//===-LTOModule.cpp - LLVM Link Time Optimizer ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOModule.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MathExtras.h" #include "llvm/System/Path.h" #include "llvm/System/Process.h" #include "llvm/Target/SubtargetFeature.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Target/TargetAsmInfo.h" #include using namespace llvm; bool LTOModule::isBitcodeFile(const void* mem, size_t length) { return ( llvm::sys::IdentifyFileType((char*)mem, length) == llvm::sys::Bitcode_FileType ); } bool LTOModule::isBitcodeFile(const char* path) { return llvm::sys::Path(path).isBitcodeFile(); } bool LTOModule::isBitcodeFileForTarget(const void* mem, size_t length, const char* triplePrefix) { MemoryBuffer* buffer = makeBuffer(mem, length); if ( buffer == NULL ) return false; return isTargetMatch(buffer, triplePrefix); } bool LTOModule::isBitcodeFileForTarget(const char* path, const char* triplePrefix) { MemoryBuffer *buffer = MemoryBuffer::getFile(path); if (buffer == NULL) return false; return isTargetMatch(buffer, triplePrefix); } // takes ownership of buffer bool LTOModule::isTargetMatch(MemoryBuffer* buffer, const char* triplePrefix) { OwningPtr mp(getBitcodeModuleProvider(buffer)); // on success, mp owns buffer and both are deleted at end of this method if ( !mp ) { delete buffer; return false; } std::string actualTarget = mp->getModule()->getTargetTriple(); return ( strncmp(actualTarget.c_str(), triplePrefix, strlen(triplePrefix)) == 0); } LTOModule::LTOModule(Module* m, TargetMachine* t) : _module(m), _target(t), _symbolsParsed(false) { } LTOModule* LTOModule::makeLTOModule(const char* path, std::string& errMsg) { OwningPtr buffer(MemoryBuffer::getFile(path, &errMsg)); if ( !buffer ) return NULL; return makeLTOModule(buffer.get(), errMsg); } /// makeBuffer - create a MemoryBuffer from a memory range. /// MemoryBuffer requires the byte past end of the buffer to be a zero. /// We might get lucky and already be that way, otherwise make a copy. /// Also if next byte is on a different page, don't assume it is readable. MemoryBuffer* LTOModule::makeBuffer(const void* mem, size_t length) { const char* startPtr = (char*)mem; const char* endPtr = startPtr+length; if ( (((uintptr_t)endPtr & (sys::Process::GetPageSize()-1)) == 0) || (*endPtr != 0) ) return MemoryBuffer::getMemBufferCopy(startPtr, endPtr); else return MemoryBuffer::getMemBuffer(startPtr, endPtr); } LTOModule* LTOModule::makeLTOModule(const void* mem, size_t length, std::string& errMsg) { OwningPtr buffer(makeBuffer(mem, length)); if ( !buffer ) return NULL; return makeLTOModule(buffer.get(), errMsg); } /// getFeatureString - Return a string listing the features associated with the /// target triple. /// /// FIXME: This is an inelegant way of specifying the features of a /// subtarget. It would be better if we could encode this information into the /// IR. See . std::string getFeatureString(const char *TargetTriple) { SubtargetFeatures Features; if (strncmp(TargetTriple, "powerpc-apple-", 14) == 0) { Features.AddFeature("altivec", true); } else if (strncmp(TargetTriple, "powerpc64-apple-", 16) == 0) { Features.AddFeature("64bit", true); Features.AddFeature("altivec", true); } return Features.getString(); } LTOModule* LTOModule::makeLTOModule(MemoryBuffer* buffer, std::string& errMsg) { // parse bitcode buffer OwningPtr m(ParseBitcodeFile(buffer, &errMsg)); if ( !m ) return NULL; // find machine architecture for this module const TargetMachineRegistry::entry* march = TargetMachineRegistry::getClosestStaticTargetForModule(*m, errMsg); if ( march == NULL ) return NULL; // construct LTModule, hand over ownership of module and target std::string FeatureStr = getFeatureString(m->getTargetTriple().c_str()); TargetMachine* target = march->CtorFn(*m, FeatureStr); return new LTOModule(m.take(), target); } const char* LTOModule::getTargetTriple() { return _module->getTargetTriple().c_str(); } void LTOModule::addDefinedFunctionSymbol(Function* f, Mangler &mangler) { // add to list of defined symbols addDefinedSymbol(f, mangler, true); // add external symbols referenced by this function. for (Function::iterator b = f->begin(); b != f->end(); ++b) { for (BasicBlock::iterator i = b->begin(); i != b->end(); ++i) { for (unsigned count = 0, total = i->getNumOperands(); count != total; ++count) { findExternalRefs(i->getOperand(count), mangler); } } } } void LTOModule::addDefinedDataSymbol(GlobalValue* v, Mangler &mangler) { // add to list of defined symbols addDefinedSymbol(v, mangler, false); // add external symbols referenced by this data. for (unsigned count = 0, total = v->getNumOperands(); count != total; ++count) { findExternalRefs(v->getOperand(count), mangler); } } void LTOModule::addDefinedSymbol(GlobalValue* def, Mangler &mangler, bool isFunction) { // string is owned by _defines const char* symbolName = ::strdup(mangler.getValueName(def).c_str()); // set alignment part log2() can have rounding errors uint32_t align = def->getAlignment(); uint32_t attr = align ? CountTrailingZeros_32(def->getAlignment()) : 0; // set permissions part if ( isFunction ) attr |= LTO_SYMBOL_PERMISSIONS_CODE; else { GlobalVariable* gv = dyn_cast(def); if ( (gv != NULL) && gv->isConstant() ) attr |= LTO_SYMBOL_PERMISSIONS_RODATA; else attr |= LTO_SYMBOL_PERMISSIONS_DATA; } // set definition part if ( def->hasWeakLinkage() || def->hasLinkOnceLinkage() ) { attr |= LTO_SYMBOL_DEFINITION_WEAK; } else if ( def->hasCommonLinkage()) { attr |= LTO_SYMBOL_DEFINITION_TENTATIVE; } else { attr |= LTO_SYMBOL_DEFINITION_REGULAR; } // set scope part if ( def->hasHiddenVisibility() ) attr |= LTO_SYMBOL_SCOPE_HIDDEN; else if ( def->hasExternalLinkage() || def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasCommonLinkage() ) attr |= LTO_SYMBOL_SCOPE_DEFAULT; else attr |= LTO_SYMBOL_SCOPE_INTERNAL; // add to table of symbols NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); _defines[info.name] = 1; } void LTOModule::addAsmGlobalSymbol(const char *name) { // string is owned by _defines const char *symbolName = ::strdup(name); uint32_t attr = LTO_SYMBOL_DEFINITION_REGULAR; attr |= LTO_SYMBOL_SCOPE_DEFAULT; // add to table of symbols NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); _defines[info.name] = 1; } void LTOModule::addPotentialUndefinedSymbol(GlobalValue* decl, Mangler &mangler) { const char* name = mangler.getValueName(decl).c_str(); // ignore all llvm.* symbols if ( strncmp(name, "llvm.", 5) != 0 ) { _undefines[name] = 1; } } // Find exeternal symbols referenced by VALUE. This is a recursive function. void LTOModule::findExternalRefs(Value* value, Mangler &mangler) { if (GlobalValue* gv = dyn_cast(value)) { if ( !gv->hasExternalLinkage() ) addPotentialUndefinedSymbol(gv, mangler); // If this is a variable definition, do not recursively process // initializer. It might contain a reference to this variable // and cause an infinite loop. The initializer will be // processed in addDefinedDataSymbol(). return; } // GlobalValue, even with InternalLinkage type, may have operands with // ExternalLinkage type. Do not ignore these operands. if (Constant* c = dyn_cast(value)) { // Handle ConstantExpr, ConstantStruct, ConstantArry etc.. for (unsigned i = 0, e = c->getNumOperands(); i != e; ++i) findExternalRefs(c->getOperand(i), mangler); } } void LTOModule::lazyParseSymbols() { if ( !_symbolsParsed ) { _symbolsParsed = true; // Use mangler to add GlobalPrefix to names to match linker names. Mangler mangler(*_module, _target->getTargetAsmInfo()->getGlobalPrefix()); // add functions for (Module::iterator f = _module->begin(); f != _module->end(); ++f) { if ( f->isDeclaration() ) addPotentialUndefinedSymbol(f, mangler); else addDefinedFunctionSymbol(f, mangler); } // add data for (Module::global_iterator v = _module->global_begin(), e = _module->global_end(); v != e; ++v) { if ( v->isDeclaration() ) addPotentialUndefinedSymbol(v, mangler); else addDefinedDataSymbol(v, mangler); } // add asm globals const std::string &inlineAsm = _module->getModuleInlineAsm(); const std::string glbl = ".globl"; std::string asmSymbolName; std::string::size_type pos = inlineAsm.find(glbl, 0); while (pos != std::string::npos) { // eat .globl pos = pos + 6; // skip white space between .globl and symbol name std::string::size_type pbegin = inlineAsm.find_first_not_of(' ', pos); if (pbegin == std::string::npos) break; // find end-of-line std::string::size_type pend = inlineAsm.find_first_of('\n', pbegin); if (pend == std::string::npos) break; asmSymbolName.assign(inlineAsm, pbegin, pend - pbegin); addAsmGlobalSymbol(asmSymbolName.c_str()); // search next .globl pos = inlineAsm.find(glbl, pend); } // make symbols for all undefines for (StringSet::iterator it=_undefines.begin(); it != _undefines.end(); ++it) { // if this symbol also has a definition, then don't make an undefine // because it is a tentative definition if ( _defines.count(it->getKeyData(), it->getKeyData()+ it->getKeyLength()) == 0 ) { NameAndAttributes info; info.name = it->getKeyData(); info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; _symbols.push_back(info); } } } } uint32_t LTOModule::getSymbolCount() { lazyParseSymbols(); return _symbols.size(); } lto_symbol_attributes LTOModule::getSymbolAttributes(uint32_t index) { lazyParseSymbols(); if ( index < _symbols.size() ) return _symbols[index].attributes; else return lto_symbol_attributes(0); } const char* LTOModule::getSymbolName(uint32_t index) { lazyParseSymbols(); if ( index < _symbols.size() ) return _symbols[index].name; else return NULL; }