//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions // //===----------------------------------------------------------------------===// #include "llvm/AutoUpgrade.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instruction.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/IntrinsicInst.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/IRBuilder.h" #include using namespace llvm; static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { assert(F && "Illegal to upgrade a non-existent Function."); // Quickly eliminate it, if it's not a candidate. StringRef Name = F->getName(); if (Name.size() <= 8 || !Name.startswith("llvm.")) return false; Name = Name.substr(5); // Strip off "llvm." FunctionType *FTy = F->getFunctionType(); Module *M = F->getParent(); switch (Name[0]) { default: break; case 'i': // This upgrades the old llvm.init.trampoline to the new // llvm.init.trampoline and llvm.adjust.trampoline pair. if (Name == "init.trampoline") { // The new llvm.init.trampoline returns nothing. if (FTy->getReturnType()->isVoidTy()) break; assert(FTy->getNumParams() == 3 && "old init.trampoline takes 3 args!"); // Change the name of the old intrinsic so that we can play with its type. std::string NameTmp = F->getName(); F->setName(""); NewFn = cast(M->getOrInsertFunction( NameTmp, Type::getVoidTy(M->getContext()), FTy->getParamType(0), FTy->getParamType(1), FTy->getParamType(2), (Type *)0)); return true; } case 'p': // This upgrades the llvm.prefetch intrinsic to accept one more parameter, // which is a instruction / data cache identifier. The old version only // implicitly accepted the data version. if (Name == "prefetch") { // Don't do anything if it has the correct number of arguments already if (FTy->getNumParams() == 4) break; assert(FTy->getNumParams() == 3 && "old prefetch takes 3 args!"); // We first need to change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. We // arbitrarily unique it here allowing us to construct a correctly named // and typed function below. std::string NameTmp = F->getName(); F->setName(""); NewFn = cast(M->getOrInsertFunction(NameTmp, FTy->getReturnType(), FTy->getParamType(0), FTy->getParamType(1), FTy->getParamType(2), FTy->getParamType(2), (Type*)0)); return true; } break; case 'x': { const char *NewFnName = NULL; // This fixes the poorly named crc32 intrinsics. if (Name == "x86.sse42.crc32.8") NewFnName = "llvm.x86.sse42.crc32.32.8"; else if (Name == "x86.sse42.crc32.16") NewFnName = "llvm.x86.sse42.crc32.32.16"; else if (Name == "x86.sse42.crc32.32") NewFnName = "llvm.x86.sse42.crc32.32.32"; else if (Name == "x86.sse42.crc64.8") NewFnName = "llvm.x86.sse42.crc32.64.8"; else if (Name == "x86.sse42.crc64.64") NewFnName = "llvm.x86.sse42.crc32.64.64"; if (NewFnName) { F->setName(NewFnName); NewFn = F; return true; } // Calls to these instructions are transformed into unaligned loads. if (Name == "x86.sse.loadu.ps" || Name == "x86.sse2.loadu.dq" || Name == "x86.sse2.loadu.pd") return true; // Calls to these instructions are transformed into nontemporal stores. if (Name == "x86.sse.movnt.ps" || Name == "x86.sse2.movnt.dq" || Name == "x86.sse2.movnt.pd" || Name == "x86.sse2.movnt.i") return true; break; } } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { NewFn = 0; bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (unsigned id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id)); return Upgraded; } bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) { // Nothing to do yet. return false; } // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the // upgraded intrinsic. All argument and return casting must be provided in // order to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { Function *F = CI->getCalledFunction(); LLVMContext &C = CI->getContext(); ImmutableCallSite CS(CI); assert(F && "CallInst has no function associated with it."); if (!NewFn) { if (F->getName() == "llvm.x86.sse.loadu.ps" || F->getName() == "llvm.x86.sse2.loadu.dq" || F->getName() == "llvm.x86.sse2.loadu.pd") { // Convert to a native, unaligned load. Type *VecTy = CI->getType(); Type *IntTy = IntegerType::get(C, 128); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); Value *BC = Builder.CreateBitCast(CI->getArgOperand(0), PointerType::getUnqual(IntTy), "cast"); LoadInst *LI = Builder.CreateLoad(BC, CI->getName()); LI->setAlignment(1); // Unaligned load. BC = Builder.CreateBitCast(LI, VecTy, "new.cast"); // Fix up all the uses with our new load. if (!CI->use_empty()) CI->replaceAllUsesWith(BC); // Remove intrinsic. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.sse.movnt.ps" || F->getName() == "llvm.x86.sse2.movnt.dq" || F->getName() == "llvm.x86.sse2.movnt.pd" || F->getName() == "llvm.x86.sse2.movnt.i") { IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); Module *M = F->getParent(); SmallVector Elts; Elts.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); MDNode *Node = MDNode::get(C, Elts); Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); StoreInst *SI = Builder.CreateStore(Arg1, BC); SI->setMetadata(M->getMDKindID("nontemporal"), Node); SI->setAlignment(16); // Remove intrinsic. CI->eraseFromParent(); } else { llvm_unreachable("Unknown function for CallInst upgrade."); } return; } switch (NewFn->getIntrinsicID()) { case Intrinsic::prefetch: { IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); llvm::Type *I32Ty = llvm::Type::getInt32Ty(CI->getContext()); // Add the extra "data cache" argument Value *Operands[4] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), llvm::ConstantInt::get(I32Ty, 1) }; CallInst *NewCI = CallInst::Create(NewFn, Operands, CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(NewCI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); break; } case Intrinsic::init_trampoline: { // Transform // %tramp = call i8* llvm.init.trampoline (i8* x, i8* y, i8* z) // to // call void llvm.init.trampoline (i8* %x, i8* %y, i8* %z) // %tramp = call i8* llvm.adjust.trampoline (i8* %x) Function *AdjustTrampolineFn = cast(Intrinsic::getDeclaration(F->getParent(), Intrinsic::adjust_trampoline)); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI); Builder.CreateCall3(NewFn, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2)); CallInst *AdjustCall = Builder.CreateCall(AdjustTrampolineFn, CI->getArgOperand(0), CI->getName()); if (!CI->use_empty()) CI->replaceAllUsesWith(AdjustCall); CI->eraseFromParent(); break; } } } // This tests each Function to determine if it needs upgrading. When we find // one we are interested in, we then upgrade all calls to reflect the new // function. void llvm::UpgradeCallsToIntrinsic(Function* F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Upgrade the function and check if it is a totaly new function. Function *NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { if (NewFn != F) { // Replace all uses to the old function with the new one if necessary. for (Value::use_iterator UI = F->use_begin(), UE = F->use_end(); UI != UE; ) { if (CallInst *CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, NewFn); } // Remove old function, no longer used, from the module. F->eraseFromParent(); } } } /// This function strips all debug info intrinsics, except for llvm.dbg.declare. /// If an llvm.dbg.declare intrinsic is invalid, then this function simply /// strips that use. void llvm::CheckDebugInfoIntrinsics(Module *M) { if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) { while (!FuncStart->use_empty()) cast(FuncStart->use_back())->eraseFromParent(); FuncStart->eraseFromParent(); } if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) { while (!StopPoint->use_empty()) cast(StopPoint->use_back())->eraseFromParent(); StopPoint->eraseFromParent(); } if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) { while (!RegionStart->use_empty()) cast(RegionStart->use_back())->eraseFromParent(); RegionStart->eraseFromParent(); } if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) { while (!RegionEnd->use_empty()) cast(RegionEnd->use_back())->eraseFromParent(); RegionEnd->eraseFromParent(); } if (Function *Declare = M->getFunction("llvm.dbg.declare")) { if (!Declare->use_empty()) { DbgDeclareInst *DDI = cast(Declare->use_back()); if (!isa(DDI->getArgOperand(0)) || !isa(DDI->getArgOperand(1))) { while (!Declare->use_empty()) { CallInst *CI = cast(Declare->use_back()); CI->eraseFromParent(); } Declare->eraseFromParent(); } } } } /// FindExnAndSelIntrinsics - Find the eh_exception and eh_selector intrinsic /// calls reachable from the unwind basic block. static void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn, CallInst *&Sel, SmallPtrSet &Visited) { if (!Visited.insert(BB)) return; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (CallInst *CI = dyn_cast(I)) { switch (CI->getCalledFunction()->getIntrinsicID()) { default: break; case Intrinsic::eh_exception: assert(!Exn && "Found more than one eh.exception call!"); Exn = CI; break; case Intrinsic::eh_selector: assert(!Sel && "Found more than one eh.selector call!"); Sel = CI; break; } if (Exn && Sel) return; } } if (Exn && Sel) return; for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { FindExnAndSelIntrinsics(*I, Exn, Sel, Visited); if (Exn && Sel) return; } } /// TransferClausesToLandingPadInst - Transfer the exception handling clauses /// from the eh_selector call to the new landingpad instruction. static void TransferClausesToLandingPadInst(LandingPadInst *LPI, CallInst *EHSel) { LLVMContext &Context = LPI->getContext(); unsigned N = EHSel->getNumArgOperands(); for (unsigned i = N - 1; i > 1; --i) { if (const ConstantInt *CI = dyn_cast(EHSel->getArgOperand(i))){ unsigned FilterLength = CI->getZExtValue(); unsigned FirstCatch = i + FilterLength + !FilterLength; assert(FirstCatch <= N && "Invalid filter length"); if (FirstCatch < N) for (unsigned j = FirstCatch; j < N; ++j) { Value *Val = EHSel->getArgOperand(j); if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") { LPI->addClause(EHSel->getArgOperand(j)); } else { GlobalVariable *GV = cast(Val); LPI->addClause(GV->getInitializer()); } } if (!FilterLength) { // Cleanup. LPI->setCleanup(true); } else { // Filter. SmallVector TyInfo; TyInfo.reserve(FilterLength - 1); for (unsigned j = i + 1; j < FirstCatch; ++j) TyInfo.push_back(cast(EHSel->getArgOperand(j))); ArrayType *AType = ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() : PointerType::getUnqual(Type::getInt8Ty(Context)), TyInfo.size()); LPI->addClause(ConstantArray::get(AType, TyInfo)); } N = i; } } if (N > 2) for (unsigned j = 2; j < N; ++j) { Value *Val = EHSel->getArgOperand(j); if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") { LPI->addClause(EHSel->getArgOperand(j)); } else { GlobalVariable *GV = cast(Val); LPI->addClause(GV->getInitializer()); } } } /// This function upgrades the old pre-3.0 exception handling system to the new /// one. N.B. This will be removed in 3.1. void llvm::UpgradeExceptionHandling(Module *M) { Function *EHException = M->getFunction("llvm.eh.exception"); Function *EHSelector = M->getFunction("llvm.eh.selector"); if (!EHException || !EHSelector) return; LLVMContext &Context = M->getContext(); Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context)); Type *SelTy = Type::getInt32Ty(Context); Type *LPadSlotTy = StructType::get(ExnTy, SelTy, NULL); // This map links the invoke instruction with the eh.exception and eh.selector // calls associated with it. DenseMap > InvokeToIntrinsicsMap; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) { Function &F = *I; for (Function::iterator II = F.begin(), IE = F.end(); II != IE; ++II) { BasicBlock *BB = &*II; InvokeInst *Inst = dyn_cast(BB->getTerminator()); if (!Inst) continue; BasicBlock *UnwindDest = Inst->getUnwindDest(); if (UnwindDest->isLandingPad()) continue; // Already converted. SmallPtrSet Visited; CallInst *Exn = 0; CallInst *Sel = 0; FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited); assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!"); InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel); } } // This map stores the slots where the exception object and selector value are // stored within a function. DenseMap > FnToLPadSlotMap; SmallPtrSet DeadInsts; for (DenseMap >::iterator I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end(); I != E; ++I) { InvokeInst *Invoke = I->first; BasicBlock *UnwindDest = Invoke->getUnwindDest(); Function *F = UnwindDest->getParent(); std::pair EHIntrinsics = I->second; CallInst *Exn = cast(EHIntrinsics.first); CallInst *Sel = cast(EHIntrinsics.second); // Store the exception object and selector value in the entry block. Value *ExnSlot = 0; Value *SelSlot = 0; if (!FnToLPadSlotMap[F].first) { BasicBlock *Entry = &F->front(); ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator()); SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator()); FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot); } else { ExnSlot = FnToLPadSlotMap[F].first; SelSlot = FnToLPadSlotMap[F].second; } if (!UnwindDest->getSinglePredecessor()) { // The unwind destination doesn't have a single predecessor. Create an // unwind destination which has only one predecessor. BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad", UnwindDest->getParent()); BranchInst::Create(UnwindDest, NewBB); Invoke->setUnwindDest(NewBB); // Fix up any PHIs in the original unwind destination block. for (BasicBlock::iterator II = UnwindDest->begin(); isa(II); ++II) { PHINode *PN = cast(II); int Idx = PN->getBasicBlockIndex(Invoke->getParent()); if (Idx == -1) continue; PN->setIncomingBlock(Idx, NewBB); } UnwindDest = NewBB; } IRBuilder<> Builder(Context); Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt()); Value *PersFn = Sel->getArgOperand(1); LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0); Value *LPExn = Builder.CreateExtractValue(LPI, 0); Value *LPSel = Builder.CreateExtractValue(LPI, 1); Builder.CreateStore(LPExn, ExnSlot); Builder.CreateStore(LPSel, SelSlot); TransferClausesToLandingPadInst(LPI, Sel); DeadInsts.insert(Exn); DeadInsts.insert(Sel); } // Replace the old intrinsic calls with the values from the landingpad // instruction(s). These values were stored in allocas for us to use here. for (DenseMap >::iterator I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end(); I != E; ++I) { std::pair EHIntrinsics = I->second; CallInst *Exn = cast(EHIntrinsics.first); CallInst *Sel = cast(EHIntrinsics.second); BasicBlock *Parent = Exn->getParent(); std::pair ExnSelSlots = FnToLPadSlotMap[Parent->getParent()]; IRBuilder<> Builder(Context); Builder.SetInsertPoint(Parent, Exn); LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load"); LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load"); Exn->replaceAllUsesWith(LPExn); Sel->replaceAllUsesWith(LPSel); } // Remove the dead instructions. for (SmallPtrSet::iterator I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) { Instruction *Inst = *I; Inst->eraseFromParent(); } // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the // exception and selector values from the stored place. Function *EHResume = M->getFunction("llvm.eh.resume"); if (!EHResume) return; while (!EHResume->use_empty()) { CallInst *Resume = cast(EHResume->use_back()); BasicBlock *BB = Resume->getParent(); IRBuilder<> Builder(Context); Builder.SetInsertPoint(BB, Resume); Value *LPadVal = Builder.CreateInsertValue(UndefValue::get(LPadSlotTy), Resume->getArgOperand(0), 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1), 1, "lpad.val"); Builder.CreateResume(LPadVal); // Remove all instructions after the 'resume.' BasicBlock::iterator I = Resume; while (I != BB->end()) { Instruction *Inst = &*I++; Inst->eraseFromParent(); } } }