; Test 64-bit XORs in which the second operand is constant. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s ; Check the lowest useful XILF value. define i64 @f1(i64 %a) { ; CHECK-LABEL: f1: ; CHECK: xilf %r2, 1 ; CHECK: br %r14 %xor = xor i64 %a, 1 ret i64 %xor } ; Check the high end of the XILF range. define i64 @f2(i64 %a) { ; CHECK-LABEL: f2: ; CHECK: xilf %r2, 4294967295 ; CHECK: br %r14 %xor = xor i64 %a, 4294967295 ret i64 %xor } ; Check the lowest useful XIHF value, which is one up from the above. define i64 @f3(i64 %a) { ; CHECK-LABEL: f3: ; CHECK: xihf %r2, 1 ; CHECK: br %r14 %xor = xor i64 %a, 4294967296 ret i64 %xor } ; Check the next value up again, which needs a combination of XIHF and XILF. define i64 @f4(i64 %a) { ; CHECK-LABEL: f4: ; CHECK: xihf %r2, 1 ; CHECK: xilf %r2, 4294967295 ; CHECK: br %r14 %xor = xor i64 %a, 8589934591 ret i64 %xor } ; Check the high end of the XIHF range. define i64 @f5(i64 %a) { ; CHECK-LABEL: f5: ; CHECK: xihf %r2, 4294967295 ; CHECK: br %r14 %xor = xor i64 %a, -4294967296 ret i64 %xor } ; Check the next value up, which again must use XIHF and XILF. define i64 @f6(i64 %a) { ; CHECK-LABEL: f6: ; CHECK: xihf %r2, 4294967295 ; CHECK: xilf %r2, 1 ; CHECK: br %r14 %xor = xor i64 %a, -4294967295 ret i64 %xor } ; Check full bitwise negation define i64 @f7(i64 %a) { ; CHECK-LABEL: f7: ; CHECK: xihf %r2, 4294967295 ; CHECK: xilf %r2, 4294967295 ; CHECK: br %r14 %xor = xor i64 %a, -1 ret i64 %xor }