//===- Pass.cpp - LLVM Pass Infrastructure Impementation ------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "PassManagerT.h" // PassManagerT implementation #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "Support/STLExtras.h" #include "Support/CommandLine.h" #include #include #include #include //===----------------------------------------------------------------------===// // AnalysisID Class Implementation // static std::vector CFGOnlyAnalyses; // Source of unique analysis ID #'s. unsigned AnalysisID::NextID = 0; AnalysisID::AnalysisID(const AnalysisID &AID, bool DependsOnlyOnCFG) { ID = AID.ID; // Implement the copy ctor part... Constructor = AID.Constructor; // If this analysis only depends on the CFG of the function, add it to the CFG // only list... if (DependsOnlyOnCFG) CFGOnlyAnalyses.push_back(AID); } //===----------------------------------------------------------------------===// // AnalysisResolver Class Implementation // void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) { assert(P->Resolver == 0 && "Pass already in a PassManager!"); P->Resolver = AR; } //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // // preservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::preservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) // Preserved.insert(Preserved.end(), CFGOnlyAnalyses.begin(), CFGOnlyAnalyses.end()); } //===----------------------------------------------------------------------===// // PassManager implementation - The PassManager class is a simple Pimpl class // that wraps the PassManagerT template. // PassManager::PassManager() : PM(new PassManagerT()) {} PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { PM->add(P); } bool PassManager::run(Module *M) { return PM->run(M); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // static cl::Flag EnableTiming("time-passes", "Time each pass, printing elapsed" " time for each on exit"); static double getTime() { struct timeval T; gettimeofday(&T, 0); return T.tv_sec + T.tv_usec/1000000.0; } // Create method. If Timing is enabled, this creates and returns a new timing // object, otherwise it returns null. // TimingInfo *TimingInfo::create() { return EnableTiming ? new TimingInfo() : 0; } void TimingInfo::passStarted(Pass *P) { TimingData[P] -= getTime(); } void TimingInfo::passEnded(Pass *P) { TimingData[P] += getTime(); } // TimingDtor - Print out information about timing information TimingInfo::~TimingInfo() { // Iterate over all of the data, converting it into the dual of the data map, // so that the data is sorted by amount of time taken, instead of pointer. // std::vector > Data; double TotalTime = 0; for (std::map::iterator I = TimingData.begin(), E = TimingData.end(); I != E; ++I) // Throw out results for "grouping" pass managers... if (!dynamic_cast(I->first)) { Data.push_back(std::make_pair(I->second, I->first)); TotalTime += I->second; } // Sort the data by time as the primary key, in reverse order... std::sort(Data.begin(), Data.end(), greater >()); // Print out timing header... cerr << std::string(79, '=') << "\n" << " ... Pass execution timing report ...\n" << std::string(79, '=') << "\n Total Execution Time: " << TotalTime << " seconds\n\n % Time: Seconds:\tPass Name:\n"; // Loop through all of the timing data, printing it out... for (unsigned i = 0, e = Data.size(); i != e; ++i) { fprintf(stderr, " %6.2f%% %fs\t%s\n", Data[i].first*100 / TotalTime, Data[i].first, Data[i].second->getPassName()); } cerr << " 100.00% " << TotalTime << "s\tTOTAL\n" << std::string(79, '=') << "\n"; } //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // // Different debug levels that can be enabled... enum PassDebugLevel { None, PassStructure, PassExecutions, PassDetails }; static cl::Enum PassDebugging("debug-pass", cl::Hidden, "Print PassManager debugging information", clEnumVal(None , "disable debug output"), clEnumVal(PassStructure , "print pass structure before run()"), clEnumVal(PassExecutions, "print pass name before it is executed"), clEnumVal(PassDetails , "print pass details when it is executed"), 0); void PMDebug::PrintPassStructure(Pass *P) { if (PassDebugging >= PassStructure) P->dumpPassStructure(); } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Annotable *V) { if (PassDebugging >= PassExecutions) { std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (V) { std::cerr << "' on "; if (dynamic_cast(V)) { std::cerr << "Module\n"; return; } else if (Function *F = dynamic_cast(V)) std::cerr << "Function '" << F->getName(); else if (BasicBlock *BB = dynamic_cast(V)) std::cerr << "BasicBlock '" << BB->getName(); else if (Value *Val = dynamic_cast(V)) std::cerr << typeid(*Val).name() << " '" << Val->getName(); } std::cerr << "'...\n"; } } void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg, Pass *P, const std::vector &Set){ if (PassDebugging >= PassDetails && !Set.empty()) { std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { Pass *P = Set[i].createPass(); // Good thing this is just debug code... std::cerr << " " << P->getPassName(); delete P; } std::cerr << "\n"; } } // dumpPassStructure - Implement the -debug-passes=PassStructure option void Pass::dumpPassStructure(unsigned Offset = 0) { std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n"; } //===----------------------------------------------------------------------===// // Pass Implementation // void Pass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } // getPassName - Use C++ RTTI to get a SOMEWHAT intelligable name for the pass. // const char *Pass::getPassName() const { return typeid(*this).name(); } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::run(Module *M) { bool Changed = doInitialization(M); for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (!(*I)->isExternal()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function *F) { if (F->isExternal()) return false;// Passes are not run on external functions! return doInitialization(F->getParent()) | runOnFunction(F) | doFinalization(F->getParent()); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function *F) { bool Changed = false; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed; } // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool BasicBlockPass::run(BasicBlock *BB) { Module *M = BB->getParent()->getParent(); return doInitialization(M) | runOnBasicBlock(BB) | doFinalization(M); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); }