//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOModule.h" #include "LTOCodeGenerator.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Linker.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/ModuleProvider.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Signals.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/CodeGen/FileWriters.h" #include "llvm/Target/SubtargetFeature.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Config/config.h" #include #include #include #include using namespace llvm; static cl::opt DisableInline("disable-inlining", cl::desc("Do not run the inliner pass")); const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } LTOCodeGenerator::LTOCodeGenerator() : _linker("LinkTimeOptimizer", "ld-temp.o"), _target(NULL), _emitDwarfDebugInfo(false), _scopeRestrictionsDone(false), _codeModel(LTO_CODEGEN_PIC_MODEL_DYNAMIC), _nativeObjectFile(NULL) { } LTOCodeGenerator::~LTOCodeGenerator() { delete _target; delete _nativeObjectFile; } bool LTOCodeGenerator::addModule(LTOModule* mod, std::string& errMsg) { return _linker.LinkInModule(mod->getLLVVMModule(), &errMsg); } bool LTOCodeGenerator::setDebugInfo(lto_debug_model debug, std::string& errMsg) { switch (debug) { case LTO_DEBUG_MODEL_NONE: _emitDwarfDebugInfo = false; return false; case LTO_DEBUG_MODEL_DWARF: _emitDwarfDebugInfo = true; return false; } errMsg = "unknown debug format"; return true; } bool LTOCodeGenerator::setCodePICModel(lto_codegen_model model, std::string& errMsg) { switch (model) { case LTO_CODEGEN_PIC_MODEL_STATIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: _codeModel = model; return false; } errMsg = "unknown pic model"; return true; } void LTOCodeGenerator::addMustPreserveSymbol(const char* sym) { _mustPreserveSymbols[sym] = 1; } bool LTOCodeGenerator::writeMergedModules(const char* path, std::string& errMsg) { if ( this->determineTarget(errMsg) ) return true; // mark which symbols can not be internalized this->applyScopeRestrictions(); // create output file std::ofstream out(path, std::ios_base::out|std::ios::trunc|std::ios::binary); if ( out.fail() ) { errMsg = "could not open bitcode file for writing: "; errMsg += path; return true; } // write bitcode to it WriteBitcodeToFile(_linker.getModule(), out); if ( out.fail() ) { errMsg = "could not write bitcode file: "; errMsg += path; return true; } return false; } const void* LTOCodeGenerator::compile(size_t* length, std::string& errMsg) { // make unique temp .s file to put generated assembly code sys::Path uniqueAsmPath("lto-llvm.s"); if ( uniqueAsmPath.createTemporaryFileOnDisk(true, &errMsg) ) return NULL; sys::RemoveFileOnSignal(uniqueAsmPath); // generate assembly code bool genResult = false; { raw_fd_ostream asmFile(uniqueAsmPath.c_str(), errMsg); if (!errMsg.empty()) return NULL; genResult = this->generateAssemblyCode(asmFile, errMsg); } if ( genResult ) { if ( uniqueAsmPath.exists() ) uniqueAsmPath.eraseFromDisk(); return NULL; } // make unique temp .o file to put generated object file sys::PathWithStatus uniqueObjPath("lto-llvm.o"); if ( uniqueObjPath.createTemporaryFileOnDisk(true, &errMsg) ) { if ( uniqueAsmPath.exists() ) uniqueAsmPath.eraseFromDisk(); return NULL; } sys::RemoveFileOnSignal(uniqueObjPath); // assemble the assembly code const std::string& uniqueObjStr = uniqueObjPath.toString(); bool asmResult = this->assemble(uniqueAsmPath.toString(), uniqueObjStr, errMsg); if ( !asmResult ) { // remove old buffer if compile() called twice delete _nativeObjectFile; // read .o file into memory buffer _nativeObjectFile = MemoryBuffer::getFile(uniqueObjStr.c_str(),&errMsg); } // remove temp files uniqueAsmPath.eraseFromDisk(); uniqueObjPath.eraseFromDisk(); // return buffer, unless error if ( _nativeObjectFile == NULL ) return NULL; *length = _nativeObjectFile->getBufferSize(); return _nativeObjectFile->getBufferStart(); } bool LTOCodeGenerator::assemble(const std::string& asmPath, const std::string& objPath, std::string& errMsg) { // find compiler driver const sys::Path gcc = sys::Program::FindProgramByName("gcc"); if ( gcc.isEmpty() ) { errMsg = "can't locate gcc"; return true; } // build argument list std::vector args; std::string targetTriple = _linker.getModule()->getTargetTriple(); args.push_back(gcc.c_str()); if ( targetTriple.find("darwin") != targetTriple.size() ) { if (strncmp(targetTriple.c_str(), "i686-apple-", 11) == 0) { args.push_back("-arch"); args.push_back("i386"); } else if (strncmp(targetTriple.c_str(), "x86_64-apple-", 13) == 0) { args.push_back("-arch"); args.push_back("x86_64"); } else if (strncmp(targetTriple.c_str(), "powerpc-apple-", 14) == 0) { args.push_back("-arch"); args.push_back("ppc"); } else if (strncmp(targetTriple.c_str(), "powerpc64-apple-", 16) == 0) { args.push_back("-arch"); args.push_back("ppc64"); } } args.push_back("-c"); args.push_back("-x"); args.push_back("assembler"); args.push_back("-o"); args.push_back(objPath.c_str()); args.push_back(asmPath.c_str()); args.push_back(0); // invoke assembler if ( sys::Program::ExecuteAndWait(gcc, &args[0], 0, 0, 0, 0, &errMsg) ) { errMsg = "error in assembly"; return true; } return false; // success } bool LTOCodeGenerator::determineTarget(std::string& errMsg) { if ( _target == NULL ) { // create target machine from info for merged modules Module* mergedModule = _linker.getModule(); const TargetMachineRegistry::entry* march = TargetMachineRegistry::getClosestStaticTargetForModule( *mergedModule, errMsg); if ( march == NULL ) return true; // construct LTModule, hand over ownership of module and target std::string FeatureStr = getFeatureString(_linker.getModule()->getTargetTriple().c_str()); _target = march->CtorFn(*mergedModule, FeatureStr.c_str()); } return false; } void LTOCodeGenerator::applyScopeRestrictions() { if ( !_scopeRestrictionsDone ) { Module* mergedModule = _linker.getModule(); // Start off with a verification pass. PassManager passes; passes.add(createVerifierPass()); // mark which symbols can not be internalized if ( !_mustPreserveSymbols.empty() ) { Mangler mangler(*mergedModule, _target->getTargetAsmInfo()->getGlobalPrefix()); std::vector mustPreserveList; for (Module::iterator f = mergedModule->begin(), e = mergedModule->end(); f != e; ++f) { if ( !f->isDeclaration() && _mustPreserveSymbols.count(mangler.getValueName(f)) ) mustPreserveList.push_back(::strdup(f->getName().c_str())); } for (Module::global_iterator v = mergedModule->global_begin(), e = mergedModule->global_end(); v != e; ++v) { if ( !v->isDeclaration() && _mustPreserveSymbols.count(mangler.getValueName(v)) ) mustPreserveList.push_back(::strdup(v->getName().c_str())); } passes.add(createInternalizePass(mustPreserveList)); } // apply scope restrictions passes.run(*mergedModule); _scopeRestrictionsDone = true; } } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::generateAssemblyCode(raw_ostream& out, std::string& errMsg) { if ( this->determineTarget(errMsg) ) return true; // mark which symbols can not be internalized this->applyScopeRestrictions(); Module* mergedModule = _linker.getModule(); // If target supports exception handling then enable it now. if ( _target->getTargetAsmInfo()->doesSupportExceptionHandling() ) llvm::ExceptionHandling = true; // set codegen model switch( _codeModel ) { case LTO_CODEGEN_PIC_MODEL_STATIC: _target->setRelocationModel(Reloc::Static); break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC: _target->setRelocationModel(Reloc::PIC_); break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: _target->setRelocationModel(Reloc::DynamicNoPIC); break; } // if options were requested, set them if ( !_codegenOptions.empty() ) cl::ParseCommandLineOptions(_codegenOptions.size(), (char**)&_codegenOptions[0]); // Instantiate the pass manager to organize the passes. PassManager passes; // Start off with a verification pass. passes.add(createVerifierPass()); // Add an appropriate TargetData instance for this module... passes.add(new TargetData(*_target->getTargetData())); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. passes.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! passes.add(createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant... passes.add(createConstantMergePass()); // Remove unused arguments from functions... passes.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. passes.add(createInstructionCombiningPass()); if (!DisableInline) passes.add(createFunctionInliningPass()); // Inline small functions passes.add(createPruneEHPass()); // Remove dead EH info passes.add(createGlobalDCEPass()); // Remove dead functions // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. passes.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. passes.add(createInstructionCombiningPass()); passes.add(createJumpThreadingPass()); // Thread jumps. passes.add(createScalarReplAggregatesPass()); // Break up allocas // Run a few AA driven optimizations here and now, to cleanup the code. passes.add(createGlobalsModRefPass()); // IP alias analysis passes.add(createLICMPass()); // Hoist loop invariants passes.add(createGVNPass()); // Remove common subexprs passes.add(createMemCpyOptPass()); // Remove dead memcpy's passes.add(createDeadStoreEliminationPass()); // Nuke dead stores // Cleanup and simplify the code after the scalar optimizations. passes.add(createInstructionCombiningPass()); passes.add(createJumpThreadingPass()); // Thread jumps. passes.add(createPromoteMemoryToRegisterPass()); // Cleanup after threading. // Delete basic blocks, which optimization passes may have killed... passes.add(createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions... passes.add(createGlobalDCEPass()); // Make sure everything is still good. passes.add(createVerifierPass()); FunctionPassManager* codeGenPasses = new FunctionPassManager(new ExistingModuleProvider(mergedModule)); codeGenPasses->add(new TargetData(*_target->getTargetData())); MachineCodeEmitter* mce = NULL; switch (_target->addPassesToEmitFile(*codeGenPasses, out, TargetMachine::AssemblyFile, true)) { case FileModel::MachOFile: mce = AddMachOWriter(*codeGenPasses, out, *_target); break; case FileModel::ElfFile: mce = AddELFWriter(*codeGenPasses, out, *_target); break; case FileModel::AsmFile: break; case FileModel::Error: case FileModel::None: errMsg = "target file type not supported"; return true; } if (_target->addPassesToEmitFileFinish(*codeGenPasses, mce, true)) { errMsg = "target does not support generation of this file type"; return true; } // Run our queue of passes all at once now, efficiently. passes.run(*mergedModule); // Run the code generator, and write assembly file codeGenPasses->doInitialization(); for (Module::iterator it = mergedModule->begin(), e = mergedModule->end(); it != e; ++it) if (!it->isDeclaration()) codeGenPasses->run(*it); codeGenPasses->doFinalization(); return false; // success } /// Optimize merged modules using various IPO passes void LTOCodeGenerator::setCodeGenDebugOptions(const char* options) { std::string ops(options); for (std::string o = getToken(ops); !o.empty(); o = getToken(ops)) { // ParseCommandLineOptions() expects argv[0] to be program name. // Lazily add that. if ( _codegenOptions.empty() ) _codegenOptions.push_back("libLTO"); _codegenOptions.push_back(strdup(o.c_str())); } }