//===- yaml2obj - Convert YAML to a binary object file --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This program takes a YAML description of an object file and outputs the // binary equivalent. // // This is used for writing tests that require binary files. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include using namespace llvm; static cl::opt Input(cl::Positional, cl::desc(""), cl::init("-")); template typename llvm::enable_if_c::is_integer, bool>::type getAs(const llvm::yaml::ScalarNode *SN, T &Result) { SmallString<4> Storage; StringRef Value = SN->getValue(Storage); if (Value.getAsInteger(0, Result)) return false; return true; } // Given a container with begin and end with ::value_type of a character type. // Iterate through pairs of characters in the the set of [a-fA-F0-9] ignoring // all other characters. struct hex_pair_iterator { StringRef::const_iterator Current, End; typedef SmallVector value_type; value_type Pair; bool IsDone; hex_pair_iterator(StringRef C) : Current(C.begin()), End(C.end()), IsDone(false) { // Initalize Pair. ++*this; } // End iterator. hex_pair_iterator() : Current(), End(), IsDone(true) {} value_type operator *() const { return Pair; } hex_pair_iterator operator ++() { // We're at the end of the input. if (Current == End) { IsDone = true; return *this; } Pair = value_type(); for (; Current != End && Pair.size() != 2; ++Current) { // Is a valid hex digit. if ((*Current >= '0' && *Current <= '9') || (*Current >= 'a' && *Current <= 'f') || (*Current >= 'A' && *Current <= 'F')) Pair.push_back(*Current); } // Hit the end without getting 2 hex digits. Pair is invalid. if (Pair.size() != 2) IsDone = true; return *this; } bool operator ==(const hex_pair_iterator Other) { return (IsDone == Other.IsDone) || (Current == Other.Current && End == Other.End); } bool operator !=(const hex_pair_iterator Other) { return !(*this == Other); } }; template static bool hexStringToByteArray(StringRef Str, ContainerOut &Out) { for (hex_pair_iterator I(Str), E; I != E; ++I) { typename hex_pair_iterator::value_type Pair = *I; typename ContainerOut::value_type Byte; if (StringRef(Pair.data(), 2).getAsInteger(16, Byte)) return false; Out.push_back(Byte); } return true; } // The structure of the yaml files is not an exact 1:1 match to COFF. In order // to use yaml::IO, we use these structures which are closer to the source. namespace COFFYAML { struct Section { COFF::section Header; StringRef SectionData; std::vector Relocations; StringRef Name; Section() { memset(&Header, 0, sizeof(COFF::section)); } }; struct Symbol { COFF::symbol Header; COFF::SymbolBaseType SimpleType; COFF::SymbolComplexType ComplexType; StringRef AuxiliaryData; StringRef Name; Symbol() { memset(&Header, 0, sizeof(COFF::symbol)); } }; struct Object { COFF::header Header; std::vector
Sections; std::vector Symbols; Object() { memset(&Header, 0, sizeof(COFF::header)); } }; } /// This parses a yaml stream that represents a COFF object file. /// See docs/yaml2obj for the yaml scheema. struct COFFParser { COFFParser(COFFYAML::Object &Obj) : Obj(Obj) { // A COFF string table always starts with a 4 byte size field. Offsets into // it include this size, so allocate it now. StringTable.append(4, 0); } bool parseSections() { for (std::vector::iterator i = Obj.Sections.begin(), e = Obj.Sections.end(); i != e; ++i) { COFFYAML::Section &Sec = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sec.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sec.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); std::string str = utostr(Index); if (str.size() > 7) { errs() << "String table got too large"; return false; } Sec.Header.Name[0] = '/'; std::copy(str.begin(), str.end(), Sec.Header.Name + 1); } } return true; } bool parseSymbols() { for (std::vector::iterator i = Obj.Symbols.begin(), e = Obj.Symbols.end(); i != e; ++i) { COFFYAML::Symbol &Sym = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sym.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sym.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); *reinterpret_cast( Sym.Header.Name + 4) = Index; } Sym.Header.Type = Sym.SimpleType; Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT; } return true; } bool parse() { if (!parseSections()) return false; if (!parseSymbols()) return false; return true; } unsigned getStringIndex(StringRef Str) { StringMap::iterator i = StringTableMap.find(Str); if (i == StringTableMap.end()) { unsigned Index = StringTable.size(); StringTable.append(Str.begin(), Str.end()); StringTable.push_back(0); StringTableMap[Str] = Index; return Index; } return i->second; } COFFYAML::Object &Obj; StringMap StringTableMap; std::string StringTable; }; // Take a CP and assign addresses and sizes to everything. Returns false if the // layout is not valid to do. static bool layoutCOFF(COFFParser &CP) { uint32_t SectionTableStart = 0; uint32_t SectionTableSize = 0; // The section table starts immediately after the header, including the // optional header. SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader; SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size(); uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize; // Assign each section data address consecutively. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { if (!i->SectionData.empty()) { i->Header.SizeOfRawData = i->SectionData.size()/2; i->Header.PointerToRawData = CurrentSectionDataOffset; CurrentSectionDataOffset += i->Header.SizeOfRawData; if (!i->Relocations.empty()) { i->Header.PointerToRelocations = CurrentSectionDataOffset; i->Header.NumberOfRelocations = i->Relocations.size(); CurrentSectionDataOffset += i->Header.NumberOfRelocations * COFF::RelocationSize; } // TODO: Handle alignment. } else { i->Header.SizeOfRawData = 0; i->Header.PointerToRawData = 0; } } uint32_t SymbolTableStart = CurrentSectionDataOffset; // Calculate number of symbols. uint32_t NumberOfSymbols = 0; for (std::vector::iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { unsigned AuxBytes = i->AuxiliaryData.size() / 2; if (AuxBytes % COFF::SymbolSize != 0) { errs() << "AuxiliaryData size not a multiple of symbol size!\n"; return false; } i->Header.NumberOfAuxSymbols = AuxBytes / COFF::SymbolSize; NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols; } // Store all the allocated start addresses in the header. CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size(); CP.Obj.Header.NumberOfSymbols = NumberOfSymbols; CP.Obj.Header.PointerToSymbolTable = SymbolTableStart; *reinterpret_cast(&CP.StringTable[0]) = CP.StringTable.size(); return true; } template struct binary_le_impl { value_type Value; binary_le_impl(value_type V) : Value(V) {} }; template raw_ostream &operator <<( raw_ostream &OS , const binary_le_impl &BLE) { char Buffer[sizeof(BLE.Value)]; support::endian::write( Buffer, BLE.Value); OS.write(Buffer, sizeof(BLE.Value)); return OS; } template binary_le_impl binary_le(value_type V) { return binary_le_impl(V); } bool writeCOFF(COFFParser &CP, raw_ostream &OS) { OS << binary_le(CP.Obj.Header.Machine) << binary_le(CP.Obj.Header.NumberOfSections) << binary_le(CP.Obj.Header.TimeDateStamp) << binary_le(CP.Obj.Header.PointerToSymbolTable) << binary_le(CP.Obj.Header.NumberOfSymbols) << binary_le(CP.Obj.Header.SizeOfOptionalHeader) << binary_le(CP.Obj.Header.Characteristics); // Output section table. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.VirtualSize) << binary_le(i->Header.VirtualAddress) << binary_le(i->Header.SizeOfRawData) << binary_le(i->Header.PointerToRawData) << binary_le(i->Header.PointerToRelocations) << binary_le(i->Header.PointerToLineNumbers) << binary_le(i->Header.NumberOfRelocations) << binary_le(i->Header.NumberOfLineNumbers) << binary_le(i->Header.Characteristics); } // Output section data. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { if (!i->SectionData.empty()) { std::vector Data; if (!hexStringToByteArray(i->SectionData, Data)) { errs() << "SectionData must be a collection of pairs of hex bytes"; return false; } OS.write(reinterpret_cast(&Data[0]), Data.size()); } for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) { const COFF::relocation &R = i->Relocations[I2]; OS << binary_le(R.VirtualAddress) << binary_le(R.SymbolTableIndex) << binary_le(R.Type); } } // Output symbol table. for (std::vector::const_iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.Value) << binary_le(i->Header.SectionNumber) << binary_le(i->Header.Type) << binary_le(i->Header.StorageClass) << binary_le(i->Header.NumberOfAuxSymbols); if (!i->AuxiliaryData.empty()) { std::vector AuxSymbols; if (!hexStringToByteArray(i->AuxiliaryData, AuxSymbols)) { errs() << "AuxiliaryData must be a collection of pairs of hex bytes"; return false; } OS.write(reinterpret_cast(&AuxSymbols[0]), AuxSymbols.size()); } } // Output string table. OS.write(&CP.StringTable[0], CP.StringTable.size()); return true; } LLVM_YAML_IS_SEQUENCE_VECTOR(COFF::relocation) LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Section) LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Symbol) namespace llvm { namespace COFF { Characteristics operator|(Characteristics a, Characteristics b) { uint32_t Ret = static_cast(a) | static_cast(b); return static_cast(Ret); } SectionCharacteristics operator|(SectionCharacteristics a, SectionCharacteristics b) { uint32_t Ret = static_cast(a) | static_cast(b); return static_cast(Ret); } } namespace yaml { #define BCase(X) IO.bitSetCase(Value, #X, COFF::X); template <> struct ScalarBitSetTraits { static void bitset(IO &IO, COFF::SectionCharacteristics &Value) { BCase(IMAGE_SCN_TYPE_NO_PAD); BCase(IMAGE_SCN_CNT_CODE); BCase(IMAGE_SCN_CNT_INITIALIZED_DATA); BCase(IMAGE_SCN_CNT_UNINITIALIZED_DATA); BCase(IMAGE_SCN_LNK_OTHER); BCase(IMAGE_SCN_LNK_INFO); BCase(IMAGE_SCN_LNK_REMOVE); BCase(IMAGE_SCN_LNK_COMDAT); BCase(IMAGE_SCN_GPREL); BCase(IMAGE_SCN_MEM_PURGEABLE); BCase(IMAGE_SCN_MEM_16BIT); BCase(IMAGE_SCN_MEM_LOCKED); BCase(IMAGE_SCN_MEM_PRELOAD); BCase(IMAGE_SCN_ALIGN_1BYTES); BCase(IMAGE_SCN_ALIGN_2BYTES); BCase(IMAGE_SCN_ALIGN_4BYTES); BCase(IMAGE_SCN_ALIGN_8BYTES); BCase(IMAGE_SCN_ALIGN_16BYTES); BCase(IMAGE_SCN_ALIGN_32BYTES); BCase(IMAGE_SCN_ALIGN_64BYTES); BCase(IMAGE_SCN_ALIGN_128BYTES); BCase(IMAGE_SCN_ALIGN_256BYTES); BCase(IMAGE_SCN_ALIGN_512BYTES); BCase(IMAGE_SCN_ALIGN_1024BYTES); BCase(IMAGE_SCN_ALIGN_2048BYTES); BCase(IMAGE_SCN_ALIGN_4096BYTES); BCase(IMAGE_SCN_ALIGN_8192BYTES); BCase(IMAGE_SCN_LNK_NRELOC_OVFL); BCase(IMAGE_SCN_MEM_DISCARDABLE); BCase(IMAGE_SCN_MEM_NOT_CACHED); BCase(IMAGE_SCN_MEM_NOT_PAGED); BCase(IMAGE_SCN_MEM_SHARED); BCase(IMAGE_SCN_MEM_EXECUTE); BCase(IMAGE_SCN_MEM_READ); BCase(IMAGE_SCN_MEM_WRITE); } }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, COFF::Characteristics &Value) { BCase(IMAGE_FILE_RELOCS_STRIPPED); BCase(IMAGE_FILE_EXECUTABLE_IMAGE); BCase(IMAGE_FILE_LINE_NUMS_STRIPPED); BCase(IMAGE_FILE_LOCAL_SYMS_STRIPPED); BCase(IMAGE_FILE_AGGRESSIVE_WS_TRIM); BCase(IMAGE_FILE_LARGE_ADDRESS_AWARE); BCase(IMAGE_FILE_BYTES_REVERSED_LO); BCase(IMAGE_FILE_32BIT_MACHINE); BCase(IMAGE_FILE_DEBUG_STRIPPED); BCase(IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP); BCase(IMAGE_FILE_NET_RUN_FROM_SWAP); BCase(IMAGE_FILE_SYSTEM); BCase(IMAGE_FILE_DLL); BCase(IMAGE_FILE_UP_SYSTEM_ONLY); BCase(IMAGE_FILE_BYTES_REVERSED_HI); } }; #undef BCase #define ECase(X) IO.enumCase(Value, #X, COFF::X); template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, COFF::SymbolComplexType &Value) { ECase(IMAGE_SYM_DTYPE_NULL); ECase(IMAGE_SYM_DTYPE_POINTER); ECase(IMAGE_SYM_DTYPE_FUNCTION); ECase(IMAGE_SYM_DTYPE_ARRAY); } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, COFF::SymbolStorageClass &Value) { ECase(IMAGE_SYM_CLASS_END_OF_FUNCTION); ECase(IMAGE_SYM_CLASS_NULL); ECase(IMAGE_SYM_CLASS_AUTOMATIC); ECase(IMAGE_SYM_CLASS_EXTERNAL); ECase(IMAGE_SYM_CLASS_STATIC); ECase(IMAGE_SYM_CLASS_REGISTER); ECase(IMAGE_SYM_CLASS_EXTERNAL_DEF); ECase(IMAGE_SYM_CLASS_LABEL); ECase(IMAGE_SYM_CLASS_UNDEFINED_LABEL); ECase(IMAGE_SYM_CLASS_MEMBER_OF_STRUCT); ECase(IMAGE_SYM_CLASS_ARGUMENT); ECase(IMAGE_SYM_CLASS_STRUCT_TAG); ECase(IMAGE_SYM_CLASS_MEMBER_OF_UNION); ECase(IMAGE_SYM_CLASS_UNION_TAG); ECase(IMAGE_SYM_CLASS_TYPE_DEFINITION); ECase(IMAGE_SYM_CLASS_UNDEFINED_STATIC); ECase(IMAGE_SYM_CLASS_ENUM_TAG); ECase(IMAGE_SYM_CLASS_MEMBER_OF_ENUM); ECase(IMAGE_SYM_CLASS_REGISTER_PARAM); ECase(IMAGE_SYM_CLASS_BIT_FIELD); ECase(IMAGE_SYM_CLASS_BLOCK); ECase(IMAGE_SYM_CLASS_FUNCTION); ECase(IMAGE_SYM_CLASS_END_OF_STRUCT); ECase(IMAGE_SYM_CLASS_FILE); ECase(IMAGE_SYM_CLASS_SECTION); ECase(IMAGE_SYM_CLASS_WEAK_EXTERNAL); ECase(IMAGE_SYM_CLASS_CLR_TOKEN); } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, COFF::SymbolBaseType &Value) { ECase(IMAGE_SYM_TYPE_NULL); ECase(IMAGE_SYM_TYPE_VOID); ECase(IMAGE_SYM_TYPE_CHAR); ECase(IMAGE_SYM_TYPE_SHORT); ECase(IMAGE_SYM_TYPE_INT); ECase(IMAGE_SYM_TYPE_LONG); ECase(IMAGE_SYM_TYPE_FLOAT); ECase(IMAGE_SYM_TYPE_DOUBLE); ECase(IMAGE_SYM_TYPE_STRUCT); ECase(IMAGE_SYM_TYPE_UNION); ECase(IMAGE_SYM_TYPE_ENUM); ECase(IMAGE_SYM_TYPE_MOE); ECase(IMAGE_SYM_TYPE_BYTE); ECase(IMAGE_SYM_TYPE_WORD); ECase(IMAGE_SYM_TYPE_UINT); ECase(IMAGE_SYM_TYPE_DWORD); } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, COFF::MachineTypes &Value) { ECase(IMAGE_FILE_MACHINE_UNKNOWN); ECase(IMAGE_FILE_MACHINE_AM33); ECase(IMAGE_FILE_MACHINE_AMD64); ECase(IMAGE_FILE_MACHINE_ARM); ECase(IMAGE_FILE_MACHINE_ARMV7); ECase(IMAGE_FILE_MACHINE_EBC); ECase(IMAGE_FILE_MACHINE_I386); ECase(IMAGE_FILE_MACHINE_IA64); ECase(IMAGE_FILE_MACHINE_M32R); ECase(IMAGE_FILE_MACHINE_MIPS16); ECase(IMAGE_FILE_MACHINE_MIPSFPU); ECase(IMAGE_FILE_MACHINE_MIPSFPU16); ECase(IMAGE_FILE_MACHINE_POWERPC); ECase(IMAGE_FILE_MACHINE_POWERPCFP); ECase(IMAGE_FILE_MACHINE_R4000); ECase(IMAGE_FILE_MACHINE_SH3); ECase(IMAGE_FILE_MACHINE_SH3DSP); ECase(IMAGE_FILE_MACHINE_SH4); ECase(IMAGE_FILE_MACHINE_SH5); ECase(IMAGE_FILE_MACHINE_THUMB); ECase(IMAGE_FILE_MACHINE_WCEMIPSV2); } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, COFF::RelocationTypeX86 &Value) { ECase(IMAGE_REL_I386_ABSOLUTE); ECase(IMAGE_REL_I386_DIR16); ECase(IMAGE_REL_I386_REL16); ECase(IMAGE_REL_I386_DIR32); ECase(IMAGE_REL_I386_DIR32NB); ECase(IMAGE_REL_I386_SEG12); ECase(IMAGE_REL_I386_SECTION); ECase(IMAGE_REL_I386_SECREL); ECase(IMAGE_REL_I386_TOKEN); ECase(IMAGE_REL_I386_SECREL7); ECase(IMAGE_REL_I386_REL32); ECase(IMAGE_REL_AMD64_ABSOLUTE); ECase(IMAGE_REL_AMD64_ADDR64); ECase(IMAGE_REL_AMD64_ADDR32); ECase(IMAGE_REL_AMD64_ADDR32NB); ECase(IMAGE_REL_AMD64_REL32); ECase(IMAGE_REL_AMD64_REL32_1); ECase(IMAGE_REL_AMD64_REL32_2); ECase(IMAGE_REL_AMD64_REL32_3); ECase(IMAGE_REL_AMD64_REL32_4); ECase(IMAGE_REL_AMD64_REL32_5); ECase(IMAGE_REL_AMD64_SECTION); ECase(IMAGE_REL_AMD64_SECREL); ECase(IMAGE_REL_AMD64_SECREL7); ECase(IMAGE_REL_AMD64_TOKEN); ECase(IMAGE_REL_AMD64_SREL32); ECase(IMAGE_REL_AMD64_PAIR); ECase(IMAGE_REL_AMD64_SSPAN32); } }; #undef ECase template <> struct MappingTraits { struct NStorageClass { NStorageClass(IO&) : StorageClass(COFF::SymbolStorageClass(0)) { } NStorageClass(IO&, uint8_t S) : StorageClass(COFF::SymbolStorageClass(S)) { } uint8_t denormalize(IO &) { return StorageClass; } COFF::SymbolStorageClass StorageClass; }; static void mapping(IO &IO, COFFYAML::Symbol &S) { MappingNormalization NS(IO, S.Header.StorageClass); IO.mapRequired("SimpleType", S.SimpleType); IO.mapOptional("NumberOfAuxSymbols", S.Header.NumberOfAuxSymbols); IO.mapRequired("Name", S.Name); IO.mapRequired("StorageClass", NS->StorageClass); IO.mapOptional("AuxiliaryData", S.AuxiliaryData); IO.mapRequired("ComplexType", S.ComplexType); IO.mapRequired("Value", S.Header.Value); IO.mapRequired("SectionNumber", S.Header.SectionNumber); } }; template <> struct MappingTraits { struct NMachine { NMachine(IO&) : Machine(COFF::MachineTypes(0)) { } NMachine(IO&, uint16_t M) : Machine(COFF::MachineTypes(M)) { } uint16_t denormalize(IO &) { return Machine; } COFF::MachineTypes Machine; }; struct NCharacteristics { NCharacteristics(IO&) : Characteristics(COFF::Characteristics(0)) { } NCharacteristics(IO&, uint16_t C) : Characteristics(COFF::Characteristics(C)) { } uint16_t denormalize(IO &) { return Characteristics; } COFF::Characteristics Characteristics; }; static void mapping(IO &IO, COFF::header &H) { MappingNormalization NM(IO, H.Machine); MappingNormalization NC(IO, H.Characteristics); IO.mapRequired("Machine", NM->Machine); IO.mapOptional("Characteristics", NC->Characteristics); } }; template <> struct MappingTraits { struct NType { NType(IO &) : Type(COFF::RelocationTypeX86(0)) { } NType(IO &, uint16_t T) : Type(COFF::RelocationTypeX86(T)) { } uint16_t denormalize(IO &) { return Type; } COFF::RelocationTypeX86 Type; }; static void mapping(IO &IO, COFF::relocation &Rel) { MappingNormalization NT(IO, Rel.Type); IO.mapRequired("Type", NT->Type); IO.mapRequired("VirtualAddress", Rel.VirtualAddress); IO.mapRequired("SymbolTableIndex", Rel.SymbolTableIndex); } }; template <> struct MappingTraits { struct NCharacteristics { NCharacteristics(IO &) : Characteristics(COFF::SectionCharacteristics(0)) { } NCharacteristics(IO &, uint32_t C) : Characteristics(COFF::SectionCharacteristics(C)) { } uint32_t denormalize(IO &) { return Characteristics; } COFF::SectionCharacteristics Characteristics; }; static void mapping(IO &IO, COFFYAML::Section &Sec) { MappingNormalization NC(IO, Sec.Header.Characteristics); IO.mapOptional("Relocations", Sec.Relocations); IO.mapRequired("SectionData", Sec.SectionData); IO.mapRequired("Characteristics", NC->Characteristics); IO.mapRequired("Name", Sec.Name); } }; template <> struct MappingTraits { static void mapping(IO &IO, COFFYAML::Object &Obj) { IO.mapRequired("sections", Obj.Sections); IO.mapRequired("header", Obj.Header); IO.mapRequired("symbols", Obj.Symbols); } }; } // end namespace yaml } // end namespace llvm int main(int argc, char **argv) { cl::ParseCommandLineOptions(argc, argv); sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. OwningPtr Buf; if (MemoryBuffer::getFileOrSTDIN(Input, Buf)) return 1; yaml::Input YIn(Buf->getBuffer()); COFFYAML::Object Doc; YIn >> Doc; if (YIn.error()) { errs() << "yaml2obj: Failed to parse YAML file!\n"; return 1; } COFFParser CP(Doc); if (!CP.parse()) { errs() << "yaml2obj: Failed to parse YAML file!\n"; return 1; } if (!layoutCOFF(CP)) { errs() << "yaml2obj: Failed to layout COFF file!\n"; return 1; } if (!writeCOFF(CP, outs())) { errs() << "yaml2obj: Failed to write COFF file!\n"; return 1; } }