//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instructions.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "gtest/gtest.h" #include namespace llvm { namespace { TEST(InstructionsTest, ReturnInst) { LLVMContext &C(getGlobalContext()); // test for PR6589 const ReturnInst* r0 = ReturnInst::Create(C); EXPECT_EQ(r0->getNumOperands(), 0U); EXPECT_EQ(r0->op_begin(), r0->op_end()); IntegerType* Int1 = IntegerType::get(C, 1); Constant* One = ConstantInt::get(Int1, 1, true); const ReturnInst* r1 = ReturnInst::Create(C, One); EXPECT_EQ(1U, r1->getNumOperands()); User::const_op_iterator b(r1->op_begin()); EXPECT_NE(r1->op_end(), b); EXPECT_EQ(One, *b); EXPECT_EQ(One, r1->getOperand(0)); ++b; EXPECT_EQ(r1->op_end(), b); // clean up delete r0; delete r1; } // Test fixture that provides a module and a single function within it. Useful // for tests that need to refer to the function in some way. class ModuleWithFunctionTest : public testing::Test { protected: ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) { FArgTypes.push_back(Type::getInt8Ty(Ctx)); FArgTypes.push_back(Type::getInt32Ty(Ctx)); FArgTypes.push_back(Type::getInt64Ty(Ctx)); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false); F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); } LLVMContext Ctx; std::unique_ptr M; SmallVector FArgTypes; Function *F; }; TEST_F(ModuleWithFunctionTest, CallInst) { Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), ConstantInt::get(Type::getInt32Ty(Ctx), 9999), ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; std::unique_ptr Call(CallInst::Create(F, Args)); // Make sure iteration over a call's arguments works as expected. unsigned Idx = 0; for (Value *Arg : Call->arg_operands()) { EXPECT_EQ(FArgTypes[Idx], Arg->getType()); EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType()); Idx++; } } TEST_F(ModuleWithFunctionTest, InvokeInst) { BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F); Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), ConstantInt::get(Type::getInt32Ty(Ctx), 9999), ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; std::unique_ptr Invoke(InvokeInst::Create(F, BB1, BB2, Args)); // Make sure iteration over invoke's arguments works as expected. unsigned Idx = 0; for (Value *Arg : Invoke->arg_operands()) { EXPECT_EQ(FArgTypes[Idx], Arg->getType()); EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType()); Idx++; } } TEST(InstructionsTest, BranchInst) { LLVMContext &C(getGlobalContext()); // Make a BasicBlocks BasicBlock* bb0 = BasicBlock::Create(C); BasicBlock* bb1 = BasicBlock::Create(C); // Mandatory BranchInst const BranchInst* b0 = BranchInst::Create(bb0); EXPECT_TRUE(b0->isUnconditional()); EXPECT_FALSE(b0->isConditional()); EXPECT_EQ(1U, b0->getNumSuccessors()); // check num operands EXPECT_EQ(1U, b0->getNumOperands()); EXPECT_NE(b0->op_begin(), b0->op_end()); EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); IntegerType* Int1 = IntegerType::get(C, 1); Constant* One = ConstantInt::get(Int1, 1, true); // Conditional BranchInst BranchInst* b1 = BranchInst::Create(bb0, bb1, One); EXPECT_FALSE(b1->isUnconditional()); EXPECT_TRUE(b1->isConditional()); EXPECT_EQ(2U, b1->getNumSuccessors()); // check num operands EXPECT_EQ(3U, b1->getNumOperands()); User::const_op_iterator b(b1->op_begin()); // check COND EXPECT_NE(b, b1->op_end()); EXPECT_EQ(One, *b); EXPECT_EQ(One, b1->getOperand(0)); EXPECT_EQ(One, b1->getCondition()); ++b; // check ELSE EXPECT_EQ(bb1, *b); EXPECT_EQ(bb1, b1->getOperand(1)); EXPECT_EQ(bb1, b1->getSuccessor(1)); ++b; // check THEN EXPECT_EQ(bb0, *b); EXPECT_EQ(bb0, b1->getOperand(2)); EXPECT_EQ(bb0, b1->getSuccessor(0)); ++b; EXPECT_EQ(b1->op_end(), b); // clean up delete b0; delete b1; delete bb0; delete bb1; } TEST(InstructionsTest, CastInst) { LLVMContext &C(getGlobalContext()); Type *Int8Ty = Type::getInt8Ty(C); Type *Int16Ty = Type::getInt16Ty(C); Type *Int32Ty = Type::getInt32Ty(C); Type *Int64Ty = Type::getInt64Ty(C); Type *V8x8Ty = VectorType::get(Int8Ty, 8); Type *V8x64Ty = VectorType::get(Int64Ty, 8); Type *X86MMXTy = Type::getX86_MMXTy(C); Type *HalfTy = Type::getHalfTy(C); Type *FloatTy = Type::getFloatTy(C); Type *DoubleTy = Type::getDoubleTy(C); Type *V2Int32Ty = VectorType::get(Int32Ty, 2); Type *V2Int64Ty = VectorType::get(Int64Ty, 2); Type *V4Int16Ty = VectorType::get(Int16Ty, 4); Type *Int32PtrTy = PointerType::get(Int32Ty, 0); Type *Int64PtrTy = PointerType::get(Int64Ty, 0); Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1); Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1); Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2); Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2); Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4); Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4); Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2); Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2); Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4); const Constant* c8 = Constant::getNullValue(V8x8Ty); const Constant* c64 = Constant::getNullValue(V8x64Ty); const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy); EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy)); EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty)); EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy)); EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty)); EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty)); EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy)); EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy)); EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty)); EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty)); // Check address space casts are rejected since we don't know the sizes here EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty)); EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true, V2Int32PtrAS1Ty, true)); // Test mismatched number of elements for pointers EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy)); EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty)); EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy)); EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty)); EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, Constant::getNullValue(V4Int32PtrTy), V2Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, Constant::getNullValue(V2Int32PtrTy), V4Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, Constant::getNullValue(V4Int32PtrAS1Ty), V2Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, Constant::getNullValue(V2Int32PtrTy), V4Int32PtrAS1Ty)); // Check that assertion is not hit when creating a cast with a vector of // pointers // First form BasicBlock *BB = BasicBlock::Create(C); Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy); CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB); // Second form CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty); } TEST(InstructionsTest, VectorGep) { LLVMContext &C(getGlobalContext()); // Type Definitions PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0); PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 32), 0); VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2); VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2); // Test different aspects of the vector-of-pointers type // and GEPs which use this type. ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); std::vector ConstVa(2, Ci32a); std::vector ConstVb(2, Ci32b); Constant *C2xi32a = ConstantVector::get(ConstVa); Constant *C2xi32b = ConstantVector::get(ConstVb); CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); EXPECT_NE(ICmp0, ICmp1); // suppress warning. BasicBlock* BB0 = BasicBlock::Create(C); // Test InsertAtEnd ICmpInst constructor. ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); EXPECT_NE(ICmp0, ICmp2); // suppress warning. GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a); GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b); GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a); GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b); CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); Value *S0 = BTC0->stripPointerCasts(); Value *S1 = BTC1->stripPointerCasts(); Value *S2 = BTC2->stripPointerCasts(); Value *S3 = BTC3->stripPointerCasts(); EXPECT_NE(S0, Gep0); EXPECT_NE(S1, Gep1); EXPECT_NE(S2, Gep2); EXPECT_NE(S3, Gep3); int64_t Offset; DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80" ":128:128-n8:16:32:64-S128"); // Make sure we don't crash GetPointerBaseWithConstantOffset(Gep0, Offset, &TD); GetPointerBaseWithConstantOffset(Gep1, Offset, &TD); GetPointerBaseWithConstantOffset(Gep2, Offset, &TD); GetPointerBaseWithConstantOffset(Gep3, Offset, &TD); // Gep of Geps GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b); GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a); GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b); GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a); EXPECT_EQ(GepII0->getNumIndices(), 1u); EXPECT_EQ(GepII1->getNumIndices(), 1u); EXPECT_EQ(GepII2->getNumIndices(), 1u); EXPECT_EQ(GepII3->getNumIndices(), 1u); EXPECT_FALSE(GepII0->hasAllZeroIndices()); EXPECT_FALSE(GepII1->hasAllZeroIndices()); EXPECT_FALSE(GepII2->hasAllZeroIndices()); EXPECT_FALSE(GepII3->hasAllZeroIndices()); delete GepII0; delete GepII1; delete GepII2; delete GepII3; delete BTC0; delete BTC1; delete BTC2; delete BTC3; delete Gep0; delete Gep1; delete Gep2; delete Gep3; ICmp2->eraseFromParent(); delete BB0; delete ICmp0; delete ICmp1; delete PtrVecA; delete PtrVecB; } TEST(InstructionsTest, FPMathOperator) { LLVMContext &Context = getGlobalContext(); IRBuilder<> Builder(Context); MDBuilder MDHelper(Context); Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); MDNode *MD1 = MDHelper.createFPMath(1.0); Value *V1 = Builder.CreateFAdd(I, I, "", MD1); EXPECT_TRUE(isa(V1)); FPMathOperator *O1 = cast(V1); EXPECT_EQ(O1->getFPAccuracy(), 1.0); delete V1; delete I; } TEST(InstructionsTest, isEliminableCastPair) { LLVMContext &C(getGlobalContext()); Type* Int16Ty = Type::getInt16Ty(C); Type* Int32Ty = Type::getInt32Ty(C); Type* Int64Ty = Type::getInt64Ty(C); Type* Int64PtrTy = Type::getInt64PtrTy(C); // Source and destination pointers have same size -> bitcast. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int64Ty, Int64PtrTy, Int32Ty, nullptr, Int32Ty), CastInst::BitCast); // Source and destination have unknown sizes, but the same address space and // the intermediate int is the maximum pointer size -> bitcast EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int64Ty, Int64PtrTy, nullptr, nullptr, nullptr), CastInst::BitCast); // Source and destination have unknown sizes, but the same address space and // the intermediate int is not the maximum pointer size -> nothing EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int32Ty, Int64PtrTy, nullptr, nullptr, nullptr), 0U); // Middle pointer big enough -> bitcast. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::PtrToInt, Int64Ty, Int64PtrTy, Int64Ty, nullptr, Int64Ty, nullptr), CastInst::BitCast); // Middle pointer too small -> fail. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::PtrToInt, Int64Ty, Int64PtrTy, Int64Ty, nullptr, Int32Ty, nullptr), 0U); // Test that we don't eliminate bitcasts between different address spaces, // or if we don't have available pointer size information. DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16" "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64" "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128"); Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1); Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2); IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1); IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2); // Cannot simplify inttoptr, addrspacecast EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::AddrSpaceCast, Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2, nullptr, Int16SizePtr, Int64SizePtr), 0U); // Cannot simplify addrspacecast, ptrtoint EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast, CastInst::PtrToInt, Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty, Int64SizePtr, Int16SizePtr, nullptr), 0U); // Pass since the bitcast address spaces are the same EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::BitCast, Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1, nullptr, nullptr, nullptr), CastInst::IntToPtr); } TEST(InstructionsTest, CloneCall) { LLVMContext &C(getGlobalContext()); Type *Int32Ty = Type::getInt32Ty(C); Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty}; Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false); Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); Value *Args[] = { ConstantInt::get(Int32Ty, 1), ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 3) }; std::unique_ptr Call(CallInst::Create(Callee, Args, "result")); // Test cloning the tail call kind. CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail, CallInst::TCK_MustTail}; for (CallInst::TailCallKind TCK : Kinds) { Call->setTailCallKind(TCK); std::unique_ptr Clone(cast(Call->clone())); EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); } Call->setTailCallKind(CallInst::TCK_None); // Test cloning an attribute. { AttrBuilder AB; AB.addAttribute(Attribute::ReadOnly); Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB)); std::unique_ptr Clone(cast(Call->clone())); EXPECT_TRUE(Clone->onlyReadsMemory()); } } } // end anonymous namespace } // end namespace llvm