//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file promotes memory references to be register references. It promotes // alloca instructions which only have loads and stores as uses. An alloca is // transformed by using iterated dominator frontiers to place PHI nodes, then // traversing the function in depth-first order to rewrite loads and stores as // appropriate. // // The algorithm used here is based on: // // Sreedhar and Gao. A linear time algorithm for placing phi-nodes. // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of // Programming Languages // POPL '95. ACM, New York, NY, 62-73. // // It has been modified to not explicitly use the DJ graph data structure and to // directly compute pruned SSA using per-variable liveness information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mem2reg" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Constants.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Metadata.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); namespace llvm { template<> struct DenseMapInfo > { typedef std::pair EltTy; static inline EltTy getEmptyKey() { return EltTy(reinterpret_cast(-1), ~0U); } static inline EltTy getTombstoneKey() { return EltTy(reinterpret_cast(-2), 0U); } static unsigned getHashValue(const std::pair &Val) { using llvm::hash_value; return static_cast(hash_value(Val)); } static bool isEqual(const EltTy &LHS, const EltTy &RHS) { return LHS == RHS; } }; } /// isAllocaPromotable - Return true if this alloca is legal for promotion. /// This is true if there are only loads and stores to the alloca. /// bool llvm::isAllocaPromotable(const AllocaInst *AI) { // FIXME: If the memory unit is of pointer or integer type, we can permit // assignments to subsections of the memory unit. // Only allow direct and non-volatile loads and stores... for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { // Loop over all of the uses of the alloca const User *U = *UI; if (const LoadInst *LI = dyn_cast(U)) { // Note that atomic loads can be transformed; atomic semantics do // not have any meaning for a local alloca. if (LI->isVolatile()) return false; } else if (const StoreInst *SI = dyn_cast(U)) { if (SI->getOperand(0) == AI) return false; // Don't allow a store OF the AI, only INTO the AI. // Note that atomic stores can be transformed; atomic semantics do // not have any meaning for a local alloca. if (SI->isVolatile()) return false; } else if (const IntrinsicInst *II = dyn_cast(U)) { if (II->getIntrinsicID() != Intrinsic::lifetime_start && II->getIntrinsicID() != Intrinsic::lifetime_end) return false; } else if (const BitCastInst *BCI = dyn_cast(U)) { if (BCI->getType() != Type::getInt8PtrTy(U->getContext())) return false; if (!onlyUsedByLifetimeMarkers(BCI)) return false; } else if (const GetElementPtrInst *GEPI = dyn_cast(U)) { if (GEPI->getType() != Type::getInt8PtrTy(U->getContext())) return false; if (!GEPI->hasAllZeroIndices()) return false; if (!onlyUsedByLifetimeMarkers(GEPI)) return false; } else { return false; } } return true; } namespace { struct AllocaInfo; // Data package used by RenamePass() class RenamePassData { public: typedef std::vector ValVector; RenamePassData() : BB(NULL), Pred(NULL), Values() {} RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) : BB(B), Pred(P), Values(V) {} BasicBlock *BB; BasicBlock *Pred; ValVector Values; void swap(RenamePassData &RHS) { std::swap(BB, RHS.BB); std::swap(Pred, RHS.Pred); Values.swap(RHS.Values); } }; /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of /// load/store instructions in the block that directly load or store an alloca. /// /// This functionality is important because it avoids scanning large basic /// blocks multiple times when promoting many allocas in the same block. class LargeBlockInfo { /// InstNumbers - For each instruction that we track, keep the index of the /// instruction. The index starts out as the number of the instruction from /// the start of the block. DenseMap InstNumbers; public: /// isInterestingInstruction - This code only looks at accesses to allocas. static bool isInterestingInstruction(const Instruction *I) { return (isa(I) && isa(I->getOperand(0))) || (isa(I) && isa(I->getOperand(1))); } /// getInstructionIndex - Get or calculate the index of the specified /// instruction. unsigned getInstructionIndex(const Instruction *I) { assert(isInterestingInstruction(I) && "Not a load/store to/from an alloca?"); // If we already have this instruction number, return it. DenseMap::iterator It = InstNumbers.find(I); if (It != InstNumbers.end()) return It->second; // Scan the whole block to get the instruction. This accumulates // information for every interesting instruction in the block, in order to // avoid gratuitus rescans. const BasicBlock *BB = I->getParent(); unsigned InstNo = 0; for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; ++BBI) if (isInterestingInstruction(BBI)) InstNumbers[BBI] = InstNo++; It = InstNumbers.find(I); assert(It != InstNumbers.end() && "Didn't insert instruction?"); return It->second; } void deleteValue(const Instruction *I) { InstNumbers.erase(I); } void clear() { InstNumbers.clear(); } }; struct PromoteMem2Reg { /// Allocas - The alloca instructions being promoted. /// std::vector Allocas; DominatorTree &DT; DIBuilder *DIB; /// AST - An AliasSetTracker object to update. If null, don't update it. /// AliasSetTracker *AST; /// AllocaLookup - Reverse mapping of Allocas. /// DenseMap AllocaLookup; /// NewPhiNodes - The PhiNodes we're adding. That map is used to simplify /// some Phi nodes as we iterate over it, so it should have deterministic /// iterators. We could use a MapVector, but since we already maintain a /// map from BasicBlock* to a stable numbering (BBNumbers), the DenseMap is /// more efficient (also supports removal). /// DenseMap, PHINode*> NewPhiNodes; /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas /// it corresponds to. DenseMap PhiToAllocaMap; /// PointerAllocaValues - If we are updating an AliasSetTracker, then for /// each alloca that is of pointer type, we keep track of what to copyValue /// to the inserted PHI nodes here. /// std::vector PointerAllocaValues; /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare /// intrinsic that describes it, if any, so that we can convert it to a /// dbg.value intrinsic if the alloca gets promoted. SmallVector AllocaDbgDeclares; /// Visited - The set of basic blocks the renamer has already visited. /// SmallPtrSet Visited; /// BBNumbers - Contains a stable numbering of basic blocks to avoid /// non-determinstic behavior. DenseMap BBNumbers; /// DomLevels - Maps DomTreeNodes to their level in the dominator tree. DenseMap DomLevels; /// BBNumPreds - Lazily compute the number of predecessors a block has. DenseMap BBNumPreds; public: PromoteMem2Reg(const std::vector &A, DominatorTree &dt, AliasSetTracker *ast) : Allocas(A), DT(dt), DIB(0), AST(ast) {} ~PromoteMem2Reg() { delete DIB; } void run(); /// dominates - Return true if BB1 dominates BB2 using the DominatorTree. /// bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { return DT.dominates(BB1, BB2); } private: void RemoveFromAllocasList(unsigned &AllocaIdx) { Allocas[AllocaIdx] = Allocas.back(); Allocas.pop_back(); --AllocaIdx; } unsigned getNumPreds(const BasicBlock *BB) { unsigned &NP = BBNumPreds[BB]; if (NP == 0) NP = std::distance(pred_begin(BB), pred_end(BB))+1; return NP-1; } void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, AllocaInfo &Info); void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, const SmallPtrSet &DefBlocks, SmallPtrSet &LiveInBlocks); void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI); void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI); void RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncVals, std::vector &Worklist); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); }; struct AllocaInfo { SmallVector DefiningBlocks; SmallVector UsingBlocks; StoreInst *OnlyStore; BasicBlock *OnlyBlock; bool OnlyUsedInOneBlock; Value *AllocaPointerVal; DbgDeclareInst *DbgDeclare; void clear() { DefiningBlocks.clear(); UsingBlocks.clear(); OnlyStore = 0; OnlyBlock = 0; OnlyUsedInOneBlock = true; AllocaPointerVal = 0; DbgDeclare = 0; } /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our /// ivars. void AnalyzeAlloca(AllocaInst *AI) { clear(); // As we scan the uses of the alloca instruction, keep track of stores, // and decide whether all of the loads and stores to the alloca are within // the same basic block. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { Instruction *User = cast(*UI++); if (StoreInst *SI = dyn_cast(User)) { // Remember the basic blocks which define new values for the alloca DefiningBlocks.push_back(SI->getParent()); AllocaPointerVal = SI->getOperand(0); OnlyStore = SI; } else { LoadInst *LI = cast(User); // Otherwise it must be a load instruction, keep track of variable // reads. UsingBlocks.push_back(LI->getParent()); AllocaPointerVal = LI; } if (OnlyUsedInOneBlock) { if (OnlyBlock == 0) OnlyBlock = User->getParent(); else if (OnlyBlock != User->getParent()) OnlyUsedInOneBlock = false; } } DbgDeclare = FindAllocaDbgDeclare(AI); } }; typedef std::pair DomTreeNodePair; struct DomTreeNodeCompare { bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) { return LHS.second < RHS.second; } }; } // end of anonymous namespace static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { // Knowing that this alloca is promotable, we know that it's safe to kill all // instructions except for load and store. for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) { Instruction *I = cast(*UI); ++UI; if (isa(I) || isa(I)) continue; if (!I->getType()->isVoidTy()) { // The only users of this bitcast/GEP instruction are lifetime intrinsics. // Follow the use/def chain to erase them now instead of leaving it for // dead code elimination later. for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;) { Instruction *Inst = cast(*UI); ++UI; Inst->eraseFromParent(); } } I->eraseFromParent(); } } void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); if (AST) PointerAllocaValues.resize(Allocas.size()); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info; LargeBlockInfo LBI; for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); removeLifetimeIntrinsicUsers(AI); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. if (AST) AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed RemoveFromAllocasList(AllocaNum); ++NumDeadAlloca; continue; } // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { RewriteSingleStoreAlloca(AI, Info, LBI); // Finally, after the scan, check to see if the store is all that is left. if (Info.UsingBlocks.empty()) { // Record debuginfo for the store and remove the declaration's // debuginfo. if (DbgDeclareInst *DDI = Info.DbgDeclare) { if (!DIB) DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB); DDI->eraseFromParent(); } // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); ++NumSingleStore; continue; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock) { PromoteSingleBlockAlloca(AI, Info, LBI); // Finally, after the scan, check to see if the stores are all that is // left. if (Info.UsingBlocks.empty()) { // Remove the (now dead) stores and alloca. while (!AI->use_empty()) { StoreInst *SI = cast(AI->use_back()); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = Info.DbgDeclare) { if (!DIB) DIB = new DIBuilder(*SI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); } SI->eraseFromParent(); LBI.deleteValue(SI); } if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); // The alloca's debuginfo can be removed as well. if (DbgDeclareInst *DDI = Info.DbgDeclare) DDI->eraseFromParent(); ++NumLocalPromoted; continue; } } // If we haven't computed dominator tree levels, do so now. if (DomLevels.empty()) { SmallVector Worklist; DomTreeNode *Root = DT.getRootNode(); DomLevels[Root] = 0; Worklist.push_back(Root); while (!Worklist.empty()) { DomTreeNode *Node = Worklist.pop_back_val(); unsigned ChildLevel = DomLevels[Node] + 1; for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; ++CI) { DomLevels[*CI] = ChildLevel; Worklist.push_back(*CI); } } } // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) BBNumbers[I] = ID++; } // If we have an AST to keep updated, remember some pointer value that is // stored into the alloca. if (AST) PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; // Remember the dbg.declare intrinsic describing this alloca, if any. if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need PHI // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. DetermineInsertionPoint(AI, AllocaNum, Info); } if (Allocas.empty()) return; // All of the allocas must have been trivial! LBI.clear(); // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // RenamePassData::ValVector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // std::vector RenamePassWorkList; RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); do { RenamePassData RPD; RPD.swap(RenamePassWorkList.back()); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); } while (!RenamePassWorkList.empty()); // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); // Remove the allocas themselves from the function. for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { Instruction *A = Allocas[i]; // If there are any uses of the alloca instructions left, they must be in // unreachable basic blocks that were not processed by walking the dominator // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); if (AST) AST->deleteValue(A); A->eraseFromParent(); } // Remove alloca's dbg.declare instrinsics from the function. for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) DDI->eraseFromParent(); // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; // Iterating over NewPhiNodes is deterministic, so it is safe to try to // simplify and RAUW them as we go. If it was not, we could add uses to // the values we replace with in a non deterministic order, thus creating // non deterministic def->use chains. for (DenseMap, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) { if (AST && PN->getType()->isPointerTy()) AST->deleteValue(PN); PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // for (DenseMap, PHINode*>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) continue; // Get the preds for BB. SmallVector Preds(pred_begin(BB), pred_end(BB)); // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVector::iterator EntIt = std::lower_bound(Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *UndefVal = UndefValue::get(SomePHI->getType()); for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) SomePHI->addIncoming(UndefVal, Preds[pred]); } } NewPhiNodes.clear(); } /// ComputeLiveInBlocks - Determine which blocks the value is live in. These /// are blocks which lead to uses. Knowing this allows us to avoid inserting /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes /// would be dead). void PromoteMem2Reg:: ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, const SmallPtrSet &DefBlocks, SmallPtrSet &LiveInBlocks) { // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. SmallVector LiveInBlockWorklist(Info.UsingBlocks.begin(), Info.UsingBlocks.end()); // If any of the using blocks is also a definition block, check to see if the // definition occurs before or after the use. If it happens before the use, // the value isn't really live-in. for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { BasicBlock *BB = LiveInBlockWorklist[i]; if (!DefBlocks.count(BB)) continue; // Okay, this is a block that both uses and defines the value. If the first // reference to the alloca is a def (store), then we know it isn't live-in. for (BasicBlock::iterator I = BB->begin(); ; ++I) { if (StoreInst *SI = dyn_cast(I)) { if (SI->getOperand(1) != AI) continue; // We found a store to the alloca before a load. The alloca is not // actually live-in here. LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); LiveInBlockWorklist.pop_back(); --i, --e; break; } if (LoadInst *LI = dyn_cast(I)) { if (LI->getOperand(0) != AI) continue; // Okay, we found a load before a store to the alloca. It is actually // live into this block. break; } } } // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB)) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } } } /// DetermineInsertionPoint - At this point, we're committed to promoting the /// alloca using IDF's, and the standard SSA construction algorithm. Determine /// which blocks need phi nodes and see if we can optimize out some work by /// avoiding insertion of dead phi nodes. void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, AllocaInfo &Info) { // Unique the set of defining blocks for efficient lookup. SmallPtrSet DefBlocks; DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); // Determine which blocks the value is live in. These are blocks which lead // to uses. SmallPtrSet LiveInBlocks; ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); // Use a priority queue keyed on dominator tree level so that inserted nodes // are handled from the bottom of the dominator tree upwards. typedef std::priority_queue, DomTreeNodeCompare> IDFPriorityQueue; IDFPriorityQueue PQ; for (SmallPtrSet::const_iterator I = DefBlocks.begin(), E = DefBlocks.end(); I != E; ++I) { if (DomTreeNode *Node = DT.getNode(*I)) PQ.push(std::make_pair(Node, DomLevels[Node])); } SmallVector, 32> DFBlocks; SmallPtrSet Visited; SmallVector Worklist; while (!PQ.empty()) { DomTreeNodePair RootPair = PQ.top(); PQ.pop(); DomTreeNode *Root = RootPair.first; unsigned RootLevel = RootPair.second; // Walk all dominator tree children of Root, inspecting their CFG edges with // targets elsewhere on the dominator tree. Only targets whose level is at // most Root's level are added to the iterated dominance frontier of the // definition set. Worklist.clear(); Worklist.push_back(Root); while (!Worklist.empty()) { DomTreeNode *Node = Worklist.pop_back_val(); BasicBlock *BB = Node->getBlock(); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { DomTreeNode *SuccNode = DT.getNode(*SI); // Quickly skip all CFG edges that are also dominator tree edges instead // of catching them below. if (SuccNode->getIDom() == Node) continue; unsigned SuccLevel = DomLevels[SuccNode]; if (SuccLevel > RootLevel) continue; if (!Visited.insert(SuccNode)) continue; BasicBlock *SuccBB = SuccNode->getBlock(); if (!LiveInBlocks.count(SuccBB)) continue; DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); if (!DefBlocks.count(SuccBB)) PQ.push(std::make_pair(SuccNode, SuccLevel)); } for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; ++CI) { if (!Visited.count(*CI)) Worklist.push_back(*CI); } } } if (DFBlocks.size() > 1) std::sort(DFBlocks.begin(), DFBlocks.end()); unsigned CurrentVersion = 0; for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); } /// RewriteSingleStoreAlloca - If there is only a single store to this value, /// replace any loads of it that are directly dominated by the definition with /// the value stored. void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa(OnlyStore->getOperand(0)); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { Instruction *UserInst = cast(*UI++); if (!isa(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (LI->getParent() != StoreBB && !dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = UndefValue::get(LI->getType()); LI->replaceAllUsesWith(ReplVal); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } } namespace { /// StoreIndexSearchPredicate - This is a helper predicate used to search by the /// first element of a pair. struct StoreIndexSearchPredicate { bool operator()(const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; } }; } /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic /// block. If this is the case, avoid traversing the CFG and inserting a lot of /// potentially useless PHI nodes by just performing a single linear pass over /// the basic block using the Alloca. /// /// If we cannot promote this alloca (because it is read before it is written), /// return true. This is necessary in cases where, due to control flow, the /// alloca is potentially undefined on some control flow paths. e.g. code like /// this is potentially correct: /// /// for (...) { if (c) { A = undef; undef = B; } } /// /// ... so long as A is not used before undef is set. /// void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI) { // The trickiest case to handle is when we have large blocks. Because of this, // this code is optimized assuming that large blocks happen. This does not // significantly pessimize the small block case. This uses LargeBlockInfo to // make it efficient to get the index of various operations in the block. // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); // Walk the use-def list of the alloca, getting the locations of all stores. typedef SmallVector, 64> StoresByIndexTy; StoresByIndexTy StoresByIndex; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) if (StoreInst *SI = dyn_cast(*UI)) StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); // If there are no stores to the alloca, just replace any loads with undef. if (StoresByIndex.empty()) { for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) if (LoadInst *LI = dyn_cast(*UI++)) { LI->replaceAllUsesWith(UndefValue::get(LI->getType())); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LBI.deleteValue(LI); LI->eraseFromParent(); } return; } // Sort the stores by their index, making it efficient to do a lookup with a // binary search. std::sort(StoresByIndex.begin(), StoresByIndex.end()); // Walk all of the loads from this alloca, replacing them with the nearest // store above them, if any. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { LoadInst *LI = dyn_cast(*UI++); if (!LI) continue; unsigned LoadIdx = LBI.getInstructionIndex(LI); // Find the nearest store that has a lower than this load. StoresByIndexTy::iterator I = std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), std::pair(LoadIdx, static_cast(0)), StoreIndexSearchPredicate()); // If there is no store before this load, then we can't promote this load. if (I == StoresByIndex.begin()) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(LI->getParent()); continue; } // Otherwise, there was a store before this load, the load takes its value. --I; LI->replaceAllUsesWith(I->second->getOperand(0)); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } } // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific // Alloca returns true if there wasn't already a phi-node for that variable // bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, unsigned &Version) { // Look up the basic-block in question. PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! if (PN) return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), Allocas[AllocaNo]->getName() + "." + Twine(Version++), BB->begin()); ++NumPHIInsert; PhiToAllocaMap[PN] = AllocaNo; if (AST && PN->getType()->isPointerTy()) AST->copyValue(PointerAllocaValues[AllocaNo], PN); return true; } // RenamePass - Recursively traverse the CFG of the function, renaming loads and // stores to the allocas which we are promoting. IncomingVals indicates what // value each Alloca contains on exit from the predecessor block Pred. // void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncomingVals, std::vector &Worklist) { NextIteration: // If we are inserting any phi nodes into this BB, they will already be in the // block. if (PHINode *APN = dyn_cast(BB->begin())) { // If we have PHI nodes to update, compute the number of edges from Pred to // BB. if (PhiToAllocaMap.count(APN)) { // We want to be able to distinguish between PHI nodes being inserted by // this invocation of mem2reg from those phi nodes that already existed in // the IR before mem2reg was run. We determine that APN is being inserted // because it is missing incoming edges. All other PHI nodes being // inserted by this pass of mem2reg will have the same number of incoming // operands so far. Remember this count. unsigned NewPHINumOperands = APN->getNumOperands(); unsigned NumEdges = 0; for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I) if (*I == BB) ++NumEdges; assert(NumEdges && "Must be at least one edge from Pred to BB!"); // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; // Get the next phi node. ++PNI; APN = dyn_cast(PNI); if (APN == 0) break; // Verify that it is missing entries. If not, it is not being inserted // by this mem2reg invocation so we want to ignore it. } while (APN->getNumOperands() == NewPHINumOperands); } } // Don't revisit blocks. if (!Visited.insert(BB)) return; for (BasicBlock::iterator II = BB->begin(); !isa(II); ) { Instruction *I = II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast(I)) { AllocaInst *Src = dyn_cast(LI->getPointerOperand()); if (!Src) continue; DenseMap::iterator AI = AllocaLookup.find(Src); if (AI == AllocaLookup.end()) continue; Value *V = IncomingVals[AI->second]; // Anything using the load now uses the current value. LI->replaceAllUsesWith(V); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); BB->getInstList().erase(LI); } else if (StoreInst *SI = dyn_cast(I)) { // Delete this instruction and mark the name as the current holder of the // value AllocaInst *Dest = dyn_cast(SI->getPointerOperand()); if (!Dest) continue; DenseMap::iterator ai = AllocaLookup.find(Dest); if (ai == AllocaLookup.end()) continue; // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) { if (!DIB) DIB = new DIBuilder(*SI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); } BB->getInstList().erase(SI); } } // 'Recurse' to our successors. succ_iterator I = succ_begin(BB), E = succ_end(BB); if (I == E) return; // Keep track of the successors so we don't visit the same successor twice SmallPtrSet VisitedSuccs; // Handle the first successor without using the worklist. VisitedSuccs.insert(*I); Pred = BB; BB = *I; ++I; for (; I != E; ++I) if (VisitedSuccs.insert(*I)) Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); goto NextIteration; } /// PromoteMemToReg - Promote the specified list of alloca instructions into /// scalar registers, inserting PHI nodes as appropriate. This function does /// not modify the CFG of the function at all. All allocas must be from the /// same function. /// /// If AST is specified, the specified tracker is updated to reflect changes /// made to the IR. /// void llvm::PromoteMemToReg(const std::vector &Allocas, DominatorTree &DT, AliasSetTracker *AST) { // If there is nothing to do, bail out... if (Allocas.empty()) return; PromoteMem2Reg(Allocas, DT, AST).run(); }