//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This utility provides a simple wrapper around the LLVM Execution Engines, // which allow the direct execution of LLVM programs through a Just-In-Time // compiler, or through an interpreter if no JIT is available for this platform. // //===----------------------------------------------------------------------===// #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/LinkAllCodegenComponents.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/IRReader.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Process.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/Memory.h" #include #ifdef __linux__ // These includes used by LLIMCJITMemoryManager::getPointerToNamedFunction() // for Glibc trickery. Look comments in this function for more information. #ifdef HAVE_SYS_STAT_H #include #endif #include #include #endif #ifdef __CYGWIN__ #include #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 #define DO_NOTHING_ATEXIT 1 #endif #endif using namespace llvm; namespace { cl::opt InputFile(cl::desc(""), cl::Positional, cl::init("-")); cl::list InputArgv(cl::ConsumeAfter, cl::desc("...")); cl::opt ForceInterpreter("force-interpreter", cl::desc("Force interpretation: disable JIT"), cl::init(false)); cl::opt UseMCJIT( "use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"), cl::init(false)); // Determine optimization level. cl::opt OptLevel("O", cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " "(default = '-O2')"), cl::Prefix, cl::ZeroOrMore, cl::init(' ')); cl::opt TargetTriple("mtriple", cl::desc("Override target triple for module")); cl::opt MArch("march", cl::desc("Architecture to generate assembly for (see --version)")); cl::opt MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::list MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes (-mattr=help for details)"), cl::value_desc("a1,+a2,-a3,...")); cl::opt EntryFunc("entry-function", cl::desc("Specify the entry function (default = 'main') " "of the executable"), cl::value_desc("function"), cl::init("main")); cl::opt FakeArgv0("fake-argv0", cl::desc("Override the 'argv[0]' value passed into the executing" " program"), cl::value_desc("executable")); cl::opt DisableCoreFiles("disable-core-files", cl::Hidden, cl::desc("Disable emission of core files if possible")); cl::opt NoLazyCompilation("disable-lazy-compilation", cl::desc("Disable JIT lazy compilation"), cl::init(false)); cl::opt RelocModel("relocation-model", cl::desc("Choose relocation model"), cl::init(Reloc::Default), cl::values( clEnumValN(Reloc::Default, "default", "Target default relocation model"), clEnumValN(Reloc::Static, "static", "Non-relocatable code"), clEnumValN(Reloc::PIC_, "pic", "Fully relocatable, position independent code"), clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic", "Relocatable external references, non-relocatable code"), clEnumValEnd)); cl::opt CMModel("code-model", cl::desc("Choose code model"), cl::init(CodeModel::JITDefault), cl::values(clEnumValN(CodeModel::JITDefault, "default", "Target default JIT code model"), clEnumValN(CodeModel::Small, "small", "Small code model"), clEnumValN(CodeModel::Kernel, "kernel", "Kernel code model"), clEnumValN(CodeModel::Medium, "medium", "Medium code model"), clEnumValN(CodeModel::Large, "large", "Large code model"), clEnumValEnd)); cl::opt EnableJITExceptionHandling("jit-enable-eh", cl::desc("Emit exception handling information"), cl::init(false)); cl::opt // In debug builds, make this default to true. #ifdef NDEBUG #define EMIT_DEBUG false #else #define EMIT_DEBUG true #endif EmitJitDebugInfo("jit-emit-debug", cl::desc("Emit debug information to debugger"), cl::init(EMIT_DEBUG)); #undef EMIT_DEBUG static cl::opt EmitJitDebugInfoToDisk("jit-emit-debug-to-disk", cl::Hidden, cl::desc("Emit debug info objfiles to disk"), cl::init(false)); } static ExecutionEngine *EE = 0; static void do_shutdown() { // Cygwin-1.5 invokes DLL's dtors before atexit handler. #ifndef DO_NOTHING_ATEXIT delete EE; llvm_shutdown(); #endif } // Memory manager for MCJIT class LLIMCJITMemoryManager : public JITMemoryManager { public: SmallVector AllocatedDataMem; SmallVector AllocatedCodeMem; SmallVector FreeCodeMem; LLIMCJITMemoryManager() { } ~LLIMCJITMemoryManager(); virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID); virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID); virtual void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true); // Invalidate instruction cache for code sections. Some platforms with // separate data cache and instruction cache require explicit cache flush, // otherwise JIT code manipulations (like resolved relocations) will get to // the data cache but not to the instruction cache. virtual void invalidateInstructionCache(); // The MCJITMemoryManager doesn't use the following functions, so we don't // need implement them. virtual void setMemoryWritable() { llvm_unreachable("Unexpected call!"); } virtual void setMemoryExecutable() { llvm_unreachable("Unexpected call!"); } virtual void setPoisonMemory(bool poison) { llvm_unreachable("Unexpected call!"); } virtual void AllocateGOT() { llvm_unreachable("Unexpected call!"); } virtual uint8_t *getGOTBase() const { llvm_unreachable("Unexpected call!"); return 0; } virtual uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize){ llvm_unreachable("Unexpected call!"); return 0; } virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment) { llvm_unreachable("Unexpected call!"); return 0; } virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart, uint8_t *FunctionEnd) { llvm_unreachable("Unexpected call!"); } virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { llvm_unreachable("Unexpected call!"); return 0; } virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { llvm_unreachable("Unexpected call!"); return 0; } virtual void deallocateFunctionBody(void *Body) { llvm_unreachable("Unexpected call!"); } virtual uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { llvm_unreachable("Unexpected call!"); return 0; } virtual void endExceptionTable(const Function *F, uint8_t *TableStart, uint8_t *TableEnd, uint8_t* FrameRegister) { llvm_unreachable("Unexpected call!"); } virtual void deallocateExceptionTable(void *ET) { llvm_unreachable("Unexpected call!"); } }; uint8_t *LLIMCJITMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID) { if (!Alignment) Alignment = 16; uint8_t *Addr = (uint8_t*)calloc((Size + Alignment - 1)/Alignment, Alignment); AllocatedDataMem.push_back(sys::MemoryBlock(Addr, Size)); return Addr; } uint8_t *LLIMCJITMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID) { if (!Alignment) Alignment = 16; unsigned NeedAllocate = Alignment * ((Size + Alignment - 1)/Alignment + 1); uintptr_t Addr = 0; // Look in the list of free code memory regions and use a block there if one // is available. for (int i = 0, e = FreeCodeMem.size(); i != e; ++i) { sys::MemoryBlock &MB = FreeCodeMem[i]; if (MB.size() >= NeedAllocate) { Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // Store cutted free memory block. FreeCodeMem[i] = sys::MemoryBlock((void*)(Addr + Size), EndOfBlock - Addr - Size); return (uint8_t*)Addr; } } // No pre-allocated free block was large enough. Allocate a new memory region. sys::MemoryBlock MB = sys::Memory::AllocateRWX(NeedAllocate, 0, 0); AllocatedCodeMem.push_back(MB); Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // The AllocateRWX may allocate much more memory than we need. In this case, // we store the unused memory as a free memory block. unsigned FreeSize = EndOfBlock-Addr-Size; if (FreeSize > 16) FreeCodeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize)); // Return aligned address return (uint8_t*)Addr; } void LLIMCJITMemoryManager::invalidateInstructionCache() { for (int i = 0, e = AllocatedCodeMem.size(); i != e; ++i) sys::Memory::InvalidateInstructionCache(AllocatedCodeMem[i].base(), AllocatedCodeMem[i].size()); } void *LLIMCJITMemoryManager::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { #if defined(__linux__) //===--------------------------------------------------------------------===// // Function stubs that are invoked instead of certain library calls // // Force the following functions to be linked in to anything that uses the // JIT. This is a hack designed to work around the all-too-clever Glibc // strategy of making these functions work differently when inlined vs. when // not inlined, and hiding their real definitions in a separate archive file // that the dynamic linker can't see. For more info, search for // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. if (Name == "stat") return (void*)(intptr_t)&stat; if (Name == "fstat") return (void*)(intptr_t)&fstat; if (Name == "lstat") return (void*)(intptr_t)&lstat; if (Name == "stat64") return (void*)(intptr_t)&stat64; if (Name == "fstat64") return (void*)(intptr_t)&fstat64; if (Name == "lstat64") return (void*)(intptr_t)&lstat64; if (Name == "atexit") return (void*)(intptr_t)&atexit; if (Name == "mknod") return (void*)(intptr_t)&mknod; #endif // __linux__ const char *NameStr = Name.c_str(); void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); if (Ptr) return Ptr; // If it wasn't found and if it starts with an underscore ('_') character, // try again without the underscore. if (NameStr[0] == '_') { Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); if (Ptr) return Ptr; } if (AbortOnFailure) report_fatal_error("Program used external function '" + Name + "' which could not be resolved!"); return 0; } LLIMCJITMemoryManager::~LLIMCJITMemoryManager() { for (unsigned i = 0, e = AllocatedCodeMem.size(); i != e; ++i) sys::Memory::ReleaseRWX(AllocatedCodeMem[i]); for (unsigned i = 0, e = AllocatedDataMem.size(); i != e; ++i) free(AllocatedDataMem[i].base()); } //===----------------------------------------------------------------------===// // main Driver function // int main(int argc, char **argv, char * const *envp) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); LLVMContext &Context = getGlobalContext(); atexit(do_shutdown); // Call llvm_shutdown() on exit. // If we have a native target, initialize it to ensure it is linked in and // usable by the JIT. InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); cl::ParseCommandLineOptions(argc, argv, "llvm interpreter & dynamic compiler\n"); // If the user doesn't want core files, disable them. if (DisableCoreFiles) sys::Process::PreventCoreFiles(); // Load the bitcode... SMDiagnostic Err; Module *Mod = ParseIRFile(InputFile, Err, Context); if (!Mod) { Err.print(argv[0], errs()); return 1; } // If not jitting lazily, load the whole bitcode file eagerly too. std::string ErrorMsg; if (NoLazyCompilation) { if (Mod->MaterializeAllPermanently(&ErrorMsg)) { errs() << argv[0] << ": bitcode didn't read correctly.\n"; errs() << "Reason: " << ErrorMsg << "\n"; exit(1); } } EngineBuilder builder(Mod); builder.setMArch(MArch); builder.setMCPU(MCPU); builder.setMAttrs(MAttrs); builder.setRelocationModel(RelocModel); builder.setCodeModel(CMModel); builder.setErrorStr(&ErrorMsg); builder.setEngineKind(ForceInterpreter ? EngineKind::Interpreter : EngineKind::JIT); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) Mod->setTargetTriple(Triple::normalize(TargetTriple)); // Enable MCJIT if desired. LLIMCJITMemoryManager *JMM = 0; if (UseMCJIT && !ForceInterpreter) { builder.setUseMCJIT(true); JMM = new LLIMCJITMemoryManager(); builder.setJITMemoryManager(JMM); } else { builder.setJITMemoryManager(ForceInterpreter ? 0 : JITMemoryManager::CreateDefaultMemManager()); } CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } builder.setOptLevel(OLvl); TargetOptions Options; Options.JITExceptionHandling = EnableJITExceptionHandling; Options.JITEmitDebugInfo = EmitJitDebugInfo; Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk; builder.setTargetOptions(Options); EE = builder.create(); if (!EE) { if (!ErrorMsg.empty()) errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n"; else errs() << argv[0] << ": unknown error creating EE!\n"; exit(1); } // Clear instruction cache before code will be executed. if (JMM) JMM->invalidateInstructionCache(); // The following functions have no effect if their respective profiling // support wasn't enabled in the build configuration. EE->RegisterJITEventListener( JITEventListener::createOProfileJITEventListener()); EE->RegisterJITEventListener( JITEventListener::createIntelJITEventListener()); EE->DisableLazyCompilation(NoLazyCompilation); // If the user specifically requested an argv[0] to pass into the program, // do it now. if (!FakeArgv0.empty()) { InputFile = FakeArgv0; } else { // Otherwise, if there is a .bc suffix on the executable strip it off, it // might confuse the program. if (StringRef(InputFile).endswith(".bc")) InputFile.erase(InputFile.length() - 3); } // Add the module's name to the start of the vector of arguments to main(). InputArgv.insert(InputArgv.begin(), InputFile); // Call the main function from M as if its signature were: // int main (int argc, char **argv, const char **envp) // using the contents of Args to determine argc & argv, and the contents of // EnvVars to determine envp. // Function *EntryFn = Mod->getFunction(EntryFunc); if (!EntryFn) { errs() << '\'' << EntryFunc << "\' function not found in module.\n"; return -1; } // If the program doesn't explicitly call exit, we will need the Exit // function later on to make an explicit call, so get the function now. Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context), Type::getInt32Ty(Context), NULL); // Reset errno to zero on entry to main. errno = 0; // Run static constructors. EE->runStaticConstructorsDestructors(false); if (NoLazyCompilation) { for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) { Function *Fn = &*I; if (Fn != EntryFn && !Fn->isDeclaration()) EE->getPointerToFunction(Fn); } } // Run main. int Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); // Run static destructors. EE->runStaticConstructorsDestructors(true); // If the program didn't call exit explicitly, we should call it now. // This ensures that any atexit handlers get called correctly. if (Function *ExitF = dyn_cast(Exit)) { std::vector Args; GenericValue ResultGV; ResultGV.IntVal = APInt(32, Result); Args.push_back(ResultGV); EE->runFunction(ExitF, Args); errs() << "ERROR: exit(" << Result << ") returned!\n"; abort(); } else { errs() << "ERROR: exit defined with wrong prototype!\n"; abort(); } }