//===-- Type.cpp - Implement the Type class -------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Type class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/DerivedTypes.h" #include "llvm/SymbolTable.h" #include "llvm/Constants.h" #include "Support/StringExtras.h" #include "Support/STLExtras.h" #include // DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are // created and later destroyed, all in an effort to make sure that there is only // a single canonical version of a type. // //#define DEBUG_MERGE_TYPES 1 //===----------------------------------------------------------------------===// // Type Class Implementation //===----------------------------------------------------------------------===// static unsigned CurUID = 0; static std::vector UIDMappings; // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions // for types as they are needed. Because resolution of types must invalidate // all of the abstract type descriptions, we keep them in a seperate map to make // this easy. static std::map ConcreteTypeDescriptions; static std::map AbstractTypeDescriptions; Type::Type(const std::string &name, PrimitiveID id) : Value(Type::TypeTy, Value::TypeVal), ForwardType(0) { if (!name.empty()) ConcreteTypeDescriptions[this] = name; ID = id; Abstract = false; UID = CurUID++; // Assign types UID's as they are created UIDMappings.push_back(this); } void Type::setName(const std::string &Name, SymbolTable *ST) { assert(ST && "Type::setName - Must provide symbol table argument!"); if (Name.size()) ST->insert(Name, this); } const Type *Type::getUniqueIDType(unsigned UID) { assert(UID < UIDMappings.size() && "Type::getPrimitiveType: UID out of range!"); return UIDMappings[UID]; } const Type *Type::getPrimitiveType(PrimitiveID IDNumber) { switch (IDNumber) { case VoidTyID : return VoidTy; case BoolTyID : return BoolTy; case UByteTyID : return UByteTy; case SByteTyID : return SByteTy; case UShortTyID: return UShortTy; case ShortTyID : return ShortTy; case UIntTyID : return UIntTy; case IntTyID : return IntTy; case ULongTyID : return ULongTy; case LongTyID : return LongTy; case FloatTyID : return FloatTy; case DoubleTyID: return DoubleTy; case TypeTyID : return TypeTy; case LabelTyID : return LabelTy; default: return 0; } } // isLosslesslyConvertibleTo - Return true if this type can be converted to // 'Ty' without any reinterpretation of bits. For example, uint to int. // bool Type::isLosslesslyConvertibleTo(const Type *Ty) const { if (this == Ty) return true; if ((!isPrimitiveType() && !isa(this)) || (!isa(Ty) && !Ty->isPrimitiveType())) return false; if (getPrimitiveID() == Ty->getPrimitiveID()) return true; // Handles identity cast, and cast of differing pointer types // Now we know that they are two differing primitive or pointer types switch (getPrimitiveID()) { case Type::UByteTyID: return Ty == Type::SByteTy; case Type::SByteTyID: return Ty == Type::UByteTy; case Type::UShortTyID: return Ty == Type::ShortTy; case Type::ShortTyID: return Ty == Type::UShortTy; case Type::UIntTyID: return Ty == Type::IntTy; case Type::IntTyID: return Ty == Type::UIntTy; case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID: return Ty == Type::ULongTy || Ty == Type::LongTy || isa(Ty); default: return false; // Other types have no identity values } } // getPrimitiveSize - Return the basic size of this type if it is a primitive // type. These are fixed by LLVM and are not target dependent. This will // return zero if the type does not have a size or is not a primitive type. // unsigned Type::getPrimitiveSize() const { switch (getPrimitiveID()) { #define HANDLE_PRIM_TYPE(TY,SIZE) case TY##TyID: return SIZE; #include "llvm/Type.def" default: return 0; } } /// getForwardedTypeInternal - This method is used to implement the union-find /// algorithm for when a type is being forwarded to another type. const Type *Type::getForwardedTypeInternal() const { assert(ForwardType && "This type is not being forwarded to another type!"); // Check to see if the forwarded type has been forwarded on. If so, collapse // the forwarding links. const Type *RealForwardedType = ForwardType->getForwardedType(); if (!RealForwardedType) return ForwardType; // No it's not forwarded again // Yes, it is forwarded again. First thing, add the reference to the new // forward type. if (RealForwardedType->isAbstract()) cast(RealForwardedType)->addRef(); // Now drop the old reference. This could cause ForwardType to get deleted. cast(ForwardType)->dropRef(); // Return the updated type. ForwardType = RealForwardedType; return ForwardType; } // getTypeDescription - This is a recursive function that walks a type hierarchy // calculating the description for a type. // static std::string getTypeDescription(const Type *Ty, std::vector &TypeStack) { if (isa(Ty)) { // Base case for the recursion std::map::iterator I = AbstractTypeDescriptions.lower_bound(Ty); if (I != AbstractTypeDescriptions.end() && I->first == Ty) return I->second; std::string Desc = "opaque"+utostr(Ty->getUniqueID()); AbstractTypeDescriptions.insert(std::make_pair(Ty, Desc)); return Desc; } if (!Ty->isAbstract()) { // Base case for the recursion std::map::iterator I = ConcreteTypeDescriptions.find(Ty); if (I != ConcreteTypeDescriptions.end()) return I->second; } // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. // if (Slot < CurSize) return "\\" + utostr(CurSize-Slot); // Here's the upreference // Recursive case: derived types... std::string Result; TypeStack.push_back(Ty); // Add us to the stack.. switch (Ty->getPrimitiveID()) { case Type::FunctionTyID: { const FunctionType *FTy = cast(Ty); Result = getTypeDescription(FTy->getReturnType(), TypeStack) + " ("; for (FunctionType::ParamTypes::const_iterator I = FTy->getParamTypes().begin(), E = FTy->getParamTypes().end(); I != E; ++I) { if (I != FTy->getParamTypes().begin()) Result += ", "; Result += getTypeDescription(*I, TypeStack); } if (FTy->isVarArg()) { if (!FTy->getParamTypes().empty()) Result += ", "; Result += "..."; } Result += ")"; break; } case Type::StructTyID: { const StructType *STy = cast(Ty); Result = "{ "; for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) { if (I != STy->getElementTypes().begin()) Result += ", "; Result += getTypeDescription(*I, TypeStack); } Result += " }"; break; } case Type::PointerTyID: { const PointerType *PTy = cast(Ty); Result = getTypeDescription(PTy->getElementType(), TypeStack) + " *"; break; } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); unsigned NumElements = ATy->getNumElements(); Result = "["; Result += utostr(NumElements) + " x "; Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]"; break; } default: Result = ""; assert(0 && "Unhandled type in getTypeDescription!"); } TypeStack.pop_back(); // Remove self from stack... return Result; } static const std::string &getOrCreateDesc(std::map&Map, const Type *Ty) { std::map::iterator I = Map.find(Ty); if (I != Map.end()) return I->second; std::vector TypeStack; return Map[Ty] = getTypeDescription(Ty, TypeStack); } const std::string &Type::getDescription() const { if (isAbstract()) return getOrCreateDesc(AbstractTypeDescriptions, this); else return getOrCreateDesc(ConcreteTypeDescriptions, this); } bool StructType::indexValid(const Value *V) const { if (!isa(V)) return false; if (V->getType() != Type::UByteTy) return false; unsigned Idx = cast(V)->getValue(); return Idx < ETypes.size(); } // getTypeAtIndex - Given an index value into the type, return the type of the // element. For a structure type, this must be a constant value... // const Type *StructType::getTypeAtIndex(const Value *V) const { assert(isa(V) && "Structure index must be a constant!!"); assert(V->getType() == Type::UByteTy && "Structure index must be ubyte!"); unsigned Idx = cast(V)->getValue(); assert(Idx < ETypes.size() && "Structure index out of range!"); assert(indexValid(V) && "Invalid structure index!"); // Duplicate check return ETypes[Idx]; } //===----------------------------------------------------------------------===// // Auxiliary classes //===----------------------------------------------------------------------===// // // These classes are used to implement specialized behavior for each different // type. // struct SignedIntType : public Type { SignedIntType(const std::string &Name, PrimitiveID id) : Type(Name, id) {} // isSigned - Return whether a numeric type is signed. virtual bool isSigned() const { return 1; } // isInteger - Equivalent to isSigned() || isUnsigned, but with only a single // virtual function invocation. // virtual bool isInteger() const { return 1; } }; struct UnsignedIntType : public Type { UnsignedIntType(const std::string &N, PrimitiveID id) : Type(N, id) {} // isUnsigned - Return whether a numeric type is signed. virtual bool isUnsigned() const { return 1; } // isInteger - Equivalent to isSigned() || isUnsigned, but with only a single // virtual function invocation. // virtual bool isInteger() const { return 1; } }; struct OtherType : public Type { OtherType(const std::string &N, PrimitiveID id) : Type(N, id) {} }; static struct TypeType : public Type { TypeType() : Type("type", TypeTyID) {} } TheTypeTy; // Implement the type that is global. //===----------------------------------------------------------------------===// // Static 'Type' data //===----------------------------------------------------------------------===// static OtherType TheVoidTy ("void" , Type::VoidTyID); static OtherType TheBoolTy ("bool" , Type::BoolTyID); static SignedIntType TheSByteTy ("sbyte" , Type::SByteTyID); static UnsignedIntType TheUByteTy ("ubyte" , Type::UByteTyID); static SignedIntType TheShortTy ("short" , Type::ShortTyID); static UnsignedIntType TheUShortTy("ushort", Type::UShortTyID); static SignedIntType TheIntTy ("int" , Type::IntTyID); static UnsignedIntType TheUIntTy ("uint" , Type::UIntTyID); static SignedIntType TheLongTy ("long" , Type::LongTyID); static UnsignedIntType TheULongTy ("ulong" , Type::ULongTyID); static OtherType TheFloatTy ("float" , Type::FloatTyID); static OtherType TheDoubleTy("double", Type::DoubleTyID); static OtherType TheLabelTy ("label" , Type::LabelTyID); Type *Type::VoidTy = &TheVoidTy; Type *Type::BoolTy = &TheBoolTy; Type *Type::SByteTy = &TheSByteTy; Type *Type::UByteTy = &TheUByteTy; Type *Type::ShortTy = &TheShortTy; Type *Type::UShortTy = &TheUShortTy; Type *Type::IntTy = &TheIntTy; Type *Type::UIntTy = &TheUIntTy; Type *Type::LongTy = &TheLongTy; Type *Type::ULongTy = &TheULongTy; Type *Type::FloatTy = &TheFloatTy; Type *Type::DoubleTy = &TheDoubleTy; Type *Type::TypeTy = &TheTypeTy; Type *Type::LabelTy = &TheLabelTy; //===----------------------------------------------------------------------===// // Derived Type Constructors //===----------------------------------------------------------------------===// FunctionType::FunctionType(const Type *Result, const std::vector &Params, bool IsVarArgs) : DerivedType(FunctionTyID), ResultType(PATypeHandle(Result, this)), isVarArgs(IsVarArgs) { bool isAbstract = Result->isAbstract(); ParamTys.reserve(Params.size()); for (unsigned i = 0; i < Params.size(); ++i) { ParamTys.push_back(PATypeHandle(Params[i], this)); isAbstract |= Params[i]->isAbstract(); } // Calculate whether or not this type is abstract setAbstract(isAbstract); } StructType::StructType(const std::vector &Types) : CompositeType(StructTyID) { ETypes.reserve(Types.size()); bool isAbstract = false; for (unsigned i = 0; i < Types.size(); ++i) { assert(Types[i] != Type::VoidTy && "Void type in method prototype!!"); ETypes.push_back(PATypeHandle(Types[i], this)); isAbstract |= Types[i]->isAbstract(); } // Calculate whether or not this type is abstract setAbstract(isAbstract); } ArrayType::ArrayType(const Type *ElType, unsigned NumEl) : SequentialType(ArrayTyID, ElType) { NumElements = NumEl; // Calculate whether or not this type is abstract setAbstract(ElType->isAbstract()); } PointerType::PointerType(const Type *E) : SequentialType(PointerTyID, E) { // Calculate whether or not this type is abstract setAbstract(E->isAbstract()); } OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) { setAbstract(true); #ifdef DEBUG_MERGE_TYPES std::cerr << "Derived new type: " << *this << "\n"; #endif } // getAlwaysOpaqueTy - This function returns an opaque type. It doesn't matter // _which_ opaque type it is, but the opaque type must never get resolved. // static Type *getAlwaysOpaqueTy() { static Type *AlwaysOpaqueTy = OpaqueType::get(); static PATypeHolder Holder(AlwaysOpaqueTy); return AlwaysOpaqueTy; } //===----------------------------------------------------------------------===// // dropAllTypeUses methods - These methods eliminate any possibly recursive type // references from a derived type. The type must remain abstract, so we make // sure to use an always opaque type as an argument. // void FunctionType::dropAllTypeUses() { ResultType = getAlwaysOpaqueTy(); ParamTys.clear(); } void ArrayType::dropAllTypeUses() { ElementType = getAlwaysOpaqueTy(); } void StructType::dropAllTypeUses() { ETypes.clear(); ETypes.push_back(PATypeHandle(getAlwaysOpaqueTy(), this)); } void PointerType::dropAllTypeUses() { ElementType = getAlwaysOpaqueTy(); } // isTypeAbstract - This is a recursive function that walks a type hierarchy // calculating whether or not a type is abstract. Worst case it will have to do // a lot of traversing if you have some whacko opaque types, but in most cases, // it will do some simple stuff when it hits non-abstract types that aren't // recursive. // bool Type::isTypeAbstract() { if (!isAbstract()) // Base case for the recursion return false; // Primitive = leaf type if (isa(this)) // Base case for the recursion return true; // This whole type is abstract! // We have to guard against recursion. To do this, we temporarily mark this // type as concrete, so that if we get back to here recursively we will think // it's not abstract, and thus not scan it again. setAbstract(false); // Scan all of the sub-types. If any of them are abstract, than so is this // one! for (Type::subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I) if (const_cast(*I)->isTypeAbstract()) { setAbstract(true); // Restore the abstract bit. return true; // This type is abstract if subtype is abstract! } // Restore the abstract bit. setAbstract(true); // Nothing looks abstract here... return false; } //===----------------------------------------------------------------------===// // Type Structural Equality Testing //===----------------------------------------------------------------------===// // TypesEqual - Two types are considered structurally equal if they have the // same "shape": Every level and element of the types have identical primitive // ID's, and the graphs have the same edges/nodes in them. Nodes do not have to // be pointer equals to be equivalent though. This uses an optimistic algorithm // that assumes that two graphs are the same until proven otherwise. // static bool TypesEqual(const Type *Ty, const Type *Ty2, std::map &EqTypes) { if (Ty == Ty2) return true; if (Ty->getPrimitiveID() != Ty2->getPrimitiveID()) return false; if (Ty->isPrimitiveType()) return true; if (isa(Ty)) return false; // Two unequal opaque types are never equal std::map::iterator It = EqTypes.lower_bound(Ty); if (It != EqTypes.end() && It->first == Ty) return It->second == Ty2; // Looping back on a type, check for equality // Otherwise, add the mapping to the table to make sure we don't get // recursion on the types... EqTypes.insert(It, std::make_pair(Ty, Ty2)); // Two really annoying special cases that breaks an otherwise nice simple // algorithm is the fact that arraytypes have sizes that differentiates types, // and that function types can be varargs or not. Consider this now. // if (const PointerType *PTy = dyn_cast(Ty)) { return TypesEqual(PTy->getElementType(), cast(Ty2)->getElementType(), EqTypes); } else if (const StructType *STy = dyn_cast(Ty)) { const StructType::ElementTypes &STyE = STy->getElementTypes(); const StructType::ElementTypes &STyE2 = cast(Ty2)->getElementTypes(); if (STyE.size() != STyE2.size()) return false; for (unsigned i = 0, e = STyE.size(); i != e; ++i) if (!TypesEqual(STyE[i], STyE2[i], EqTypes)) return false; return true; } else if (const ArrayType *ATy = dyn_cast(Ty)) { const ArrayType *ATy2 = cast(Ty2); return ATy->getNumElements() == ATy2->getNumElements() && TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes); } else if (const FunctionType *FTy = dyn_cast(Ty)) { const FunctionType *FTy2 = cast(Ty2); if (FTy->isVarArg() != FTy2->isVarArg() || FTy->getParamTypes().size() != FTy2->getParamTypes().size() || !TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes)) return false; const FunctionType::ParamTypes &FTyP = FTy->getParamTypes(); const FunctionType::ParamTypes &FTy2P = FTy2->getParamTypes(); for (unsigned i = 0, e = FTyP.size(); i != e; ++i) if (!TypesEqual(FTyP[i], FTy2P[i], EqTypes)) return false; return true; } else { assert(0 && "Unknown derived type!"); return false; } } static bool TypesEqual(const Type *Ty, const Type *Ty2) { std::map EqTypes; return TypesEqual(Ty, Ty2, EqTypes); } //===----------------------------------------------------------------------===// // Derived Type Factory Functions //===----------------------------------------------------------------------===// // TypeMap - Make sure that only one instance of a particular type may be // created on any given run of the compiler... note that this involves updating // our map if an abstract type gets refined somehow... // template class TypeMap { typedef std::map MapTy; MapTy Map; public: typedef typename MapTy::iterator iterator; ~TypeMap() { print("ON EXIT"); } inline TypeClass *get(const ValType &V) { iterator I = Map.find(V); return I != Map.end() ? I->second : 0; } inline void add(const ValType &V, TypeClass *T) { Map.insert(std::make_pair(V, T)); print("add"); } iterator getEntryForType(TypeClass *Ty) { iterator I = Map.find(ValType::get(Ty)); if (I == Map.end()) print("ERROR!"); assert(I != Map.end() && "Didn't find type entry!"); assert(I->second == Ty && "Type entry wrong?"); return I; } void finishRefinement(iterator TyIt) { TypeClass *Ty = TyIt->second; // The old record is now out-of-date, because one of the children has been // updated. Remove the obsolete entry from the map. Map.erase(TyIt); // Now we check to see if there is an existing entry in the table which is // structurally identical to the newly refined type. If so, this type gets // refined to the pre-existing type. // for (iterator I = Map.begin(), E = Map.end(); I != E; ++I) if (TypesEqual(Ty, I->second)) { assert(Ty->isAbstract() && "Replacing a non-abstract type?"); TypeClass *NewTy = I->second; // Refined to a different type altogether? Ty->refineAbstractTypeTo(NewTy); return; } // If there is no existing type of the same structure, we reinsert an // updated record into the map. Map.insert(std::make_pair(ValType::get(Ty), Ty)); // If the type is currently thought to be abstract, rescan all of our // subtypes to see if the type has just become concrete! if (Ty->isAbstract()) { Ty->setAbstract(Ty->isTypeAbstract()); // If the type just became concrete, notify all users! if (!Ty->isAbstract()) Ty->notifyUsesThatTypeBecameConcrete(); } } void remove(const ValType &OldVal) { iterator I = Map.find(OldVal); assert(I != Map.end() && "TypeMap::remove, element not found!"); Map.erase(I); } void remove(iterator I) { assert(I != Map.end() && "Cannot remove invalid iterator pointer!"); Map.erase(I); } void print(const char *Arg) const { #ifdef DEBUG_MERGE_TYPES std::cerr << "TypeMap<>::" << Arg << " table contents:\n"; unsigned i = 0; for (typename MapTy::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) std::cerr << " " << (++i) << ". " << (void*)I->second << " " << *I->second << "\n"; #endif } void dump() const { print("dump output"); } }; //===----------------------------------------------------------------------===// // Function Type Factory and Value Class... // // FunctionValType - Define a class to hold the key that goes into the TypeMap // class FunctionValType { const Type *RetTy; std::vector ArgTypes; bool isVarArg; public: FunctionValType(const Type *ret, const std::vector &args, bool IVA) : RetTy(ret), isVarArg(IVA) { for (unsigned i = 0; i < args.size(); ++i) ArgTypes.push_back(args[i]); } static FunctionValType get(const FunctionType *FT); // Subclass should override this... to update self as usual void doRefinement(const DerivedType *OldType, const Type *NewType) { if (RetTy == OldType) RetTy = NewType; for (unsigned i = 0, e = ArgTypes.size(); i != e; ++i) if (ArgTypes[i] == OldType) ArgTypes[i] = NewType; } inline bool operator<(const FunctionValType &MTV) const { if (RetTy < MTV.RetTy) return true; if (RetTy > MTV.RetTy) return false; if (ArgTypes < MTV.ArgTypes) return true; return ArgTypes == MTV.ArgTypes && isVarArg < MTV.isVarArg; } }; // Define the actual map itself now... static TypeMap FunctionTypes; FunctionValType FunctionValType::get(const FunctionType *FT) { // Build up a FunctionValType std::vector ParamTypes; ParamTypes.reserve(FT->getParamTypes().size()); for (unsigned i = 0, e = FT->getParamTypes().size(); i != e; ++i) ParamTypes.push_back(FT->getParamType(i)); return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg()); } // FunctionType::get - The factory function for the FunctionType class... FunctionType *FunctionType::get(const Type *ReturnType, const std::vector &Params, bool isVarArg) { FunctionValType VT(ReturnType, Params, isVarArg); FunctionType *MT = FunctionTypes.get(VT); if (MT) return MT; FunctionTypes.add(VT, MT = new FunctionType(ReturnType, Params, isVarArg)); #ifdef DEBUG_MERGE_TYPES std::cerr << "Derived new type: " << MT << "\n"; #endif return MT; } //===----------------------------------------------------------------------===// // Array Type Factory... // class ArrayValType { const Type *ValTy; unsigned Size; public: ArrayValType(const Type *val, int sz) : ValTy(val), Size(sz) {} static ArrayValType get(const ArrayType *AT) { return ArrayValType(AT->getElementType(), AT->getNumElements()); } // Subclass should override this... to update self as usual void doRefinement(const DerivedType *OldType, const Type *NewType) { assert(ValTy == OldType); ValTy = NewType; } inline bool operator<(const ArrayValType &MTV) const { if (Size < MTV.Size) return true; return Size == MTV.Size && ValTy < MTV.ValTy; } }; static TypeMap ArrayTypes; ArrayType *ArrayType::get(const Type *ElementType, unsigned NumElements) { assert(ElementType && "Can't get array of null types!"); ArrayValType AVT(ElementType, NumElements); ArrayType *AT = ArrayTypes.get(AVT); if (AT) return AT; // Found a match, return it! // Value not found. Derive a new type! ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements)); #ifdef DEBUG_MERGE_TYPES std::cerr << "Derived new type: " << *AT << "\n"; #endif return AT; } //===----------------------------------------------------------------------===// // Struct Type Factory... // // StructValType - Define a class to hold the key that goes into the TypeMap // class StructValType { std::vector ElTypes; public: StructValType(const std::vector &args) : ElTypes(args) {} static StructValType get(const StructType *ST) { std::vector ElTypes; ElTypes.reserve(ST->getElementTypes().size()); for (unsigned i = 0, e = ST->getElementTypes().size(); i != e; ++i) ElTypes.push_back(ST->getElementTypes()[i]); return StructValType(ElTypes); } // Subclass should override this... to update self as usual void doRefinement(const DerivedType *OldType, const Type *NewType) { for (unsigned i = 0; i < ElTypes.size(); ++i) if (ElTypes[i] == OldType) ElTypes[i] = NewType; } inline bool operator<(const StructValType &STV) const { return ElTypes < STV.ElTypes; } }; static TypeMap StructTypes; StructType *StructType::get(const std::vector &ETypes) { StructValType STV(ETypes); StructType *ST = StructTypes.get(STV); if (ST) return ST; // Value not found. Derive a new type! StructTypes.add(STV, ST = new StructType(ETypes)); #ifdef DEBUG_MERGE_TYPES std::cerr << "Derived new type: " << *ST << "\n"; #endif return ST; } //===----------------------------------------------------------------------===// // Pointer Type Factory... // // PointerValType - Define a class to hold the key that goes into the TypeMap // class PointerValType { const Type *ValTy; public: PointerValType(const Type *val) : ValTy(val) {} static PointerValType get(const PointerType *PT) { return PointerValType(PT->getElementType()); } // Subclass should override this... to update self as usual void doRefinement(const DerivedType *OldType, const Type *NewType) { assert(ValTy == OldType); ValTy = NewType; } bool operator<(const PointerValType &MTV) const { return ValTy < MTV.ValTy; } }; static TypeMap PointerTypes; PointerType *PointerType::get(const Type *ValueType) { assert(ValueType && "Can't get a pointer to type!"); PointerValType PVT(ValueType); PointerType *PT = PointerTypes.get(PVT); if (PT) return PT; // Value not found. Derive a new type! PointerTypes.add(PVT, PT = new PointerType(ValueType)); #ifdef DEBUG_MERGE_TYPES std::cerr << "Derived new type: " << *PT << "\n"; #endif return PT; } void debug_type_tables() { FunctionTypes.dump(); ArrayTypes.dump(); StructTypes.dump(); PointerTypes.dump(); } //===----------------------------------------------------------------------===// // Derived Type Refinement Functions //===----------------------------------------------------------------------===// // removeAbstractTypeUser - Notify an abstract type that a user of the class // no longer has a handle to the type. This function is called primarily by // the PATypeHandle class. When there are no users of the abstract type, it // is annihilated, because there is no way to get a reference to it ever again. // void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const { // Search from back to front because we will notify users from back to // front. Also, it is likely that there will be a stack like behavior to // users that register and unregister users. // unsigned i; for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i) assert(i != 0 && "AbstractTypeUser not in user list!"); --i; // Convert to be in range 0 <= i < size() assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound? AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i); #ifdef DEBUG_MERGE_TYPES std::cerr << " remAbstractTypeUser[" << (void*)this << ", " << *this << "][" << i << "] User = " << U << "\n"; #endif if (AbstractTypeUsers.empty() && RefCount == 0 && isAbstract()) { #ifdef DEBUG_MERGE_TYPES std::cerr << "DELETEing unused abstract type: <" << *this << ">[" << (void*)this << "]" << "\n"; #endif delete this; // No users of this abstract type! } } // refineAbstractTypeTo - This function is used to when it is discovered that // the 'this' abstract type is actually equivalent to the NewType specified. // This causes all users of 'this' to switch to reference the more concrete type // NewType and for 'this' to be deleted. // void DerivedType::refineAbstractTypeTo(const Type *NewType) { assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!"); assert(this != NewType && "Can't refine to myself!"); assert(ForwardType == 0 && "This type has already been refined!"); // The descriptions may be out of date. Conservatively clear them all! AbstractTypeDescriptions.clear(); #ifdef DEBUG_MERGE_TYPES std::cerr << "REFINING abstract type [" << (void*)this << " " << *this << "] to [" << (void*)NewType << " " << *NewType << "]!\n"; #endif // Make sure to put the type to be refined to into a holder so that if IT gets // refined, that we will not continue using a dead reference... // PATypeHolder NewTy(NewType); // Any PATypeHolders referring to this type will now automatically forward to // the type we are resolved to. ForwardType = NewType; if (NewType->isAbstract()) cast(NewType)->addRef(); // Add a self use of the current type so that we don't delete ourself until // after the function exits. // PATypeHolder CurrentTy(this); // To make the situation simpler, we ask the subclass to remove this type from // the type map, and to replace any type uses with uses of non-abstract types. // This dramatically limits the amount of recursive type trouble we can find // ourselves in. dropAllTypeUses(); // Iterate over all of the uses of this type, invoking callback. Each user // should remove itself from our use list automatically. We have to check to // make sure that NewTy doesn't _become_ 'this'. If it does, resolving types // will not cause users to drop off of the use list. If we resolve to ourself // we succeed! // while (!AbstractTypeUsers.empty() && NewTy != this) { AbstractTypeUser *User = AbstractTypeUsers.back(); unsigned OldSize = AbstractTypeUsers.size(); #ifdef DEBUG_MERGE_TYPES std::cerr << " REFINING user " << OldSize-1 << "[" << (void*)User << "] of abstract type [" << (void*)this << " " << *this << "] to [" << (void*)NewTy.get() << " " << *NewTy << "]!\n"; #endif User->refineAbstractType(this, NewTy); assert(AbstractTypeUsers.size() != OldSize && "AbsTyUser did not remove self from user list!"); } // If we were successful removing all users from the type, 'this' will be // deleted when the last PATypeHolder is destroyed or updated from this type. // This may occur on exit of this function, as the CurrentTy object is // destroyed. } // notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that // the current type has transitioned from being abstract to being concrete. // void DerivedType::notifyUsesThatTypeBecameConcrete() { #ifdef DEBUG_MERGE_TYPES std::cerr << "typeIsREFINED type: " << (void*)this << " " << *this << "\n"; #endif unsigned OldSize = AbstractTypeUsers.size(); while (!AbstractTypeUsers.empty()) { AbstractTypeUser *ATU = AbstractTypeUsers.back(); ATU->typeBecameConcrete(this); assert(AbstractTypeUsers.size() < OldSize-- && "AbstractTypeUser did not remove itself from the use list!"); } } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void FunctionType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { assert((isAbstract() || !OldType->isAbstract()) && "Refining a non-abstract type!"); #ifdef DEBUG_MERGE_TYPES std::cerr << "FunctionTy::refineAbstractTy(" << (void*)OldType << "[" << *OldType << "], " << (void*)NewType << " [" << *NewType << "])\n"; #endif // Look up our current type map entry.. TypeMap::iterator TMI = FunctionTypes.getEntryForType(this); // Find the type element we are refining... if (ResultType == OldType) { ResultType.removeUserFromConcrete(); ResultType = NewType; } for (unsigned i = 0, e = ParamTys.size(); i != e; ++i) if (ParamTys[i] == OldType) { ParamTys[i].removeUserFromConcrete(); ParamTys[i] = NewType; } FunctionTypes.finishRefinement(TMI); } void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) { refineAbstractType(AbsTy, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void ArrayType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { assert((isAbstract() || !OldType->isAbstract()) && "Refining a non-abstract type!"); #ifdef DEBUG_MERGE_TYPES std::cerr << "ArrayTy::refineAbstractTy(" << (void*)OldType << "[" << *OldType << "], " << (void*)NewType << " [" << *NewType << "])\n"; #endif // Look up our current type map entry.. TypeMap::iterator TMI = ArrayTypes.getEntryForType(this); assert(getElementType() == OldType); ElementType.removeUserFromConcrete(); ElementType = NewType; ArrayTypes.finishRefinement(TMI); } void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) { refineAbstractType(AbsTy, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void StructType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { assert((isAbstract() || !OldType->isAbstract()) && "Refining a non-abstract type!"); #ifdef DEBUG_MERGE_TYPES std::cerr << "StructTy::refineAbstractTy(" << (void*)OldType << "[" << *OldType << "], " << (void*)NewType << " [" << *NewType << "])\n"; #endif // Look up our current type map entry.. TypeMap::iterator TMI = StructTypes.getEntryForType(this); for (int i = ETypes.size()-1; i >= 0; --i) if (ETypes[i] == OldType) { ETypes[i].removeUserFromConcrete(); // Update old type to new type in the array... ETypes[i] = NewType; } StructTypes.finishRefinement(TMI); } void StructType::typeBecameConcrete(const DerivedType *AbsTy) { refineAbstractType(AbsTy, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void PointerType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { assert((isAbstract() || !OldType->isAbstract()) && "Refining a non-abstract type!"); #ifdef DEBUG_MERGE_TYPES std::cerr << "PointerTy::refineAbstractTy(" << (void*)OldType << "[" << *OldType << "], " << (void*)NewType << " [" << *NewType << "])\n"; #endif // Look up our current type map entry.. TypeMap::iterator TMI = PointerTypes.getEntryForType(this); assert(ElementType == OldType); ElementType.removeUserFromConcrete(); ElementType = NewType; PointerTypes.finishRefinement(TMI); } void PointerType::typeBecameConcrete(const DerivedType *AbsTy) { refineAbstractType(AbsTy, AbsTy); }