//===-- MCFunction.cpp ----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the algorithm to break down a region of machine code // into basic blocks and try to reconstruct a CFG from it. // //===----------------------------------------------------------------------===// #include "MCFunction.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include using namespace llvm; MCFunction MCFunction::createFunctionFromMC(StringRef Name, const MCDisassembler *DisAsm, const MemoryObject &Region, uint64_t Start, uint64_t End, const MCInstrAnalysis *Ana, raw_ostream &DebugOut) { std::set Splits; Splits.insert(Start); std::vector Instructions; uint64_t Size; // Disassemble code and gather basic block split points. for (uint64_t Index = Start; Index < End; Index += Size) { MCInst Inst; if (DisAsm->getInstruction(Inst, Size, Region, Index, DebugOut)) { if (Ana->isBranch(Inst)) { uint64_t targ = Ana->evaluateBranch(Inst, Index, Size); // FIXME: Distinguish relocations from nop jumps. if (targ != -1ULL && (targ == Index+Size || targ >= End)) { Instructions.push_back(MCDecodedInst(Index, Size, Inst)); continue; // Skip branches that leave the function. } if (targ != -1ULL) Splits.insert(targ); Splits.insert(Index+Size); } else if (Ana->isReturn(Inst)) { Splits.insert(Index+Size); } Instructions.push_back(MCDecodedInst(Index, Size, Inst)); } else { errs() << "warning: invalid instruction encoding\n"; if (Size == 0) Size = 1; // skip illegible bytes } } MCFunction f(Name); // Create basic blocks. unsigned ii = 0, ie = Instructions.size(); for (std::set::iterator spi = Splits.begin(), spe = Splits.end(); spi != spe; ++spi) { MCBasicBlock BB; uint64_t BlockEnd = llvm::next(spi) == spe ? End : *llvm::next(spi); // Add instructions to the BB. for (; ii != ie; ++ii) { if (Instructions[ii].Address < *spi || Instructions[ii].Address >= BlockEnd) break; BB.addInst(Instructions[ii]); } f.addBlock(*spi, BB); } // Calculate successors of each block. for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) { MCBasicBlock &BB = i->second; if (BB.getInsts().empty()) continue; const MCDecodedInst &Inst = BB.getInsts().back(); if (Ana->isBranch(Inst.Inst)) { uint64_t targ = Ana->evaluateBranch(Inst.Inst, Inst.Address, Inst.Size); if (targ == -1ULL) { // Indirect branch. Bail and add all blocks of the function as a // successor. for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) BB.addSucc(&i->second); } else if (targ != Inst.Address+Inst.Size) BB.addSucc(&f.getBlockAtAddress(targ)); // Conditional branches can also fall through to the next block. if (Ana->isConditionalBranch(Inst.Inst) && llvm::next(i) != e) BB.addSucc(&llvm::next(i)->second); } else { // No branch. Fall through to the next block. if (!Ana->isReturn(Inst.Inst) && llvm::next(i) != e) BB.addSucc(&llvm::next(i)->second); } } return f; }