//===-- Instruction.cpp - Implement the Instruction class --------*- C++ -*--=// // // This file implements the Instruction class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/SymbolTable.h" #include "llvm/Type.h" #include "Support/LeakDetector.h" Instruction::Instruction(const Type *ty, unsigned it, const std::string &Name, Instruction *InsertBefore) : User(ty, Value::InstructionVal, Name) { Parent = 0; iType = it; // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // If requested, insert this instruction into a basic block... if (InsertBefore) { assert(InsertBefore->getParent() && "Instruction to insert before is not in a basic block!"); InsertBefore->getParent()->getInstList().insert(InsertBefore, this); } } void Instruction::setParent(BasicBlock *P) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = P; if (getParent()) LeakDetector::removeGarbageObject(this); } // Specialize setName to take care of symbol table majik void Instruction::setName(const std::string &name, SymbolTable *ST) { BasicBlock *P = 0; Function *PP = 0; assert((ST == 0 || !getParent() || !getParent()->getParent() || ST == &getParent()->getParent()->getSymbolTable()) && "Invalid symtab argument!"); if ((P = getParent()) && (PP = P->getParent()) && hasName()) PP->getSymbolTable().remove(this); Value::setName(name); if (PP && hasName()) PP->getSymbolTable().insert(this); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case Invoke: return "invoke"; // Standard binary operators... case Add: return "add"; case Sub: return "sub"; case Mul: return "mul"; case Div: return "div"; case Rem: return "rem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // SetCC operators... case SetLE: return "setle"; case SetGE: return "setge"; case SetLT: return "setlt"; case SetGT: return "setgt"; case SetEQ: return "seteq"; case SetNE: return "setne"; // Memory instructions... case Malloc: return "malloc"; case Free: return "free"; case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case GetElementPtr: return "getelementptr"; // Other instructions... case PHINode: return "phi"; case Cast: return "cast"; case Call: return "call"; case Shl: return "shl"; case Shr: return "shr"; case VarArg: return "va_arg"; default: return " "; } return 0; } /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z) /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not /// applied to floating point types. /// bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) { if (Opcode == Add || Opcode == Mul || Opcode == And || Opcode == Or || Opcode == Xor) { // Floating point operations do not associate! return !Ty->isFloatingPoint(); } return 0; } /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satistify: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool Instruction::isCommutative(unsigned op) { switch (op) { case Add: case Mul: case And: case Or: case Xor: case SetEQ: case SetNE: return true; default: return false; } } /// isTrappingInstruction - Return true if the instruction may trap. /// bool Instruction::isTrapping(unsigned op) { switch(op) { case Div: case Rem: case Load: case Store: case Call: case Invoke: return true; default: return false; } }