; RUN: llc < %s -mtriple=x86_64-apple-darwin -mcpu=corei7-avx -mattr=+avx | FileCheck %s ; AVX128 tests: ;CHECK-LABEL: vsel_float: ; select mask is . ; Big endian representation is 0101 = 5. ; '1' means takes the first argument, '0' means takes the second argument. ; This is the opposite of the intel syntax, thus we expect ; the inverted mask: 1010 = 10. ; According to the ABI: ; v1 is in xmm0 => first argument is xmm0. ; v2 is in xmm1 => second argument is xmm1. ; result is in xmm0 => destination argument. ;CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 ;CHECK: ret define <4 x float> @vsel_float(<4 x float> %v1, <4 x float> %v2) { %vsel = select <4 x i1> , <4 x float> %v1, <4 x float> %v2 ret <4 x float> %vsel } ;CHECK-LABEL: vsel_i32: ;CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 ;CHECK: ret define <4 x i32> @vsel_i32(<4 x i32> %v1, <4 x i32> %v2) { %vsel = select <4 x i1> , <4 x i32> %v1, <4 x i32> %v2 ret <4 x i32> %vsel } ;CHECK-LABEL: vsel_double: ;CHECK: vmovsd ;CHECK: ret define <2 x double> @vsel_double(<2 x double> %v1, <2 x double> %v2) { %vsel = select <2 x i1> , <2 x double> %v1, <2 x double> %v2 ret <2 x double> %vsel } ;CHECK-LABEL: vsel_i64: ;CHECK: vmovsd ;CHECK: ret define <2 x i64> @vsel_i64(<2 x i64> %v1, <2 x i64> %v2) { %vsel = select <2 x i1> , <2 x i64> %v1, <2 x i64> %v2 ret <2 x i64> %vsel } ;CHECK-LABEL: vsel_i8: ;CHECK: vpblendvb ;CHECK: ret define <16 x i8> @vsel_i8(<16 x i8> %v1, <16 x i8> %v2) { %vsel = select <16 x i1> , <16 x i8> %v1, <16 x i8> %v2 ret <16 x i8> %vsel } ; AVX256 tests: ;CHECK-LABEL: vsel_float8: ;CHECK-NOT: vinsertf128 ; ; which translates into the boolean mask (big endian representation): ; 00010001 = 17. ; '1' means takes the first argument, '0' means takes the second argument. ; This is the opposite of the intel syntax, thus we expect ; the inverted mask: 11101110 = 238. ;CHECK: vblendps $238, %ymm1, %ymm0, %ymm0 ;CHECK: ret define <8 x float> @vsel_float8(<8 x float> %v1, <8 x float> %v2) { %vsel = select <8 x i1> , <8 x float> %v1, <8 x float> %v2 ret <8 x float> %vsel } ;CHECK-LABEL: vsel_i328: ;CHECK-NOT: vinsertf128 ;CHECK: vblendps $238, %ymm1, %ymm0, %ymm0 ;CHECK-NEXT: ret define <8 x i32> @vsel_i328(<8 x i32> %v1, <8 x i32> %v2) { %vsel = select <8 x i1> , <8 x i32> %v1, <8 x i32> %v2 ret <8 x i32> %vsel } ;CHECK-LABEL: vsel_double8: ; select mask is 2x: 0001 => intel mask: ~0001 = 14 ; ABI: ; v1 is in ymm0 and ymm1. ; v2 is in ymm2 and ymm3. ; result is in ymm0 and ymm1. ; Compute the low part: res.low = blend v1.low, v2.low, blendmask ;CHECK: vblendpd $14, %ymm2, %ymm0, %ymm0 ; Compute the high part. ;CHECK: vblendpd $14, %ymm3, %ymm1, %ymm1 ;CHECK: ret define <8 x double> @vsel_double8(<8 x double> %v1, <8 x double> %v2) { %vsel = select <8 x i1> , <8 x double> %v1, <8 x double> %v2 ret <8 x double> %vsel } ;CHECK-LABEL: vsel_i648: ;CHECK: vblendpd $14, %ymm2, %ymm0, %ymm0 ;CHECK: vblendpd $14, %ymm3, %ymm1, %ymm1 ;CHECK: ret define <8 x i64> @vsel_i648(<8 x i64> %v1, <8 x i64> %v2) { %vsel = select <8 x i1> , <8 x i64> %v1, <8 x i64> %v2 ret <8 x i64> %vsel } ;CHECK-LABEL: vsel_double4: ;CHECK-NOT: vinsertf128 ;CHECK: vblendpd $10 ;CHECK-NEXT: ret define <4 x double> @vsel_double4(<4 x double> %v1, <4 x double> %v2) { %vsel = select <4 x i1> , <4 x double> %v1, <4 x double> %v2 ret <4 x double> %vsel } ;; TEST blend + compares ; CHECK: testa define <2 x double> @testa(<2 x double> %x, <2 x double> %y) { ; CHECK: vcmplepd ; CHECK: vblendvpd %max_is_x = fcmp oge <2 x double> %x, %y %max = select <2 x i1> %max_is_x, <2 x double> %x, <2 x double> %y ret <2 x double> %max } ; CHECK: testb define <2 x double> @testb(<2 x double> %x, <2 x double> %y) { ; CHECK: vcmpnlepd ; CHECK: vblendvpd %min_is_x = fcmp ult <2 x double> %x, %y %min = select <2 x i1> %min_is_x, <2 x double> %x, <2 x double> %y ret <2 x double> %min } ; If we can figure out a blend has a constant mask, we should emit the ; blend instruction with an immediate mask define <4 x double> @constant_blendvpd_avx(<4 x double> %xy, <4 x double> %ab) { ; CHECK-LABEL: constant_blendvpd_avx: ; CHECK-NOT: mov ; CHECK: vblendpd ; CHECK: ret %1 = select <4 x i1> , <4 x double> %xy, <4 x double> %ab ret <4 x double> %1 } define <8 x float> @constant_blendvps_avx(<8 x float> %xyzw, <8 x float> %abcd) { ; CHECK-LABEL: constant_blendvps_avx: ; CHECK-NOT: mov ; CHECK: vblendps ; CHECK: ret %1 = select <8 x i1> , <8 x float> %xyzw, <8 x float> %abcd ret <8 x float> %1 } declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>) declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>, <4 x double>) ;; 4 tests for shufflevectors that optimize to blend + immediate ; CHECK-LABEL: @blend_shufflevector_4xfloat define <4 x float> @blend_shufflevector_4xfloat(<4 x float> %a, <4 x float> %b) { ; Equivalent select mask is . ; Big endian representation is 0101 = 5. ; '1' means takes the first argument, '0' means takes the second argument. ; This is the opposite of the intel syntax, thus we expect ; Inverted mask: 1010 = 10. ; According to the ABI: ; a is in xmm0 => first argument is xmm0. ; b is in xmm1 => second argument is xmm1. ; Result is in xmm0 => destination argument. ; CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 ; CHECK: ret %1 = shufflevector <4 x float> %a, <4 x float> %b, <4 x i32> ret <4 x float> %1 } ; CHECK-LABEL: @blend_shufflevector_8xfloat define <8 x float> @blend_shufflevector_8xfloat(<8 x float> %a, <8 x float> %b) { ; CHECK: vblendps $190, %ymm1, %ymm0, %ymm0 ; CHECK: ret %1 = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> ret <8 x float> %1 } ; CHECK-LABEL: @blend_shufflevector_4xdouble define <4 x double> @blend_shufflevector_4xdouble(<4 x double> %a, <4 x double> %b) { ; CHECK: vblendpd $2, %ymm1, %ymm0, %ymm0 ; CHECK: ret %1 = shufflevector <4 x double> %a, <4 x double> %b, <4 x i32> ret <4 x double> %1 } ; CHECK-LABEL: @blend_shufflevector_4xi64 define <4 x i64> @blend_shufflevector_4xi64(<4 x i64> %a, <4 x i64> %b) { ; CHECK: vblendpd $13, %ymm1, %ymm0, %ymm0 ; CHECK: ret %1 = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> ret <4 x i64> %1 }