//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Instruction.h" #include "llvm/Type.h" #include "llvm/Instructions.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/LeakDetector.h" using namespace llvm; Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // If requested, insert this instruction into a basic block... if (InsertBefore) { assert(InsertBefore->getParent() && "Instruction to insert before is not in a basic block!"); InsertBefore->getParent()->getInstList().insert(InsertBefore, this); } } Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); InsertAtEnd->getInstList().push_back(this); } // Out of line virtual method, so the vtable, etc has a home. Instruction::~Instruction() { assert(Parent == 0 && "Instruction still linked in the program!"); if (hasMetadataHashEntry()) clearMetadataHashEntries(); } void Instruction::setParent(BasicBlock *P) { if (getParent()) { if (!P) LeakDetector::addGarbageObject(this); } else { if (P) LeakDetector::removeGarbageObject(this); } Parent = P; } void Instruction::removeFromParent() { getParent()->getInstList().remove(this); } void Instruction::eraseFromParent() { getParent()->getInstList().erase(this); } /// insertBefore - Insert an unlinked instructions into a basic block /// immediately before the specified instruction. void Instruction::insertBefore(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insert(InsertPos, this); } /// insertAfter - Insert an unlinked instructions into a basic block /// immediately after the specified instruction. void Instruction::insertAfter(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insertAfter(InsertPos, this); } /// moveBefore - Unlink this instruction from its current basic block and /// insert it into the basic block that MovePos lives in, right before /// MovePos. void Instruction::moveBefore(Instruction *MovePos) { MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(), this); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case IndirectBr: return "indirectbr"; case Invoke: return "invoke"; case Unwind: return "unwind"; case Unreachable: return "unreachable"; // Standard binary operators... case Add: return "add"; case FAdd: return "fadd"; case Sub: return "sub"; case FSub: return "fsub"; case Mul: return "mul"; case FMul: return "fmul"; case UDiv: return "udiv"; case SDiv: return "sdiv"; case FDiv: return "fdiv"; case URem: return "urem"; case SRem: return "srem"; case FRem: return "frem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // Memory instructions... case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case GetElementPtr: return "getelementptr"; // Convert instructions... case Trunc: return "trunc"; case ZExt: return "zext"; case SExt: return "sext"; case FPTrunc: return "fptrunc"; case FPExt: return "fpext"; case FPToUI: return "fptoui"; case FPToSI: return "fptosi"; case UIToFP: return "uitofp"; case SIToFP: return "sitofp"; case IntToPtr: return "inttoptr"; case PtrToInt: return "ptrtoint"; case BitCast: return "bitcast"; // Other instructions... case ICmp: return "icmp"; case FCmp: return "fcmp"; case PHI: return "phi"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case LShr: return "lshr"; case AShr: return "ashr"; case VAArg: return "va_arg"; case ExtractElement: return "extractelement"; case InsertElement: return "insertelement"; case ShuffleVector: return "shufflevector"; case ExtractValue: return "extractvalue"; case InsertValue: return "insertvalue"; default: return " "; } return 0; } /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool Instruction::isIdenticalTo(const Instruction *I) const { return isIdenticalToWhenDefined(I) && SubclassOptionalData == I->SubclassOptionalData; } /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it /// ignores the SubclassOptionalData flags, which specify conditions /// under which the instruction's result is undefined. bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i) != I->getOperand(i)) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast(this)) return LI->isVolatile() == cast(I)->isVolatile() && LI->getAlignment() == cast(I)->getAlignment(); if (const StoreInst *SI = dyn_cast(this)) return SI->isVolatile() == cast(I)->isVolatile() && SI->getAlignment() == cast(I)->getAlignment(); if (const CmpInst *CI = dyn_cast(this)) return CI->getPredicate() == cast(I)->getPredicate(); if (const CallInst *CI = dyn_cast(this)) return CI->isTailCall() == cast(I)->isTailCall() && CI->getCallingConv() == cast(I)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I)->getAttributes().getRawPointer(); if (const InvokeInst *CI = dyn_cast(this)) return CI->getCallingConv() == cast(I)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I)->getAttributes().getRawPointer(); if (const InsertValueInst *IVI = dyn_cast(this)) { if (IVI->getNumIndices() != cast(I)->getNumIndices()) return false; for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) if (IVI->idx_begin()[i] != cast(I)->idx_begin()[i]) return false; return true; } if (const ExtractValueInst *EVI = dyn_cast(this)) { if (EVI->getNumIndices() != cast(I)->getNumIndices()) return false; for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) if (EVI->idx_begin()[i] != cast(I)->idx_begin()[i]) return false; return true; } return true; } // isSameOperationAs // This should be kept in sync with isEquivalentOperation in // lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::isSameOperationAs(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i)->getType() != I->getOperand(i)->getType()) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast(this)) return LI->isVolatile() == cast(I)->isVolatile() && LI->getAlignment() == cast(I)->getAlignment(); if (const StoreInst *SI = dyn_cast(this)) return SI->isVolatile() == cast(I)->isVolatile() && SI->getAlignment() == cast(I)->getAlignment(); if (const CmpInst *CI = dyn_cast(this)) return CI->getPredicate() == cast(I)->getPredicate(); if (const CallInst *CI = dyn_cast(this)) return CI->isTailCall() == cast(I)->isTailCall() && CI->getCallingConv() == cast(I)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I)->getAttributes().getRawPointer(); if (const InvokeInst *CI = dyn_cast(this)) return CI->getCallingConv() == cast(I)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I)->getAttributes().getRawPointer(); if (const InsertValueInst *IVI = dyn_cast(this)) { if (IVI->getNumIndices() != cast(I)->getNumIndices()) return false; for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) if (IVI->idx_begin()[i] != cast(I)->idx_begin()[i]) return false; return true; } if (const ExtractValueInst *EVI = dyn_cast(this)) { if (EVI->getNumIndices() != cast(I)->getNumIndices()) return false; for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) if (EVI->idx_begin()[i] != cast(I)->idx_begin()[i]) return false; return true; } return true; } /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the /// specified block. Note that PHI nodes are considered to evaluate their /// operands in the corresponding predecessor block. bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { // PHI nodes uses values in the corresponding predecessor block. For other // instructions, just check to see whether the parent of the use matches up. const User *U = *UI; const PHINode *PN = dyn_cast(U); if (PN == 0) { if (cast(U)->getParent() != BB) return true; continue; } if (PN->getIncomingBlock(UI) != BB) return true; } return false; } /// mayReadFromMemory - Return true if this instruction may read memory. /// bool Instruction::mayReadFromMemory() const { switch (getOpcode()) { default: return false; case Instruction::VAArg: case Instruction::Load: return true; case Instruction::Call: return !cast(this)->doesNotAccessMemory(); case Instruction::Invoke: return !cast(this)->doesNotAccessMemory(); case Instruction::Store: return cast(this)->isVolatile(); } } /// mayWriteToMemory - Return true if this instruction may modify memory. /// bool Instruction::mayWriteToMemory() const { switch (getOpcode()) { default: return false; case Instruction::Store: case Instruction::VAArg: return true; case Instruction::Call: return !cast(this)->onlyReadsMemory(); case Instruction::Invoke: return !cast(this)->onlyReadsMemory(); case Instruction::Load: return cast(this)->isVolatile(); } } /// mayThrow - Return true if this instruction may throw an exception. /// bool Instruction::mayThrow() const { if (const CallInst *CI = dyn_cast(this)) return !CI->doesNotThrow(); return false; } /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. /// bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) { return Opcode == And || Opcode == Or || Opcode == Xor || Opcode == Add || Opcode == Mul; } /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool Instruction::isCommutative(unsigned op) { switch (op) { case Add: case FAdd: case Mul: case FMul: case And: case Or: case Xor: return true; default: return false; } } bool Instruction::isSafeToSpeculativelyExecute() const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (Constant *C = dyn_cast(getOperand(i))) if (C->canTrap()) return false; switch (getOpcode()) { default: return true; case UDiv: case URem: { // x / y is undefined if y == 0, but calcuations like x / 3 are safe. ConstantInt *Op = dyn_cast(getOperand(1)); return Op && !Op->isNullValue(); } case SDiv: case SRem: { // x / y is undefined if y == 0, and might be undefined if y == -1, // but calcuations like x / 3 are safe. ConstantInt *Op = dyn_cast(getOperand(1)); return Op && !Op->isNullValue() && !Op->isAllOnesValue(); } case Load: { if (cast(this)->isVolatile()) return false; // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. // It's also not safe to follow a bitcast, for example: // bitcast i8* (alloca i8) to i32* // would result in a 4-byte load from a 1-byte alloca. Value *Op0 = getOperand(0); if (GEPOperator *GEP = dyn_cast(Op0)) { // TODO: it's safe to do this for any GEP with constant indices that // compute inside the allocated type, but not for any inbounds gep. if (GEP->hasAllZeroIndices()) Op0 = GEP->getPointerOperand(); } if (isa(Op0)) return true; if (GlobalVariable *GV = dyn_cast(getOperand(0))) return !GV->hasExternalWeakLinkage(); return false; } case Call: return false; // The called function could have undefined behavior or // side-effects. // FIXME: We should special-case some intrinsics (bswap, // overflow-checking arithmetic, etc.) case VAArg: case Alloca: case Invoke: case PHI: case Store: case Ret: case Br: case IndirectBr: case Switch: case Unwind: case Unreachable: return false; // Misc instructions which have effects } } Instruction *Instruction::clone() const { Instruction *New = clone_impl(); New->SubclassOptionalData = SubclassOptionalData; if (!hasMetadata()) return New; // Otherwise, enumerate and copy over metadata from the old instruction to the // new one. SmallVector, 4> TheMDs; getAllMetadata(TheMDs); for (unsigned i = 0, e = TheMDs.size(); i != e; ++i) New->setMetadata(TheMDs[i].first, TheMDs[i].second); return New; }