//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOCodeGenerator.h" #include "LTOModule.h" #include "LTOPartition.h" #include "LTOPostIPODriver.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/Linker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/system_error.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/ObjCARC.h" using namespace llvm; using namespace lto; // ///////////////////////////////////////////////////////////////////////////// // // Internal options. To avoid collision, most options start with "lto-". // // ///////////////////////////////////////////////////////////////////////////// // static cl::opt DisableOpt("disable-opt", cl::init(false), cl::desc("Do not run any optimization passes")); static cl::opt DisableInline("disable-inlining", cl::init(false), cl::desc("Do not run the inliner pass")); static cl::opt DisableGVNLoadPRE("disable-gvn-loadpre", cl::init(false), cl::desc("Do not run the GVN load PRE pass")); // To break merged module into partitions, and compile them independently. static cl::opt EnablePartition("lto-partition", cl::init(false), cl::desc("Partition program and compile each piece in parallel")); // Specify the work-directory for the LTO compilation. All intermeidate // files will be created immediately under this dir. If it is not // specified, compiler will create an unique directory under current-dir. // static cl::opt TmpWorkDir("lto-workdir", cl::init(""), cl::desc("Specify working directory")); static cl::opt KeepWorkDir("lto-keep", cl::init(false), cl::desc("Keep working directory")); // ///////////////////////////////////////////////////////////////////////////// // // Implementation of LTOCodeGenerator // // ///////////////////////////////////////////////////////////////////////////// // const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } LTOCodeGenerator::LTOCodeGenerator() : _context(getGlobalContext()), _linker(new Module("ld-temp.o", _context)), _target(NULL), _emitDwarfDebugInfo(false), _scopeRestrictionsDone(false), _codeModel(LTO_CODEGEN_PIC_MODEL_DYNAMIC), _nativeObjectFile(NULL), PartitionMgr(FileMgr), OptionsParsed(false) { InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); initializeLTOPasses(); } LTOCodeGenerator::~LTOCodeGenerator() { delete _target; delete _nativeObjectFile; delete _linker.getModule(); for (std::vector::iterator I = _codegenOptions.begin(), E = _codegenOptions.end(); I != E; ++I) free(*I); } // Initialize LTO passes. Please keep this funciton in sync with // PassManagerBuilder::populateLTOPassManager(), and make sure all LTO // passes are initialized. // void LTOCodeGenerator::initializeLTOPasses() { PassRegistry &R = *PassRegistry::getPassRegistry(); initializeInternalizePassPass(R); initializeIPSCCPPass(R); initializeGlobalOptPass(R); initializeConstantMergePass(R); initializeDAHPass(R); initializeInstCombinerPass(R); initializeSimpleInlinerPass(R); initializePruneEHPass(R); initializeGlobalDCEPass(R); initializeArgPromotionPass(R); initializeJumpThreadingPass(R); initializeSROAPass(R); initializeSROA_DTPass(R); initializeSROA_SSAUpPass(R); initializeFunctionAttrsPass(R); initializeGlobalsModRefPass(R); initializeLICMPass(R); initializeGVNPass(R); initializeMemCpyOptPass(R); initializeDCEPass(R); initializeCFGSimplifyPassPass(R); } bool LTOCodeGenerator::addModule(LTOModule* mod, std::string& errMsg) { bool ret = _linker.linkInModule(mod->getLLVVMModule(), &errMsg); const std::vector &undefs = mod->getAsmUndefinedRefs(); for (int i = 0, e = undefs.size(); i != e; ++i) _asmUndefinedRefs[undefs[i]] = 1; return !ret; } void LTOCodeGenerator::setDebugInfo(lto_debug_model debug) { switch (debug) { case LTO_DEBUG_MODEL_NONE: _emitDwarfDebugInfo = false; return; case LTO_DEBUG_MODEL_DWARF: _emitDwarfDebugInfo = true; return; } llvm_unreachable("Unknown debug format!"); } void LTOCodeGenerator::setCodePICModel(lto_codegen_model model) { switch (model) { case LTO_CODEGEN_PIC_MODEL_STATIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: _codeModel = model; return; } llvm_unreachable("Unknown PIC model!"); } bool LTOCodeGenerator::writeMergedModules(const char *path, std::string &errMsg) { if (!determineTarget(errMsg)) return false; // mark which symbols can not be internalized applyScopeRestrictions(); // create output file std::string ErrInfo; tool_output_file Out(path, ErrInfo, sys::fs::F_Binary); if (!ErrInfo.empty()) { errMsg = "could not open bitcode file for writing: "; errMsg += path; return false; } // write bitcode to it WriteBitcodeToFile(_linker.getModule(), Out.os()); Out.os().close(); if (Out.os().has_error()) { errMsg = "could not write bitcode file: "; errMsg += path; Out.os().clear_error(); return false; } Out.keep(); return true; } // This function is to ensure cl::ParseCommandLineOptions() is called no more // than once. It would otherwise complain and exit the compilation prematurely. // void LTOCodeGenerator::parseOptions() { if (OptionsParsed) return; if (!_codegenOptions.empty()) cl::ParseCommandLineOptions(_codegenOptions.size(), const_cast(&_codegenOptions[0])); OptionsParsed = true; } // Do some prepartion right before compilation starts. bool LTOCodeGenerator::prepareBeforeCompile(std::string &ErrMsg) { parseOptions(); if (!determineTarget(ErrMsg)) return false; FileMgr.setWorkDir(TmpWorkDir.c_str()); FileMgr.setKeepWorkDir(KeepWorkDir); return FileMgr.createWorkDir(ErrMsg); } bool LTOCodeGenerator::compile_to_file(const char** Name, std::string& ErrMsg) { if (!prepareBeforeCompile(ErrMsg)) return false; performIPO(EnablePartition, ErrMsg); if (!performPostIPO(ErrMsg)) return false; *Name = PartitionMgr.getSinglePartition()->getObjFilePath().c_str(); return true; } const void* LTOCodeGenerator::compile(size_t* length, std::string& errMsg) { const char *name; if (!compile_to_file(&name, errMsg)) return NULL; // remove old buffer if compile() called twice delete _nativeObjectFile; // read .o file into memory buffer OwningPtr BuffPtr; const char *BufStart = 0; if (error_code ec = MemoryBuffer::getFile(name, BuffPtr, -1, false)) { errMsg = ec.message(); _nativeObjectFile = 0; } else { if ((_nativeObjectFile = BuffPtr.take())) { *length = _nativeObjectFile->getBufferSize(); BufStart = _nativeObjectFile->getBufferStart(); } } // Now that the resulting single object file is handed to linker via memory // buffer, it is safe to remove all intermediate files now. // FileMgr.removeAllUnneededFiles(); return BufStart; } const char *LTOCodeGenerator::getFilesNeedToRemove() { IPOFileMgr::FileNameVect ToRm; FileMgr.getFilesNeedToRemove(ToRm); ConcatStrings.clear(); for (IPOFileMgr::FileNameVect::iterator I = ToRm.begin(), E = ToRm.end(); I != E; I++) { StringRef S(*I); ConcatStrings.append(S.begin(), S.end()); ConcatStrings.push_back('\0'); } ConcatStrings.push_back('\0'); ConcatStrings.push_back('\0'); return ConcatStrings.data(); } bool LTOCodeGenerator::determineTarget(std::string &errMsg) { if (_target != NULL) return true; // if options were requested, set them parseOptions(); std::string TripleStr = _linker.getModule()->getTargetTriple(); if (TripleStr.empty()) TripleStr = sys::getDefaultTargetTriple(); llvm::Triple Triple(TripleStr); // create target machine from info for merged modules const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg); if (march == NULL) return false; // The relocation model is actually a static member of TargetMachine and // needs to be set before the TargetMachine is instantiated. Reloc::Model RelocModel = Reloc::Default; switch (_codeModel) { case LTO_CODEGEN_PIC_MODEL_STATIC: RelocModel = Reloc::Static; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC: RelocModel = Reloc::PIC_; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: RelocModel = Reloc::DynamicNoPIC; break; } // construct LTOModule, hand over ownership of module and target SubtargetFeatures Features; Features.getDefaultSubtargetFeatures(Triple); std::string FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. if (_mCpu.empty() && Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) _mCpu = "core2"; else if (Triple.getArch() == llvm::Triple::x86) _mCpu = "yonah"; } TargetOptions Options; LTOModule::getTargetOptions(Options); _target = march->createTargetMachine(TripleStr, _mCpu, FeatureStr, Options, RelocModel, CodeModel::Default, CodeGenOpt::Aggressive); return true; } void LTOCodeGenerator:: applyRestriction(GlobalValue &GV, std::vector &mustPreserveList, SmallPtrSet &asmUsed, Mangler &mangler) { SmallString<64> Buffer; mangler.getNameWithPrefix(Buffer, &GV, false); if (GV.isDeclaration()) return; if (_mustPreserveSymbols.count(Buffer)) mustPreserveList.push_back(GV.getName().data()); if (_asmUndefinedRefs.count(Buffer)) asmUsed.insert(&GV); } static void findUsedValues(GlobalVariable *LLVMUsed, SmallPtrSet &UsedValues) { if (LLVMUsed == 0) return; ConstantArray *Inits = cast(LLVMUsed->getInitializer()); for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) if (GlobalValue *GV = dyn_cast(Inits->getOperand(i)->stripPointerCasts())) UsedValues.insert(GV); } void LTOCodeGenerator::applyScopeRestrictions() { if (_scopeRestrictionsDone) return; Module *mergedModule = _linker.getModule(); // Start off with a verification pass. PassManager passes; passes.add(createVerifierPass()); // mark which symbols can not be internalized MCContext Context(_target->getMCAsmInfo(), _target->getRegisterInfo(), NULL); Mangler mangler(Context, _target); std::vector mustPreserveList; SmallPtrSet asmUsed; for (Module::iterator f = mergedModule->begin(), e = mergedModule->end(); f != e; ++f) applyRestriction(*f, mustPreserveList, asmUsed, mangler); for (Module::global_iterator v = mergedModule->global_begin(), e = mergedModule->global_end(); v != e; ++v) applyRestriction(*v, mustPreserveList, asmUsed, mangler); for (Module::alias_iterator a = mergedModule->alias_begin(), e = mergedModule->alias_end(); a != e; ++a) applyRestriction(*a, mustPreserveList, asmUsed, mangler); GlobalVariable *LLVMCompilerUsed = mergedModule->getGlobalVariable("llvm.compiler.used"); findUsedValues(LLVMCompilerUsed, asmUsed); if (LLVMCompilerUsed) LLVMCompilerUsed->eraseFromParent(); if (!asmUsed.empty()) { llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(_context); std::vector asmUsed2; for (SmallPtrSet::const_iterator i = asmUsed.begin(), e = asmUsed.end(); i !=e; ++i) { GlobalValue *GV = *i; Constant *c = ConstantExpr::getBitCast(GV, i8PTy); asmUsed2.push_back(c); } llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size()); LLVMCompilerUsed = new llvm::GlobalVariable(*mergedModule, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, asmUsed2), "llvm.compiler.used"); LLVMCompilerUsed->setSection("llvm.metadata"); } passes.add(createInternalizePass(mustPreserveList)); // apply scope restrictions passes.run(*mergedModule); _scopeRestrictionsDone = true; } void LTOCodeGenerator::performIPO(bool ToPartition, std::string &errMsg) { // Mark which symbols can not be internalized applyScopeRestrictions(); // Instantiate the pass manager to organize the passes. PassManager Passes; // Start off with a verification pass. Passes.add(createVerifierPass()); // Add an appropriate DataLayout instance for this module... Passes.add(new DataLayout(*_target->getDataLayout())); _target->addAnalysisPasses(Passes); // Enabling internalize here would use its AllButMain variant. It // keeps only main if it exists and does nothing for libraries. Instead // we create the pass ourselves with the symbol list provided by the linker. if (!DisableOpt) PassManagerBuilder().populateLTOPassManager(Passes, /*Internalize=*/false, !DisableInline, DisableGVNLoadPRE); // Make sure everything is still good. Passes.add(createVerifierPass()); Module* M = _linker.getModule(); if (ToPartition) assert(false && "TBD"); else { Passes.run(*M); // Create a partition for the merged module. PartitionMgr.createIPOPart(M); } } // Perform Post-IPO compilation. If the partition is enabled, there may // be multiple partitions, and therefore there may be multiple objects. // In this case, "MergeObjs" indicates to merge all object together (via ld -r) // and return the path to the merged object via "MergObjPath". // bool LTOCodeGenerator::performPostIPO(std::string &ErrMsg, bool MergeObjs, const char **MergObjPath) { // Determine the variant of post-ipo driver PostIPODriver::VariantTy DrvTy; if (!EnablePartition) { assert(!MergeObjs && !MergObjPath && "Invalid parameter"); DrvTy = PostIPODriver::PIDV_SERIAL; } else { DrvTy = PostIPODriver::PIDV_Invalid; assert(false && "TBD"); } PostIPODriver D(DrvTy, _target, PartitionMgr, FileMgr, MergeObjs); if (D.Compile(ErrMsg)) { if (MergeObjs) *MergObjPath = D.getSingleObjFile()->getPath().c_str(); return true; } return false; } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::generateObjectFile(raw_ostream &out, std::string &errMsg) { if (!this->determineTarget(errMsg)) return false; Module* mergedModule = _linker.getModule(); // Mark which symbols can not be internalized this->applyScopeRestrictions(); // Instantiate the pass manager to organize the passes. PassManager passes; // Start off with a verification pass. passes.add(createVerifierPass()); // Add an appropriate DataLayout instance for this module... passes.add(new DataLayout(*_target->getDataLayout())); _target->addAnalysisPasses(passes); // Enabling internalize here would use its AllButMain variant. It // keeps only main if it exists and does nothing for libraries. Instead // we create the pass ourselves with the symbol list provided by the linker. if (!DisableOpt) PassManagerBuilder().populateLTOPassManager(passes, /*Internalize=*/false, !DisableInline, DisableGVNLoadPRE); // Make sure everything is still good. passes.add(createVerifierPass()); PassManager codeGenPasses; codeGenPasses.add(new DataLayout(*_target->getDataLayout())); _target->addAnalysisPasses(codeGenPasses); formatted_raw_ostream Out(out); // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. codeGenPasses.add(createObjCARCContractPass()); if (_target->addPassesToEmitFile(codeGenPasses, Out, TargetMachine::CGFT_ObjectFile)) { errMsg = "target file type not supported"; return false; } // Run our queue of passes all at once now, efficiently. passes.run(*mergedModule); // Run the code generator, and write assembly file codeGenPasses.run(*mergedModule); return true; } /// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging /// LTO problems. void LTOCodeGenerator::setCodeGenDebugOptions(const char *options) { for (std::pair o = getToken(options); !o.first.empty(); o = getToken(o.second)) { // ParseCommandLineOptions() expects argv[0] to be program name. Lazily add // that. if (_codegenOptions.empty()) _codegenOptions.push_back(strdup("libLTO")); _codegenOptions.push_back(strdup(o.first.str().c_str())); } }