//===- Miscompilation.cpp - Debug program miscompilations -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements optimizer and code generation miscompilation debugging // support. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ListReducer.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Support/Mangler.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/Linker.h" #include "Support/CommandLine.h" #include "Support/FileUtilities.h" using namespace llvm; namespace llvm { extern cl::list InputArgv; } namespace { class ReduceMiscompilingPasses : public ListReducer { BugDriver &BD; public: ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {} virtual TestResult doTest(std::vector &Prefix, std::vector &Suffix); }; } /// TestResult - After passes have been split into a test group and a control /// group, see if they still break the program. /// ReduceMiscompilingPasses::TestResult ReduceMiscompilingPasses::doTest(std::vector &Prefix, std::vector &Suffix) { // First, run the program with just the Suffix passes. If it is still broken // with JUST the kept passes, discard the prefix passes. std::cout << "Checking to see if '" << getPassesString(Suffix) << "' compile correctly: "; std::string BytecodeResult; if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { std::cerr << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Suffix); BD.EmitProgressBytecode("pass-error", false); exit(BD.debugOptimizerCrash()); } // Check to see if the finished program matches the reference output... if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) { std::cout << " nope.\n"; return KeepSuffix; // Miscompilation detected! } std::cout << " yup.\n"; // No miscompilation! if (Prefix.empty()) return NoFailure; // Next, see if the program is broken if we run the "prefix" passes first, // then separately run the "kept" passes. std::cout << "Checking to see if '" << getPassesString(Prefix) << "' compile correctly: "; // If it is not broken with the kept passes, it's possible that the prefix // passes must be run before the kept passes to break it. If the program // WORKS after the prefix passes, but then fails if running the prefix AND // kept passes, we can update our bytecode file to include the result of the // prefix passes, then discard the prefix passes. // if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) { std::cerr << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Prefix); BD.EmitProgressBytecode("pass-error", false); exit(BD.debugOptimizerCrash()); } // If the prefix maintains the predicate by itself, only keep the prefix! if (BD.diffProgram(BytecodeResult)) { std::cout << " nope.\n"; removeFile(BytecodeResult); return KeepPrefix; } std::cout << " yup.\n"; // No miscompilation! // Ok, so now we know that the prefix passes work, try running the suffix // passes on the result of the prefix passes. // Module *PrefixOutput = ParseInputFile(BytecodeResult); if (PrefixOutput == 0) { std::cerr << BD.getToolName() << ": Error reading bytecode file '" << BytecodeResult << "'!\n"; exit(1); } removeFile(BytecodeResult); // No longer need the file on disk // Don't check if there are no passes in the suffix. if (Suffix.empty()) return NoFailure; std::cout << "Checking to see if '" << getPassesString(Suffix) << "' passes compile correctly after the '" << getPassesString(Prefix) << "' passes: "; Module *OriginalInput = BD.swapProgramIn(PrefixOutput); if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) { std::cerr << " Error running this sequence of passes" << " on the input program!\n"; BD.setPassesToRun(Suffix); BD.EmitProgressBytecode("pass-error", false); exit(BD.debugOptimizerCrash()); } // Run the result... if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) { std::cout << " nope.\n"; delete OriginalInput; // We pruned down the original input... return KeepSuffix; } // Otherwise, we must not be running the bad pass anymore. std::cout << " yup.\n"; // No miscompilation! delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test return NoFailure; } namespace { class ReduceMiscompilingFunctions : public ListReducer { BugDriver &BD; bool (*TestFn)(BugDriver &, Module *, Module *); public: ReduceMiscompilingFunctions(BugDriver &bd, bool (*F)(BugDriver &, Module *, Module *)) : BD(bd), TestFn(F) {} virtual TestResult doTest(std::vector &Prefix, std::vector &Suffix) { if (!Suffix.empty() && TestFuncs(Suffix)) return KeepSuffix; if (!Prefix.empty() && TestFuncs(Prefix)) return KeepPrefix; return NoFailure; } bool TestFuncs(const std::vector &Prefix); }; } /// TestMergedProgram - Given two modules, link them together and run the /// program, checking to see if the program matches the diff. If the diff /// matches, return false, otherwise return true. If the DeleteInputs argument /// is set to true then this function deletes both input modules before it /// returns. /// static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2, bool DeleteInputs) { // Link the two portions of the program back to together. std::string ErrorMsg; if (!DeleteInputs) M1 = CloneModule(M1); if (LinkModules(M1, M2, &ErrorMsg)) { std::cerr << BD.getToolName() << ": Error linking modules together:" << ErrorMsg << '\n'; exit(1); } if (DeleteInputs) delete M2; // We are done with this module... Module *OldProgram = BD.swapProgramIn(M1); // Execute the program. If it does not match the expected output, we must // return true. bool Broken = BD.diffProgram(); // Delete the linked module & restore the original BD.swapProgramIn(OldProgram); delete M1; return Broken; } /// TestFuncs - split functions in a Module into two groups: those that are /// under consideration for miscompilation vs. those that are not, and test /// accordingly. Each group of functions becomes a separate Module. /// bool ReduceMiscompilingFunctions::TestFuncs(const std::vector&Funcs){ // Test to see if the function is misoptimized if we ONLY run it on the // functions listed in Funcs. std::cout << "Checking to see if the program is misoptimized when " << (Funcs.size()==1 ? "this function is" : "these functions are") << " run through the pass" << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":"; PrintFunctionList(Funcs); std::cout << '\n'; // Split the module into the two halves of the program we want. Module *ToNotOptimize = CloneModule(BD.getProgram()); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs); // Run the predicate, not that the predicate will delete both input modules. return TestFn(BD, ToOptimize, ToNotOptimize); } /// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by /// modifying predominantly internal symbols rather than external ones. /// static void DisambiguateGlobalSymbols(Module *M) { // Try not to cause collisions by minimizing chances of renaming an // already-external symbol, so take in external globals and functions as-is. // The code should work correctly without disambiguation (assuming the same // mangler is used by the two code generators), but having symbols with the // same name causes warnings to be emitted by the code generator. Mangler Mang(*M); for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) I->setName(Mang.getValueName(I)); for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) I->setName(Mang.getValueName(I)); } /// ExtractLoops - Given a reduced list of functions that still exposed the bug, /// check to see if we can extract the loops in the region without obscuring the /// bug. If so, it reduces the amount of code identified. /// static bool ExtractLoops(BugDriver &BD, bool (*TestFn)(BugDriver &, Module *, Module *), std::vector &MiscompiledFunctions) { bool MadeChange = false; while (1) { Module *ToNotOptimize = CloneModule(BD.getProgram()); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, MiscompiledFunctions); Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize); if (!ToOptimizeLoopExtracted) { // If the loop extractor crashed or if there were no extractible loops, // then this chapter of our odyssey is over with. delete ToNotOptimize; delete ToOptimize; return MadeChange; } std::cerr << "Extracted a loop from the breaking portion of the program.\n"; delete ToOptimize; // Bugpoint is intentionally not very trusting of LLVM transformations. In // particular, we're not going to assume that the loop extractor works, so // we're going to test the newly loop extracted program to make sure nothing // has broken. If something broke, then we'll inform the user and stop // extraction. AbstractInterpreter *AI = BD.switchToCBE(); if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) { BD.switchToInterpreter(AI); // Merged program doesn't work anymore! std::cerr << " *** ERROR: Loop extraction broke the program. :(" << " Please report a bug!\n"; std::cerr << " Continuing on with un-loop-extracted version.\n"; delete ToNotOptimize; delete ToOptimizeLoopExtracted; return MadeChange; } BD.switchToInterpreter(AI); std::cout << " Testing after loop extraction:\n"; // Clone modules, the tester function will free them. Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted); Module *TNOBackup = CloneModule(ToNotOptimize); if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) { std::cout << "*** Loop extraction masked the problem. Undoing.\n"; // If the program is not still broken, then loop extraction did something // that masked the error. Stop loop extraction now. delete TOLEBackup; delete TNOBackup; return MadeChange; } ToOptimizeLoopExtracted = TOLEBackup; ToNotOptimize = TNOBackup; std::cout << "*** Loop extraction successful!\n"; // Okay, great! Now we know that we extracted a loop and that loop // extraction both didn't break the program, and didn't mask the problem. // Replace the current program with the loop extracted version, and try to // extract another loop. std::string ErrorMsg; if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) { std::cerr << BD.getToolName() << ": Error linking modules together:" << ErrorMsg << '\n'; exit(1); } // All of the Function*'s in the MiscompiledFunctions list are in the old // module. Update this list to include all of the functions in the // optimized and loop extracted module. MiscompiledFunctions.clear(); for (Module::iterator I = ToOptimizeLoopExtracted->begin(), E = ToOptimizeLoopExtracted->end(); I != E; ++I) { if (!I->isExternal()) { Function *NewF = ToNotOptimize->getFunction(I->getName(), I->getFunctionType()); assert(NewF && "Function not found??"); MiscompiledFunctions.push_back(NewF); } } delete ToOptimizeLoopExtracted; BD.setNewProgram(ToNotOptimize); MadeChange = true; } } namespace { class ReduceMiscompiledBlocks : public ListReducer { BugDriver &BD; bool (*TestFn)(BugDriver &, Module *, Module *); std::vector FunctionsBeingTested; public: ReduceMiscompiledBlocks(BugDriver &bd, bool (*F)(BugDriver &, Module *, Module *), const std::vector &Fns) : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {} virtual TestResult doTest(std::vector &Prefix, std::vector &Suffix) { if (!Suffix.empty() && TestFuncs(Suffix)) return KeepSuffix; if (TestFuncs(Prefix)) return KeepPrefix; return NoFailure; } bool TestFuncs(const std::vector &Prefix); }; } /// TestFuncs - Extract all blocks for the miscompiled functions except for the /// specified blocks. If the problem still exists, return true. /// bool ReduceMiscompiledBlocks::TestFuncs(const std::vector &BBs) { // Test to see if the function is misoptimized if we ONLY run it on the // functions listed in Funcs. std::cout << "Checking to see if the program is misoptimized when all "; if (!BBs.empty()) { std::cout << "but these " << BBs.size() << " blocks are extracted: "; for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i) std::cout << BBs[i]->getName() << " "; if (BBs.size() > 10) std::cout << "..."; } else { std::cout << "blocks are extracted."; } std::cout << '\n'; // Split the module into the two halves of the program we want. Module *ToNotOptimize = CloneModule(BD.getProgram()); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, FunctionsBeingTested); // Try the extraction. If it doesn't work, then the block extractor crashed // or something, in which case bugpoint can't chase down this possibility. if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) { delete ToOptimize; // Run the predicate, not that the predicate will delete both input modules. return TestFn(BD, New, ToNotOptimize); } delete ToOptimize; delete ToNotOptimize; return false; } /// ExtractBlocks - Given a reduced list of functions that still expose the bug, /// extract as many basic blocks from the region as possible without obscuring /// the bug. /// static bool ExtractBlocks(BugDriver &BD, bool (*TestFn)(BugDriver &, Module *, Module *), std::vector &MiscompiledFunctions) { std::vector Blocks; for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) for (Function::iterator I = MiscompiledFunctions[i]->begin(), E = MiscompiledFunctions[i]->end(); I != E; ++I) Blocks.push_back(I); // Use the list reducer to identify blocks that can be extracted without // obscuring the bug. The Blocks list will end up containing blocks that must // be retained from the original program. unsigned OldSize = Blocks.size(); // Check to see if all blocks are extractible first. if (ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions).TestFuncs(std::vector())) { Blocks.clear(); } else { ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks); if (Blocks.size() == OldSize) return false; } Module *ProgClone = CloneModule(BD.getProgram()); Module *ToExtract = SplitFunctionsOutOfModule(ProgClone, MiscompiledFunctions); Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract); if (Extracted == 0) { // Wierd, extraction should have worked. std::cerr << "Nondeterministic problem extracting blocks??\n"; delete ProgClone; delete ToExtract; return false; } // Otherwise, block extraction succeeded. Link the two program fragments back // together. delete ToExtract; std::string ErrorMsg; if (LinkModules(ProgClone, Extracted, &ErrorMsg)) { std::cerr << BD.getToolName() << ": Error linking modules together:" << ErrorMsg << '\n'; exit(1); } // Set the new program and delete the old one. BD.setNewProgram(ProgClone); // Update the list of miscompiled functions. MiscompiledFunctions.clear(); for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E; ++I) if (!I->isExternal()) { Function *NF = ProgClone->getFunction(I->getName(), I->getFunctionType()); assert(NF && "Mapped function not found!"); MiscompiledFunctions.push_back(NF); } delete Extracted; return true; } /// DebugAMiscompilation - This is a generic driver to narrow down /// miscompilations, either in an optimization or a code generator. /// static std::vector DebugAMiscompilation(BugDriver &BD, bool (*TestFn)(BugDriver &, Module *, Module *)) { // Okay, now that we have reduced the list of passes which are causing the // failure, see if we can pin down which functions are being // miscompiled... first build a list of all of the non-external functions in // the program. std::vector MiscompiledFunctions; Module *Prog = BD.getProgram(); for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I) if (!I->isExternal()) MiscompiledFunctions.push_back(I); // Do the reduction... ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); std::cout << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); std::cout << '\n'; // See if we can rip any loops out of the miscompiled functions and still // trigger the problem. if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) { // Okay, we extracted some loops and the problem still appears. See if we // can eliminate some of the created functions from being candidates. // Loop extraction can introduce functions with the same name (foo_code). // Make sure to disambiguate the symbols so that when the program is split // apart that we can link it back together again. DisambiguateGlobalSymbols(BD.getProgram()); // Do the reduction... ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); std::cout << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); std::cout << '\n'; } if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) { // Okay, we extracted some blocks and the problem still appears. See if we // can eliminate some of the created functions from being candidates. // Block extraction can introduce functions with the same name (foo_code). // Make sure to disambiguate the symbols so that when the program is split // apart that we can link it back together again. DisambiguateGlobalSymbols(BD.getProgram()); // Do the reduction... ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions); std::cout << "\n*** The following function" << (MiscompiledFunctions.size() == 1 ? " is" : "s are") << " being miscompiled: "; PrintFunctionList(MiscompiledFunctions); std::cout << '\n'; } return MiscompiledFunctions; } /// TestOptimizer - This is the predicate function used to check to see if the /// "Test" portion of the program is misoptimized. If so, return true. In any /// case, both module arguments are deleted. /// static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) { // Run the optimization passes on ToOptimize, producing a transformed version // of the functions being tested. std::cout << " Optimizing functions being tested: "; Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(), /*AutoDebugCrashes*/true); std::cout << "done.\n"; delete Test; std::cout << " Checking to see if the merged program executes correctly: "; bool Broken = TestMergedProgram(BD, Optimized, Safe, true); std::cout << (Broken ? " nope.\n" : " yup.\n"); return Broken; } /// debugMiscompilation - This method is used when the passes selected are not /// crashing, but the generated output is semantically different from the /// input. /// bool BugDriver::debugMiscompilation() { // Make sure something was miscompiled... if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) { std::cerr << "*** Optimized program matches reference output! No problem " << "detected...\nbugpoint can't help you with your problem!\n"; return false; } std::cout << "\n*** Found miscompiling pass" << (getPassesToRun().size() == 1 ? "" : "es") << ": " << getPassesString(getPassesToRun()) << '\n'; EmitProgressBytecode("passinput"); std::vector MiscompiledFunctions = DebugAMiscompilation(*this, TestOptimizer); // Output a bunch of bytecode files for the user... std::cout << "Outputting reduced bytecode files which expose the problem:\n"; Module *ToNotOptimize = CloneModule(getProgram()); Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, MiscompiledFunctions); std::cout << " Non-optimized portion: "; ToNotOptimize = swapProgramIn(ToNotOptimize); EmitProgressBytecode("tonotoptimize", true); setNewProgram(ToNotOptimize); // Delete hacked module. std::cout << " Portion that is input to optimizer: "; ToOptimize = swapProgramIn(ToOptimize); EmitProgressBytecode("tooptimize"); setNewProgram(ToOptimize); // Delete hacked module. return false; } /// CleanupAndPrepareModules - Get the specified modules ready for code /// generator testing. /// static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test, Module *Safe) { // Clean up the modules, removing extra cruft that we don't need anymore... Test = BD.performFinalCleanups(Test); // If we are executing the JIT, we have several nasty issues to take care of. if (!BD.isExecutingJIT()) return; // First, if the main function is in the Safe module, we must add a stub to // the Test module to call into it. Thus, we create a new function `main' // which just calls the old one. if (Function *oldMain = Safe->getNamedFunction("main")) if (!oldMain->isExternal()) { // Rename it oldMain->setName("llvm_bugpoint_old_main"); // Create a NEW `main' function with same type in the test module. Function *newMain = new Function(oldMain->getFunctionType(), GlobalValue::ExternalLinkage, "main", Test); // Create an `oldmain' prototype in the test module, which will // corresponds to the real main function in the same module. Function *oldMainProto = new Function(oldMain->getFunctionType(), GlobalValue::ExternalLinkage, oldMain->getName(), Test); // Set up and remember the argument list for the main function. std::vector args; for (Function::aiterator I = newMain->abegin(), E = newMain->aend(), OI = oldMain->abegin(); I != E; ++I, ++OI) { I->setName(OI->getName()); // Copy argument names from oldMain args.push_back(I); } // Call the old main function and return its result BasicBlock *BB = new BasicBlock("entry", newMain); CallInst *call = new CallInst(oldMainProto, args); BB->getInstList().push_back(call); // If the type of old function wasn't void, return value of call new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB); } // The second nasty issue we must deal with in the JIT is that the Safe // module cannot directly reference any functions defined in the test // module. Instead, we use a JIT API call to dynamically resolve the // symbol. // Add the resolver to the Safe module. // Prototype: void *getPointerToNamedFunction(const char* Name) Function *resolverFunc = Safe->getOrInsertFunction("getPointerToNamedFunction", PointerType::get(Type::SByteTy), PointerType::get(Type::SByteTy), 0); // Use the function we just added to get addresses of functions we need. for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) { if (F->isExternal() && !F->use_empty() && &*F != resolverFunc && F->getIntrinsicID() == 0 /* ignore intrinsics */) { Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType()); // Don't forward functions which are external in the test module too. if (TestFn && !TestFn->isExternal()) { // 1. Add a string constant with its name to the global file Constant *InitArray = ConstantArray::get(F->getName()); GlobalVariable *funcName = new GlobalVariable(InitArray->getType(), true /*isConstant*/, GlobalValue::InternalLinkage, InitArray, F->getName() + "_name", Safe); // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an // sbyte* so it matches the signature of the resolver function. // GetElementPtr *funcName, ulong 0, ulong 0 std::vector GEPargs(2,Constant::getNullValue(Type::IntTy)); Value *GEP = ConstantExpr::getGetElementPtr(funcName, GEPargs); std::vector ResolverArgs; ResolverArgs.push_back(GEP); // Rewrite uses of F in global initializers, etc. to uses of a wrapper // function that dynamically resolves the calls to F via our JIT API if (F->use_begin() != F->use_end()) { // Construct a new stub function that will re-route calls to F const FunctionType *FuncTy = F->getFunctionType(); Function *FuncWrapper = new Function(FuncTy, GlobalValue::InternalLinkage, F->getName() + "_wrapper", F->getParent()); BasicBlock *Header = new BasicBlock("header", FuncWrapper); // Resolve the call to function F via the JIT API: // // call resolver(GetElementPtr...) CallInst *resolve = new CallInst(resolverFunc, ResolverArgs, "resolver"); Header->getInstList().push_back(resolve); // cast the result from the resolver to correctly-typed function CastInst *castResolver = new CastInst(resolve, PointerType::get(F->getFunctionType()), "resolverCast"); Header->getInstList().push_back(castResolver); // Save the argument list std::vector Args; for (Function::aiterator i = FuncWrapper->abegin(), e = FuncWrapper->aend(); i != e; ++i) Args.push_back(i); // Pass on the arguments to the real function, return its result if (F->getReturnType() == Type::VoidTy) { CallInst *Call = new CallInst(castResolver, Args); Header->getInstList().push_back(Call); ReturnInst *Ret = new ReturnInst(); Header->getInstList().push_back(Ret); } else { CallInst *Call = new CallInst(castResolver, Args, "redir"); Header->getInstList().push_back(Call); ReturnInst *Ret = new ReturnInst(Call); Header->getInstList().push_back(Ret); } // Use the wrapper function instead of the old function F->replaceAllUsesWith(FuncWrapper); } } } } if (verifyModule(*Test) || verifyModule(*Safe)) { std::cerr << "Bugpoint has a bug, which corrupted a module!!\n"; abort(); } } /// TestCodeGenerator - This is the predicate function used to check to see if /// the "Test" portion of the program is miscompiled by the code generator under /// test. If so, return true. In any case, both module arguments are deleted. /// static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) { CleanupAndPrepareModules(BD, Test, Safe); std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc"); if (BD.writeProgramToFile(TestModuleBC, Test)) { std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; exit(1); } delete Test; // Make the shared library std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc"); if (BD.writeProgramToFile(SafeModuleBC, Safe)) { std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; exit(1); } std::string SharedObject = BD.compileSharedObject(SafeModuleBC); delete Safe; // Run the code generator on the `Test' code, loading the shared library. // The function returns whether or not the new output differs from reference. int Result = BD.diffProgram(TestModuleBC, SharedObject, false); if (Result) std::cerr << ": still failing!\n"; else std::cerr << ": didn't fail.\n"; removeFile(TestModuleBC); removeFile(SafeModuleBC); removeFile(SharedObject); return Result; } /// debugCodeGenerator - debug errors in LLC, LLI, or CBE. /// bool BugDriver::debugCodeGenerator() { if ((void*)cbe == (void*)Interpreter) { std::string Result = executeProgramWithCBE("bugpoint.cbe.out"); std::cout << "\n*** The C backend cannot match the reference diff, but it " << "is used as the 'known good'\n code generator, so I can't" << " debug it. Perhaps you have a front-end problem?\n As a" << " sanity check, I left the result of executing the program " << "with the C backend\n in this file for you: '" << Result << "'.\n"; return true; } DisambiguateGlobalSymbols(Program); std::vector Funcs = DebugAMiscompilation(*this, TestCodeGenerator); // Split the module into the two halves of the program we want. Module *ToNotCodeGen = CloneModule(getProgram()); Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs); // Condition the modules CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen); std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc"); if (writeProgramToFile(TestModuleBC, ToCodeGen)) { std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting."; exit(1); } delete ToCodeGen; // Make the shared library std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc"); if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) { std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting."; exit(1); } std::string SharedObject = compileSharedObject(SafeModuleBC); delete ToNotCodeGen; std::cout << "You can reproduce the problem with the command line: \n"; if (isExecutingJIT()) { std::cout << " lli -load " << SharedObject << " " << TestModuleBC; } else { std::cout << " llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n"; std::cout << " gcc " << SharedObject << " " << TestModuleBC << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n"; std::cout << " " << TestModuleBC << ".exe"; } for (unsigned i=0, e = InputArgv.size(); i != e; ++i) std::cout << " " << InputArgv[i]; std::cout << '\n'; std::cout << "The shared object was created with:\n llc -march=c " << SafeModuleBC << " -o temporary.c\n" << " gcc -xc temporary.c -O2 -o " << SharedObject #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) << " -G" // Compile a shared library, `-G' for Sparc #else << " -shared" // `-shared' for Linux/X86, maybe others #endif << " -fno-strict-aliasing\n"; return false; }