; We specify -mcpu explicitly to avoid instruction reordering that happens on ; some setups (e.g., Atom) from affecting the output. ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer ; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer ; arguments are caller-cleanup like normal arguments. define void @sret1(i8* sret %x) nounwind { entry: ; WIN32: sret1 ; WIN32: movb $42, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{ret$}} ; MINGW_X86: sret1 ; MINGW_X86: ret $4 ; LINUX: sret1 ; LINUX: ret $4 store i8 42, i8* %x, align 4 ret void } define void @sret2(i8* sret %x, i8 %y) nounwind { entry: ; WIN32: sret2 ; WIN32: movb {{.*}}, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{ret$}} ; MINGW_X86: sret2 ; MINGW_X86: ret $4 ; LINUX: sret2 ; LINUX: ret $4 store i8 %y, i8* %x ret void } define void @sret3(i8* sret %x, i8* %y) nounwind { entry: ; WIN32: sret3 ; WIN32: movb $42, (%eax) ; WIN32-NOT: movb $13, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{ret$}} ; MINGW_X86: sret3 ; MINGW_X86: ret $4 ; LINUX: sret3 ; LINUX: ret $4 store i8 42, i8* %x store i8 13, i8* %y ret void } ; PR15556 %struct.S4 = type { i32, i32, i32 } define void @sret4(%struct.S4* noalias sret %agg.result) { entry: ; WIN32: sret4 ; WIN32: movl $42, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{ret$}} ; MINGW_X86: sret4 ; MINGW_X86: ret $4 ; LINUX: sret4 ; LINUX: ret $4 %x = getelementptr inbounds %struct.S4* %agg.result, i32 0, i32 0 store i32 42, i32* %x, align 4 ret void } %struct.S5 = type { i32 } %class.C5 = type { i8 } define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) { entry: %this.addr = alloca %class.C5*, align 4 store %class.C5* %this, %class.C5** %this.addr, align 4 %this1 = load %class.C5** %this.addr %x = getelementptr inbounds %struct.S5* %agg.result, i32 0, i32 0 store i32 42, i32* %x, align 4 ret void ; WIN32: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; The address of the return structure is passed as an implicit parameter. ; In the -O0 build, %eax is spilled at the beginning of the function, hence we ; should match both 4(%esp) and 8(%esp). ; WIN32: {{[48]}}(%esp), %eax ; WIN32: movl $42, (%eax) ; WIN32: ret $4 } define void @call_foo5() { entry: %c = alloca %class.C5, align 1 %s = alloca %struct.S5, align 4 call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c) ; WIN32: {{^}}_call_foo5: ; Load the address of the result and put it onto stack ; (through %ecx in the -O0 build). ; WIN32: leal {{[0-9]+}}(%esp), %e{{[a-d]}}x ; WIN32: movl %e{{[a-d]}}x, (%e{{([a-d]x)|(sp)}}) ; The this pointer goes to ECX. ; WIN32-NEXT: leal {{[0-9]+}}(%esp), %ecx ; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ" ; WIN32: ret ret void }