//===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/Casting.h" #include "llvm/IR/User.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" #include namespace llvm { // Used to test illegal cast. If a cast doesn't match any of the "real" ones, // it will match this one. struct IllegalCast; template IllegalCast *cast(...) { return 0; } // set up two example classes // with conversion facility // struct bar { bar() {} struct foo *baz(); struct foo *caz(); struct foo *daz(); struct foo *naz(); private: bar(const bar &); }; struct foo { void ext() const; /* static bool classof(const bar *X) { cerr << "Classof: " << X << "\n"; return true; }*/ }; template <> struct isa_impl { static inline bool doit(const bar &Val) { dbgs() << "Classof: " << &Val << "\n"; return true; } }; foo *bar::baz() { return cast(this); } foo *bar::caz() { return cast_or_null(this); } foo *bar::daz() { return dyn_cast(this); } foo *bar::naz() { return dyn_cast_or_null(this); } bar *fub(); template <> struct simplify_type { typedef int SimpleType; static SimpleType getSimplifiedValue(foo &Val) { return 0; } }; } // End llvm namespace using namespace llvm; // Test the peculiar behavior of Use in simplify_type. int Check1[is_same::SimpleType, Value *>::value ? 1 : -1]; int Check2[is_same::SimpleType, Value *>::value ? 1 : -1]; // Test that a regular class behaves as expected. int Check3[is_same::SimpleType, int>::value ? 1 : -1]; int Check4[is_same::SimpleType, foo *>::value ? 1 : -1]; namespace { const foo *null_foo = NULL; bar B; extern bar &B1; bar &B1 = B; extern const bar *B2; // test various configurations of const const bar &B3 = B1; const bar *const B4 = B2; TEST(CastingTest, isa) { EXPECT_TRUE(isa(B1)); EXPECT_TRUE(isa(B2)); EXPECT_TRUE(isa(B3)); EXPECT_TRUE(isa(B4)); } TEST(CastingTest, cast) { foo &F1 = cast(B1); EXPECT_NE(&F1, null_foo); const foo *F3 = cast(B2); EXPECT_NE(F3, null_foo); const foo *F4 = cast(B2); EXPECT_NE(F4, null_foo); const foo &F5 = cast(B3); EXPECT_NE(&F5, null_foo); const foo *F6 = cast(B4); EXPECT_NE(F6, null_foo); // Can't pass null pointer to cast<>. // foo *F7 = cast(fub()); // EXPECT_EQ(F7, null_foo); foo *F8 = B1.baz(); EXPECT_NE(F8, null_foo); } TEST(CastingTest, cast_or_null) { const foo *F11 = cast_or_null(B2); EXPECT_NE(F11, null_foo); const foo *F12 = cast_or_null(B2); EXPECT_NE(F12, null_foo); const foo *F13 = cast_or_null(B4); EXPECT_NE(F13, null_foo); const foo *F14 = cast_or_null(fub()); // Shouldn't print. EXPECT_EQ(F14, null_foo); foo *F15 = B1.caz(); EXPECT_NE(F15, null_foo); } TEST(CastingTest, dyn_cast) { const foo *F1 = dyn_cast(B2); EXPECT_NE(F1, null_foo); const foo *F2 = dyn_cast(B2); EXPECT_NE(F2, null_foo); const foo *F3 = dyn_cast(B4); EXPECT_NE(F3, null_foo); // Can't pass null pointer to dyn_cast<>. // foo *F4 = dyn_cast(fub()); // EXPECT_EQ(F4, null_foo); foo *F5 = B1.daz(); EXPECT_NE(F5, null_foo); } TEST(CastingTest, dyn_cast_or_null) { const foo *F1 = dyn_cast_or_null(B2); EXPECT_NE(F1, null_foo); const foo *F2 = dyn_cast_or_null(B2); EXPECT_NE(F2, null_foo); const foo *F3 = dyn_cast_or_null(B4); EXPECT_NE(F3, null_foo); foo *F4 = dyn_cast_or_null(fub()); EXPECT_EQ(F4, null_foo); foo *F5 = B1.naz(); EXPECT_NE(F5, null_foo); } // These lines are errors... //foo *F20 = cast(B2); // Yields const foo* //foo &F21 = cast(B3); // Yields const foo& //foo *F22 = cast(B4); // Yields const foo* //foo &F23 = cast_or_null(B1); //const foo &F24 = cast_or_null(B3); const bar *B2 = &B; } // anonymous namespace bar *llvm::fub() { return 0; } namespace { namespace inferred_upcasting { // This test case verifies correct behavior of inferred upcasts when the // types are statically known to be OK to upcast. This is the case when, // for example, Derived inherits from Base, and we do `isa(Derived)`. // Note: This test will actually fail to compile without inferred // upcasting. class Base { public: // No classof. We are testing that the upcast is inferred. Base() {} }; class Derived : public Base { public: Derived() {} }; // Even with no explicit classof() in Base, we should still be able to cast // Derived to its base class. TEST(CastingTest, UpcastIsInferred) { Derived D; EXPECT_TRUE(isa(D)); Base *BP = dyn_cast(&D); EXPECT_TRUE(BP != NULL); } // This test verifies that the inferred upcast takes precedence over an // explicitly written one. This is important because it verifies that the // dynamic check gets optimized away. class UseInferredUpcast { public: int Dummy; static bool classof(const UseInferredUpcast *) { return false; } }; TEST(CastingTest, InferredUpcastTakesPrecedence) { UseInferredUpcast UIU; // Since the explicit classof() returns false, this will fail if the // explicit one is used. EXPECT_TRUE(isa(&UIU)); } } // end namespace inferred_upcasting } // end anonymous namespace // Test that we reject casts of temporaries (and so the illegal cast gets used). namespace TemporaryCast { struct pod {}; IllegalCast *testIllegalCast() { return cast(pod()); } }