keep track of stores, and // decide whether all of the loads and stores to the alloca are within the // same basic block. Value *AllocaPointerVal = 0; for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){ Instruction *User = cast(*U); if (StoreInst *SI = dyn_cast(User)) { // Remember the basic blocks which define new values for the alloca DefiningBlocks.push_back(SI->getParent()); AllocaPointerVal = SI->getOperand(0); OnlyStore = SI; } else { LoadInst *LI = cast(User); // Otherwise it must be a load instruction, keep track of variable reads UsingBlocks.push_back(LI->getParent()); AllocaPointerVal = LI; } if (OnlyUsedInOneBlock) { if (OnlyBlock == 0) OnlyBlock = User->getParent(); else if (OnlyBlock != User->getParent()) OnlyUsedInOneBlock = false; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (OnlyUsedInOneBlock) { LocallyUsedAllocas[OnlyBlock].push_back(AI); // Remove the alloca from the Allocas list, since it will be processed. Allocas[AllocaNum] = Allocas.back(); Allocas.pop_back(); --AllocaNum; continue; } // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (DefiningBlocks.size() == 1) { // Be aware of loads before the store. std::set ProcessedBlocks; for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i) // If the store dominates the block and if we haven't processed it yet, // do so now. if (dominates(OnlyStore->getParent(), UsingBlocks[i])) if (ProcessedBlocks.insert(UsingBlocks[i]).second) { BasicBlock *UseBlock = UsingBlocks[i]; // If the use and store are in the same block, do a quick scan to // verify that there are no uses before the store. if (UseBlock == OnlyStore->getParent()) { BasicBlock::iterator I = UseBlock->begin(); for (; &*I != OnlyStore; ++I) { // scan block for store. if (isa(I) && I->getOperand(0) == AI) break; } if (&*I != OnlyStore) break; // Do not handle this case. } // Otherwise, if this is a different block or if all uses happen // after the store, do a simple linear scan to replace loads with // the stored value. for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end(); I != E; ) { if (LoadInst *LI = dyn_cast(I++)) { if (LI->getOperand(0) == AI) { LI->replaceAllUsesWith(OnlyStore->getOperand(0)); if (AST && isa(LI->getType())) AST->deleteValue(LI); LI->eraseFromParent(); } } } // Finally, remove this block from the UsingBlock set. UsingBlocks[i] = UsingBlocks.back(); --i; --e; } // Finally, after the scan, check to see if the store is all that is left. if (UsingBlocks.empty()) { // The alloca has been processed, move on. Allocas[AllocaNum] = Allocas.back(); Allocas.pop_back(); --AllocaNum; continue; } } if (AST) PointerAllocaValues[AllocaNum] = AllocaPointerVal; // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) BBNumbers[I] = ID++; } // Compute the locations where PhiNodes need to be inserted. Look at the // dominance frontier of EACH basic-block we have a write in. // unsigned CurrentVersion = 0; SmallPtrSet InsertedPHINodes; std::vector > DFBlocks; while (!DefiningBlocks.empty()) { BasicBlock *BB = DefiningBlocks.back(); DefiningBlocks.pop_back(); // Look up the DF for this write, add it to PhiNodes DominanceFrontier::const_iterator it = DF.find(BB); if (it != DF.end()) { const DominanceFrontier::DomSetType &S = it->second; // In theory we don't need the indirection through the DFBlocks vector. // In practice, the order of calling QueuePhiNode would depend on the // (unspecified) ordering of basic blocks in the dominance frontier, // which would give PHI nodes non-determinstic subscripts. Fix this by // processing blocks in order of the occurance in the function. for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), PE = S.end(); P != PE; ++P) DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P)); // Sort by which the block ordering in the function. std::sort(DFBlocks.begin(), DFBlocks.end()); for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) { BasicBlock *BB = DFBlocks[i].second; if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes)) DefiningBlocks.push_back(BB); } DFBlocks.clear(); } } // Now that we have inserted PHI nodes along the Iterated Dominance Frontier // of the writes to the variable, scan through the reads of the variable, // marking PHI nodes which are actually necessary as alive (by removing them // from the InsertedPHINodes set). This is not perfect: there may PHI // marked alive because of loads which are dominated by stores, but there // will be no unmarked PHI nodes which are actually used. // for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i) MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes); UsingBlocks.clear(); // If there are any PHI nodes which are now known to be dead, remove them! for (SmallPtrSet::iterator I = InsertedPHINodes.begin(), E = InsertedPHINodes.end(); I != E; ++I) { PHINode *PN = *I; bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum)); Erased=Erased; assert(Erased && "PHI already removed?"); if (AST && isa(PN->getType())) AST->deleteValue(PN); PN->eraseFromParent(); PhiToAllocaMap.erase(PN); } // Keep the reverse mapping of the 'Allocas' array. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; } // Process all allocas which are only used in a single basic block. for (std::map >::iterator I = LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){ const std::vector &LocAllocas = I->second; assert(!LocAllocas.empty() && "empty alloca list??"); // It's common for there to only be one alloca in the list. Handle it // efficiently. if (LocAllocas.size() == 1) { // If we can do the quick promotion pass, do so now. if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0])) RetryList.push_back(LocAllocas[0]); // Failed, retry later. } else { // Locally promote anything possible. Note that if this is unable to // promote a particular alloca, it puts the alloca onto the Allocas vector // for global processing. PromoteLocallyUsedAllocas(I->first, LocAllocas); } } if (Allocas.empty()) return; // All of the allocas must have been trivial! // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // std::vector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // RenamePassWorkList.clear(); RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); while(!RenamePassWorkList.empty()) { RenamePassData RPD = RenamePassWorkList.back(); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values); } // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); // Remove the allocas themselves from the function. for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { Instruction *A = Allocas[i]; // If there are any uses of the alloca instructions left, they must be in // sections of dead code that were not processed on the dominance frontier. // Just delete the users now. // if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); if (AST) AST->deleteValue(A); A->eraseFromParent(); } // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; for (DenseMap, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = PN->hasConstantValue(true)) { if (!isa(V) || properlyDominates(cast(V), PN)) { if (AST && isa(PN->getType())) AST->deleteValue(PN); PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // for (DenseMap, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Count the number of preds for BB. SmallVector Preds(pred_begin(BB), pred_end(BB)); // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == Preds.size()) continue; // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVector::iterator EntIt = std::lower_bound(Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *UndefVal = UndefValue::get(SomePHI->getType()); for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) SomePHI->addIncoming(UndefVal, Preds[pred]); } } NewPhiNodes.clear(); } // MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not // "minimal" SSA form. To do this, it inserts all of the PHI nodes on the IDF // as usual (inserting the PHI nodes in the DeadPHINodes set), then processes // each read of the variable. For each block that reads the variable, this // function is called, which removes used PHI nodes from the DeadPHINodes set. // After all of the reads have been processed, any PHI nodes left in the // DeadPHINodes set are removed. // void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum, SmallPtrSet &DeadPHINodes) { // Scan the immediate dominators of this block looking for a block which has a // PHI node for Alloca num. If we find it, mark the PHI node as being alive! for (BasicBlock* DomBB = BB; DomBB; DomBB = ET.getIDom(DomBB)) { DenseMap, PHINode*>::iterator I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum)); if (I != NewPhiNodes.end()) { // Ok, we found an inserted PHI node which dominates this value. PHINode *DominatingPHI = I->second; // Find out if we previously thought it was dead. If so, mark it as being // live by removing it from the DeadPHINodes set. if (DeadPHINodes.erase(DominatingPHI)) { // Now that we have marked the PHI node alive, also mark any PHI nodes // which it might use as being alive as well. for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB); PI != PE; ++PI) MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes); } } } } /// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic /// block. If this is the case, avoid traversing the CFG and inserting a lot of /// potentially useless PHI nodes by just performing a single linear pass over /// the basic block using the Alloca. /// /// If we cannot promote this alloca (because it is read before it is written), /// return true. This is necessary in cases where, due to control flow, the /// alloca is potentially undefined on some control flow paths. e.g. code like /// this is potentially correct: /// /// for (...) { if (c) { A = undef; undef = B; } } /// /// ... so long as A is not used before undef is set. /// bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) { assert(!AI->use_empty() && "There are no uses of the alloca!"); // Handle degenerate cases quickly. if (AI->hasOneUse()) { Instruction *U = cast(AI->use_back()); if (LoadInst *LI = dyn_cast(U)) { // Must be a load of uninitialized value. LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType())); if (AST && isa(LI->getType())) AST->deleteValue(LI); } else { // Otherwise it must be a store which is never read. assert(isa(U)); } BB->getInstList().erase(U); } else { // Uses of the uninitialized memory location shall get undef. Value *CurVal = 0; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { Instruction *Inst = I++; if (LoadInst *LI = dyn_cast(Inst)) { if (LI->getOperand(0) == AI) { if (!CurVal) return true; // Could not locally promote! // Loads just returns the "current value"... LI->replaceAllUsesWith(CurVal); if (AST && isa(LI->getType())) AST->deleteValue(LI); BB->getInstList().erase(LI); } } else if (StoreInst *SI = dyn_cast(Inst)) { if (SI->getOperand(1) == AI) { // Store updates the "current value"... CurVal = SI->getOperand(0); BB->getInstList().erase(SI); } } } } // After traversing the basic block, there should be no more uses of the // alloca, remove it now. assert(AI->use_empty() && "Uses of alloca from more than one BB??"); if (AST) AST->deleteValue(AI); AI->getParent()->getInstList().erase(AI); return false; } /// PromoteLocallyUsedAllocas - This method is just like /// PromoteLocallyUsedAlloca, except that it processes multiple alloca /// instructions in parallel. This is important in cases where we have large /// basic blocks, as we don't want to rescan the entire basic block for each /// alloca which is locally used in it (which might be a lot). void PromoteMem2Reg:: PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector &AIs) { std::map CurValues; for (unsigned i = 0, e = AIs.size(); i != e; ++i) CurValues[AIs[i]] = 0; // Insert with null value for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { Instruction *Inst = I++; if (LoadInst *LI = dyn_cast(Inst)) { // Is this a load of an alloca we are tracking? if (AllocaInst *AI = dyn_cast(LI->getOperand(0))) { std::map::iterator AIt = CurValues.find(AI); if (AIt != CurValues.end()) { // If loading an uninitialized value, allow the inter-block case to // handle it. Due to control flow, this might actually be ok. if (AIt->second == 0) { // Use of locally uninitialized value?? RetryList.push_back(AI); // Retry elsewhere. CurValues.erase(AIt); // Stop tracking this here. if (CurValues.empty()) return; } else { // Loads just returns the "current value"... LI->replaceAllUsesWith(AIt->second); if (AST && isa(LI->getType())) AST->deleteValue(LI); BB->getInstList().erase(LI); } } } } else if (StoreInst *SI = dyn_cast(Inst)) { if (AllocaInst *AI = dyn_cast(SI->getOperand(1))) { std::map::iterator AIt = CurValues.find(AI); if (AIt != CurValues.end()) { // Store updates the "current value"... AIt->second = SI->getOperand(0); BB->getInstList().erase(SI); } } } } } // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific // Alloca returns true if there wasn't already a phi-node for that variable // bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, unsigned &Version, SmallPtrSet &InsertedPHINodes) { // Look up the basic-block in question. PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! if (PN) return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(), Allocas[AllocaNo]->getName() + "." + utostr(Version++), BB->begin()); PhiToAllocaMap[PN] = AllocaNo; InsertedPHINodes.insert(PN); if (AST && isa(PN->getType())) AST->copyValue(PointerAllocaValues[AllocaNo], PN); return true; } // RenamePass - Recursively traverse the CFG of the function, renaming loads and // stores to the allocas which we are promoting. IncomingVals indicates what // value each Alloca contains on exit from the predecessor block Pred. // void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, std::vector &IncomingVals) { // If we are inserting any phi nodes into this BB, they will already be in the // block. if (PHINode *APN = dyn_cast(BB->begin())) { // Pred may have multiple edges to BB. If so, we want to add N incoming // values to each PHI we are inserting on the first time we see the edge. // Check to see if APN already has incoming values from Pred. This also // prevents us from modifying PHI nodes that are not currently being // inserted. bool HasPredEntries = false; for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) { if (APN->getIncomingBlock(i) == Pred) { HasPredEntries = true; break; } } // If we have PHI nodes to update, compute the number of edges from Pred to // BB. if (!HasPredEntries) { TerminatorInst *PredTerm = Pred->getTerminator(); unsigned NumEdges = 0; for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { if (PredTerm->getSuccessor(i) == BB) ++NumEdges; } assert(NumEdges && "Must be at least one edge from Pred to BB!"); // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; // Get the next phi node. ++PNI; APN = dyn_cast(PNI); if (APN == 0) break; // Verify it doesn't already have entries for Pred. If it does, it is // not being inserted by this mem2reg invocation. HasPredEntries = false; for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) { if (APN->getIncomingBlock(i) == Pred) { HasPredEntries = true; break; } } } while (!HasPredEntries); } } // Don't revisit blocks. if (!Visited.insert(BB)) return; for (BasicBlock::iterator II = BB->begin(); !isa(II); ) { Instruction *I = II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast(I)) { if (AllocaInst *Src = dyn_cast(LI->getPointerOperand())) { std::map::iterator AI = AllocaLookup.find(Src); if (AI != AllocaLookup.end()) { Value *V = IncomingVals[AI->second]; // walk the use list of this load and replace all uses with r LI->replaceAllUsesWith(V); if (AST && isa(LI->getType())) AST->deleteValue(LI); BB->getInstList().erase(LI); } } } else if (StoreInst *SI = dyn_cast(I)) { // Delete this instruction and mark the name as the current holder of the // value if (AllocaInst *Dest = dyn_cast(SI->getPointerOperand())) { std::map::iterator ai = AllocaLookup.find(Dest); if (ai != AllocaLookup.end()) { // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); BB->getInstList().erase(SI); } } } } // Recurse to our successors. TerminatorInst *TI = BB->getTerminator(); for (unsigned i = 0; i != TI->getNumSuccessors(); i++) RenamePassWorkList.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals)); } /// PromoteMemToReg - Promote the specified list of alloca instructions into /// scalar registers, inserting PHI nodes as appropriate. This function makes /// use of DominanceFrontier information. This function does not modify the CFG /// of the function at all. All allocas must be from the same function. /// /// If AST is specified, the specified tracker is updated to reflect changes /// made to the IR. /// void llvm::PromoteMemToReg(const std::vector &Allocas, ETForest &ET, DominanceFrontier &DF, AliasSetTracker *AST) { // If there is nothing to do, bail out... if (Allocas.empty()) return; SmallVector RetryList; PromoteMem2Reg(Allocas, RetryList, ET, DF, AST).run(); // PromoteMem2Reg may not have been able to promote all of the allocas in one // pass, run it again if needed. std::vector NewAllocas; while (!RetryList.empty()) { // If we need to retry some allocas, this is due to there being no store // before a read in a local block. To counteract this, insert a store of // undef into the alloca right after the alloca itself. for (unsigned i = 0, e = RetryList.size(); i != e; ++i) { BasicBlock::iterator BBI = RetryList[i]; new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()), RetryList[i], ++BBI); } NewAllocas.assign(RetryList.begin(), RetryList.end()); RetryList.clear(); PromoteMem2Reg(NewAllocas, RetryList, ET, DF, AST).run(); NewAllocas.clear(); } }