//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a target specifier matcher for converting parsed // assembly operands in the MCInst structures. // // The input to the target specific matcher is a list of literal tokens and // operands. The target specific parser should generally eliminate any syntax // which is not relevant for matching; for example, comma tokens should have // already been consumed and eliminated by the parser. Most instructions will // end up with a single literal token (the instruction name) and some number of // operands. // // Some example inputs, for X86: // 'addl' (immediate ...) (register ...) // 'add' (immediate ...) (memory ...) // 'call' '*' %epc // // The assembly matcher is responsible for converting this input into a precise // machine instruction (i.e., an instruction with a well defined encoding). This // mapping has several properties which complicate matching: // // - It may be ambiguous; many architectures can legally encode particular // variants of an instruction in different ways (for example, using a smaller // encoding for small immediates). Such ambiguities should never be // arbitrarily resolved by the assembler, the assembler is always responsible // for choosing the "best" available instruction. // // - It may depend on the subtarget or the assembler context. Instructions // which are invalid for the current mode, but otherwise unambiguous (e.g., // an SSE instruction in a file being assembled for i486) should be accepted // and rejected by the assembler front end. However, if the proper encoding // for an instruction is dependent on the assembler context then the matcher // is responsible for selecting the correct machine instruction for the // current mode. // // The core matching algorithm attempts to exploit the regularity in most // instruction sets to quickly determine the set of possibly matching // instructions, and the simplify the generated code. Additionally, this helps // to ensure that the ambiguities are intentionally resolved by the user. // // The matching is divided into two distinct phases: // // 1. Classification: Each operand is mapped to the unique set which (a) // contains it, and (b) is the largest such subset for which a single // instruction could match all members. // // For register classes, we can generate these subgroups automatically. For // arbitrary operands, we expect the user to define the classes and their // relations to one another (for example, 8-bit signed immediates as a // subset of 32-bit immediates). // // By partitioning the operands in this way, we guarantee that for any // tuple of classes, any single instruction must match either all or none // of the sets of operands which could classify to that tuple. // // In addition, the subset relation amongst classes induces a partial order // on such tuples, which we use to resolve ambiguities. // // FIXME: What do we do if a crazy case shows up where this is the wrong // resolution? // // 2. The input can now be treated as a tuple of classes (static tokens are // simple singleton sets). Each such tuple should generally map to a single // instruction (we currently ignore cases where this isn't true, whee!!!), // which we can emit a simple matcher for. // //===----------------------------------------------------------------------===// #include "AsmMatcherEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include #include using namespace llvm; namespace { static cl::opt MatchPrefix("match-prefix", cl::init(""), cl::desc("Only match instructions with the given prefix")); } /// FlattenVariants - Flatten an .td file assembly string by selecting the /// variant at index \arg N. static std::string FlattenVariants(const std::string &AsmString, unsigned N) { StringRef Cur = AsmString; std::string Res = ""; for (;;) { // Find the start of the next variant string. size_t VariantsStart = 0; for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart) if (Cur[VariantsStart] == '{' && (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' && Cur[VariantsStart-1] != '\\'))) break; // Add the prefix to the result. Res += Cur.slice(0, VariantsStart); if (VariantsStart == Cur.size()) break; ++VariantsStart; // Skip the '{'. // Scan to the end of the variants string. size_t VariantsEnd = VariantsStart; unsigned NestedBraces = 1; for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) { if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') { if (--NestedBraces == 0) break; } else if (Cur[VariantsEnd] == '{') ++NestedBraces; } // Select the Nth variant (or empty). StringRef Selection = Cur.slice(VariantsStart, VariantsEnd); for (unsigned i = 0; i != N; ++i) Selection = Selection.split('|').second; Res += Selection.split('|').first; assert(VariantsEnd != Cur.size() && "Unterminated variants in assembly string!"); Cur = Cur.substr(VariantsEnd + 1); } return Res; } /// TokenizeAsmString - Tokenize a simplified assembly string. static void TokenizeAsmString(const StringRef &AsmString, SmallVectorImpl &Tokens) { unsigned Prev = 0; bool InTok = true; for (unsigned i = 0, e = AsmString.size(); i != e; ++i) { switch (AsmString[i]) { case '[': case ']': case '*': case '!': case ' ': case '\t': case ',': if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } if (!isspace(AsmString[i]) && AsmString[i] != ',') Tokens.push_back(AsmString.substr(i, 1)); Prev = i + 1; break; case '\\': if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } ++i; assert(i != AsmString.size() && "Invalid quoted character"); Tokens.push_back(AsmString.substr(i, 1)); Prev = i + 1; break; case '$': { // If this isn't "${", treat like a normal token. if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') { if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } Prev = i; break; } if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } StringRef::iterator End = std::find(AsmString.begin() + i, AsmString.end(), '}'); assert(End != AsmString.end() && "Missing brace in operand reference!"); size_t EndPos = End - AsmString.begin(); Tokens.push_back(AsmString.slice(i, EndPos+1)); Prev = EndPos + 1; i = EndPos; break; } default: InTok = true; } } if (InTok && Prev != AsmString.size()) Tokens.push_back(AsmString.substr(Prev)); } static bool IsAssemblerInstruction(const StringRef &Name, const CodeGenInstruction &CGI, const SmallVectorImpl &Tokens) { // Ignore psuedo ops. // // FIXME: This is a hack. if (const RecordVal *Form = CGI.TheDef->getValue("Form")) if (Form->getValue()->getAsString() == "Pseudo") return false; // Ignore "PHI" node. // // FIXME: This is also a hack. if (Name == "PHI") return false; // Ignore instructions with no .s string. // // FIXME: What are these? if (CGI.AsmString.empty()) return false; // FIXME: Hack; ignore any instructions with a newline in them. if (std::find(CGI.AsmString.begin(), CGI.AsmString.end(), '\n') != CGI.AsmString.end()) return false; // Ignore instructions with attributes, these are always fake instructions for // simplifying codegen. // // FIXME: Is this true? // // Also, we ignore instructions which reference the operand multiple times; // this implies a constraint we would not currently honor. These are // currently always fake instructions for simplifying codegen. // // FIXME: Encode this assumption in the .td, so we can error out here. std::set OperandNames; for (unsigned i = 1, e = Tokens.size(); i < e; ++i) { if (Tokens[i][0] == '$' && std::find(Tokens[i].begin(), Tokens[i].end(), ':') != Tokens[i].end()) { DEBUG({ errs() << "warning: '" << Name << "': " << "ignoring instruction; operand with attribute '" << Tokens[i] << "', \n"; }); return false; } if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) { DEBUG({ errs() << "warning: '" << Name << "': " << "ignoring instruction; tied operand '" << Tokens[i] << "', \n"; }); return false; } } return true; } namespace { /// ClassInfo - Helper class for storing the information about a particular /// class of operands which can be matched. struct ClassInfo { enum ClassInfoKind { Invalid = 0, ///< Invalid kind, for use as a sentinel value. Token, ///< The class for a particular token. Register, ///< A register class. UserClass0 ///< The (first) user defined class, subsequent user defined /// classes are UserClass0+1, and so on. }; /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + /// N) for the Nth user defined class. unsigned Kind; /// Name - The full class name, suitable for use in an enum. std::string Name; /// ClassName - The unadorned generic name for this class (e.g., Token). std::string ClassName; /// ValueName - The name of the value this class represents; for a token this /// is the literal token string, for an operand it is the TableGen class (or /// empty if this is a derived class). std::string ValueName; /// PredicateMethod - The name of the operand method to test whether the /// operand matches this class; this is not valid for Token kinds. std::string PredicateMethod; /// RenderMethod - The name of the operand method to add this operand to an /// MCInst; this is not valid for Token kinds. std::string RenderMethod; /// operator< - Compare two classes. bool operator<(const ClassInfo &RHS) const { // Incompatible kinds are comparable. if (Kind != RHS.Kind) return Kind < RHS.Kind; switch (Kind) { case Invalid: assert(0 && "Invalid kind!"); case Token: // Tokens are always comparable. // // FIXME: Compare by enum value. return ValueName < RHS.ValueName; case Register: // FIXME: Compare by subset relation. return false; default: // FIXME: Allow user defined relation. return false; } } }; /// InstructionInfo - Helper class for storing the necessary information for an /// instruction which is capable of being matched. struct InstructionInfo { struct Operand { /// The unique class instance this operand should match. ClassInfo *Class; /// The original operand this corresponds to, if any. const CodeGenInstruction::OperandInfo *OperandInfo; }; /// InstrName - The target name for this instruction. std::string InstrName; /// Instr - The instruction this matches. const CodeGenInstruction *Instr; /// AsmString - The assembly string for this instruction (with variants /// removed). std::string AsmString; /// Tokens - The tokenized assembly pattern that this instruction matches. SmallVector Tokens; /// Operands - The operands that this instruction matches. SmallVector Operands; /// ConversionFnKind - The enum value which is passed to the generated /// ConvertToMCInst to convert parsed operands into an MCInst for this /// function. std::string ConversionFnKind; /// operator< - Compare two instructions. bool operator<(const InstructionInfo &RHS) const { // Order first by the number of operands (which is unambiguous). if (Operands.size() != RHS.Operands.size()) return Operands.size() < RHS.Operands.size(); // Otherwise, order by lexicographic comparison of tokens and operand kinds // (these can never be ambiguous). for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind || Operands[i].Class->Kind == ClassInfo::Token) if (*Operands[i].Class < *RHS.Operands[i].Class) return true; // Finally, order by the component wise comparison of operand classes. We // don't want to rely on the lexigraphic ordering of elements, so we define // only define the ordering when it is unambiguous. That is, when some pair // compares less than and no pair compares greater than. // Check that no pair compares greater than. for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (*RHS.Operands[i].Class < *Operands[i].Class) return false; // Otherwise, return true if some pair compares less than. for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (*Operands[i].Class < *RHS.Operands[i].Class) return true; return false; } public: void dump(); }; class AsmMatcherInfo { public: /// The classes which are needed for matching. std::vector Classes; /// The information on the instruction to match. std::vector Instructions; private: /// Map of token to class information which has already been constructed. std::map TokenClasses; /// Map of operand name to class information which has already been /// constructed. std::map OperandClasses; /// Map of user class names to kind value. std::map UserClasses; private: /// getTokenClass - Lookup or create the class for the given token. ClassInfo *getTokenClass(const StringRef &Token); /// getUserClassKind - Lookup or create the kind value for the given class /// name. unsigned getUserClassKind(const StringRef &Name); /// getOperandClass - Lookup or create the class for the given operand. ClassInfo *getOperandClass(const StringRef &Token, const CodeGenInstruction::OperandInfo &OI); public: /// BuildInfo - Construct the various tables used during matching. void BuildInfo(CodeGenTarget &Target); }; } void InstructionInfo::dump() { errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"' << ", tokens:["; for (unsigned i = 0, e = Tokens.size(); i != e; ++i) { errs() << Tokens[i]; if (i + 1 != e) errs() << ", "; } errs() << "]\n"; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { Operand &Op = Operands[i]; errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; if (Op.Class->Kind == ClassInfo::Token) { errs() << '\"' << Tokens[i] << "\"\n"; continue; } const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo; errs() << OI.Name << " " << OI.Rec->getName() << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n"; } } static std::string getEnumNameForToken(const StringRef &Str) { std::string Res; for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { switch (*it) { case '*': Res += "_STAR_"; break; case '%': Res += "_PCT_"; break; case ':': Res += "_COLON_"; break; default: if (isalnum(*it)) { Res += *it; } else { Res += "_" + utostr((unsigned) *it) + "_"; } } } return Res; } ClassInfo *AsmMatcherInfo::getTokenClass(const StringRef &Token) { ClassInfo *&Entry = TokenClasses[Token]; if (!Entry) { Entry = new ClassInfo(); Entry->Kind = ClassInfo::Token; Entry->ClassName = "Token"; Entry->Name = "MCK_" + getEnumNameForToken(Token); Entry->ValueName = Token; Entry->PredicateMethod = ""; Entry->RenderMethod = ""; Classes.push_back(Entry); } return Entry; } unsigned AsmMatcherInfo::getUserClassKind(const StringRef &Name) { unsigned &Entry = UserClasses[Name]; if (!Entry) Entry = ClassInfo::UserClass0 + UserClasses.size() - 1; return Entry; } ClassInfo * AsmMatcherInfo::getOperandClass(const StringRef &Token, const CodeGenInstruction::OperandInfo &OI) { std::string ClassName; if (OI.Rec->isSubClassOf("RegisterClass")) { ClassName = "Reg"; } else { try { ClassName = OI.Rec->getValueAsString("ParserMatchClass"); assert(ClassName != "Reg" && "'Reg' class name is reserved!"); } catch(...) { PrintError(OI.Rec->getLoc(), "operand has no match class!"); ClassName = "Invalid"; } } ClassInfo *&Entry = OperandClasses[ClassName]; if (!Entry) { Entry = new ClassInfo(); // FIXME: Hack. if (ClassName == "Reg") { Entry->Kind = ClassInfo::Register; } else { Entry->Kind = getUserClassKind(ClassName); } Entry->ClassName = ClassName; Entry->Name = "MCK_" + ClassName; Entry->ValueName = OI.Rec->getName(); Entry->PredicateMethod = "is" + ClassName; Entry->RenderMethod = "add" + ClassName + "Operands"; Classes.push_back(Entry); } return Entry; } void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) { for (std::map::const_iterator it = Target.getInstructions().begin(), ie = Target.getInstructions().end(); it != ie; ++it) { const CodeGenInstruction &CGI = it->second; if (!StringRef(it->first).startswith(MatchPrefix)) continue; OwningPtr II(new InstructionInfo); II->InstrName = it->first; II->Instr = &it->second; II->AsmString = FlattenVariants(CGI.AsmString, 0); TokenizeAsmString(II->AsmString, II->Tokens); // Ignore instructions which shouldn't be matched. if (!IsAssemblerInstruction(it->first, CGI, II->Tokens)) continue; for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) { StringRef Token = II->Tokens[i]; // Check for simple tokens. if (Token[0] != '$') { InstructionInfo::Operand Op; Op.Class = getTokenClass(Token); Op.OperandInfo = 0; II->Operands.push_back(Op); continue; } // Otherwise this is an operand reference. StringRef OperandName; if (Token[1] == '{') OperandName = Token.substr(2, Token.size() - 3); else OperandName = Token.substr(1); // Map this token to an operand. FIXME: Move elsewhere. unsigned Idx; try { Idx = CGI.getOperandNamed(OperandName); } catch(...) { errs() << "error: unable to find operand: '" << OperandName << "'!\n"; break; } const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx]; InstructionInfo::Operand Op; Op.Class = getOperandClass(Token, OI); Op.OperandInfo = &OI; II->Operands.push_back(Op); } // If we broke out, ignore the instruction. if (II->Operands.size() != II->Tokens.size()) continue; Instructions.push_back(II.take()); } } static void EmitConvertToMCInst(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { // Write the convert function to a separate stream, so we can drop it after // the enum. std::string ConvertFnBody; raw_string_ostream CvtOS(ConvertFnBody); // Function we have already generated. std::set GeneratedFns; // Start the unified conversion function. CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " SmallVectorImpl<" << Target.getName() << "Operand> &Operands) {\n"; CvtOS << " Inst.setOpcode(Opcode);\n"; CvtOS << " switch (Kind) {\n"; CvtOS << " default:\n"; // Start the enum, which we will generate inline. OS << "// Unified function for converting operants to MCInst instances.\n\n"; OS << "enum ConversionKind {\n"; for (std::vector::const_iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { InstructionInfo &II = **it; // Order the (class) operands by the order to convert them into an MCInst. SmallVector, 4> MIOperandList; for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[i]; if (Op.OperandInfo) MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i)); } std::sort(MIOperandList.begin(), MIOperandList.end()); // Compute the total number of operands. unsigned NumMIOperands = 0; for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) { const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i]; NumMIOperands = std::max(NumMIOperands, OI.MIOperandNo + OI.MINumOperands); } // Build the conversion function signature. std::string Signature = "Convert"; unsigned CurIndex = 0; for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; assert(CurIndex <= Op.OperandInfo->MIOperandNo && "Duplicate match for instruction operand!"); Signature += "_"; // Skip operands which weren't matched by anything, this occurs when the // .td file encodes "implicit" operands as explicit ones. // // FIXME: This should be removed from the MCInst structure. for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) Signature += "Imp"; Signature += Op.Class->ClassName; Signature += utostr(Op.OperandInfo->MINumOperands); Signature += "_" + utostr(MIOperandList[i].second); CurIndex += Op.OperandInfo->MINumOperands; } // Add any trailing implicit operands. for (; CurIndex != NumMIOperands; ++CurIndex) Signature += "Imp"; II.ConversionFnKind = Signature; // Check if we have already generated this signature. if (!GeneratedFns.insert(Signature).second) continue; // If not, emit it now. // Add to the enum list. OS << " " << Signature << ",\n"; // And to the convert function. CvtOS << " case " << Signature << ":\n"; CurIndex = 0; for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; // Add the implicit operands. for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; CvtOS << " Operands[" << MIOperandList[i].second << "]." << Op.Class->RenderMethod << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n"; CurIndex += Op.OperandInfo->MINumOperands; } // And add trailing implicit operands. for (; CurIndex != NumMIOperands; ++CurIndex) CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; CvtOS << " break;\n"; } // Finish the convert function. CvtOS << " }\n"; CvtOS << " return false;\n"; CvtOS << "}\n\n"; // Finish the enum, and drop the convert function after it. OS << " NumConversionVariants\n"; OS << "};\n\n"; OS << CvtOS.str(); } /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds. static void EmitMatchClassEnumeration(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { OS << "namespace {\n\n"; OS << "/// MatchClassKind - The kinds of classes which participate in\n" << "/// instruction matching.\n"; OS << "enum MatchClassKind {\n"; OS << " InvalidMatchClass = 0,\n"; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &CI = **it; OS << " " << CI.Name << ", // "; if (CI.Kind == ClassInfo::Token) { OS << "'" << CI.ValueName << "'\n"; } else if (CI.Kind == ClassInfo::Register) { if (!CI.ValueName.empty()) OS << "register class '" << CI.ValueName << "'\n"; else OS << "derived register class\n"; } else { OS << "user defined class '" << CI.ValueName << "'\n"; } } OS << " NumMatchClassKinds\n"; OS << "};\n\n"; OS << "}\n\n"; } /// EmitClassifyOperand - Emit the function to classify an operand. static void EmitClassifyOperand(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { OS << "static MatchClassKind ClassifyOperand(" << Target.getName() << "Operand &Operand) {\n"; OS << " if (Operand.isToken())\n"; OS << " return MatchTokenString(Operand.getToken());\n\n"; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &CI = **it; if (CI.Kind != ClassInfo::Token) { OS << " if (Operand." << CI.PredicateMethod << "())\n"; OS << " return " << CI.Name << ";\n\n"; } } OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } typedef std::pair StringPair; /// FindFirstNonCommonLetter - Find the first character in the keys of the /// string pairs that is not shared across the whole set of strings. All /// strings are assumed to have the same length. static unsigned FindFirstNonCommonLetter(const std::vector &Matches) { assert(!Matches.empty()); for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) { // Check to see if letter i is the same across the set. char Letter = Matches[0]->first[i]; for (unsigned str = 0, e = Matches.size(); str != e; ++str) if (Matches[str]->first[i] != Letter) return i; } return Matches[0]->first.size(); } /// EmitStringMatcherForChar - Given a set of strings that are known to be the /// same length and whose characters leading up to CharNo are the same, emit /// code to verify that CharNo and later are the same. /// /// \return - True if control can leave the emitted code fragment. static bool EmitStringMatcherForChar(const std::string &StrVariableName, const std::vector &Matches, unsigned CharNo, unsigned IndentCount, raw_ostream &OS) { assert(!Matches.empty() && "Must have at least one string to match!"); std::string Indent(IndentCount*2+4, ' '); // If we have verified that the entire string matches, we're done: output the // matching code. if (CharNo == Matches[0]->first.size()) { assert(Matches.size() == 1 && "Had duplicate keys to match on"); // FIXME: If Matches[0].first has embeded \n, this will be bad. OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first << "\"\n"; return false; } // Bucket the matches by the character we are comparing. std::map > MatchesByLetter; for (unsigned i = 0, e = Matches.size(); i != e; ++i) MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]); // If we have exactly one bucket to match, see how many characters are common // across the whole set and match all of them at once. if (MatchesByLetter.size() == 1) { unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches); unsigned NumChars = FirstNonCommonLetter-CharNo; // Emit code to break out if the prefix doesn't match. if (NumChars == 1) { // Do the comparison with if (Str[1] != 'f') // FIXME: Need to escape general characters. OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '" << Matches[0]->first[CharNo] << "')\n"; OS << Indent << " break;\n"; } else { // Do the comparison with if (Str.substr(1,3) != "foo"). // FIXME: Need to escape general strings. OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << "," << NumChars << ") != \""; OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n"; OS << Indent << " break;\n"; } return EmitStringMatcherForChar(StrVariableName, Matches, FirstNonCommonLetter, IndentCount, OS); } // Otherwise, we have multiple possible things, emit a switch on the // character. OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n"; OS << Indent << "default: break;\n"; for (std::map >::iterator LI = MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) { // TODO: escape hard stuff (like \n) if we ever care about it. OS << Indent << "case '" << LI->first << "':\t // " << LI->second.size() << " strings to match.\n"; if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1, IndentCount+1, OS)) OS << Indent << " break;\n"; } OS << Indent << "}\n"; return true; } /// EmitStringMatcher - Given a list of strings and code to execute when they /// match, output a simple switch tree to classify the input string. /// /// If a match is found, the code in Vals[i].second is executed; control must /// not exit this code fragment. If nothing matches, execution falls through. /// /// \param StrVariableName - The name of the variable to test. static void EmitStringMatcher(const std::string &StrVariableName, const std::vector &Matches, raw_ostream &OS) { // First level categorization: group strings by length. std::map > MatchesByLength; for (unsigned i = 0, e = Matches.size(); i != e; ++i) MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]); // Output a switch statement on length and categorize the elements within each // bin. OS << " switch (" << StrVariableName << ".size()) {\n"; OS << " default: break;\n"; for (std::map >::iterator LI = MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) { OS << " case " << LI->first << ":\t // " << LI->second.size() << " strings to match.\n"; if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS)) OS << " break;\n"; } OS << " }\n"; } /// EmitMatchTokenString - Emit the function to match a token string to the /// appropriate match class value. static void EmitMatchTokenString(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { // Construct the match list. std::vector Matches; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &CI = **it; if (CI.Kind == ClassInfo::Token) Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";")); } OS << "static MatchClassKind MatchTokenString(const StringRef &Name) {\n"; EmitStringMatcher("Name", Matches, OS); OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } /// EmitMatchRegisterName - Emit the function to match a string to the target /// specific register enum. static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { // Construct the match list. std::vector Matches; for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { const CodeGenRegister &Reg = Target.getRegisters()[i]; if (Reg.TheDef->getValueAsString("AsmName").empty()) continue; Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"), "return " + utostr(i + 1) + ";")); } OS << "unsigned " << Target.getName() << AsmParser->getValueAsString("AsmParserClassName") << "::MatchRegisterName(const StringRef &Name) {\n"; EmitStringMatcher("Name", Matches, OS); OS << " return 0;\n"; OS << "}\n\n"; } void AsmMatcherEmitter::run(raw_ostream &OS) { CodeGenTarget Target; Record *AsmParser = Target.getAsmParser(); std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); // Emit the function to match a register name to number. EmitMatchRegisterName(Target, AsmParser, OS); // Compute the information on the instructions to match. AsmMatcherInfo Info; Info.BuildInfo(Target); // Sort the instruction table using the partial order on classes. std::sort(Info.Instructions.begin(), Info.Instructions.end(), less_ptr()); DEBUG_WITH_TYPE("instruction_info", { for (std::vector::iterator it = Info.Instructions.begin(), ie = Info.Instructions.end(); it != ie; ++it) (*it)->dump(); }); // Check for ambiguous instructions. unsigned NumAmbiguous = 0; for (std::vector::const_iterator it = Info.Instructions.begin(), ie = Info.Instructions.end() - 1; it != ie;) { InstructionInfo &II = **it; ++it; InstructionInfo &Next = **it; if (!(II < Next)){ DEBUG_WITH_TYPE("ambiguous_instrs", { errs() << "warning: ambiguous instruction match:\n"; II.dump(); errs() << "\nis incomparable with:\n"; Next.dump(); errs() << "\n\n"; }); ++NumAmbiguous; } } if (NumAmbiguous) DEBUG_WITH_TYPE("ambiguous_instrs", { errs() << "warning: " << NumAmbiguous << " ambiguous instructions!\n"; }); // Generate the unified function to convert operands into an MCInst. EmitConvertToMCInst(Target, Info.Instructions, OS); // Emit the enumeration for classes which participate in matching. EmitMatchClassEnumeration(Target, Info.Classes, OS); // Emit the routine to match token strings to their match class. EmitMatchTokenString(Target, Info.Classes, OS); // Emit the routine to classify an operand. EmitClassifyOperand(Target, Info.Classes, OS); // Finally, build the match function. size_t MaxNumOperands = 0; for (std::vector::const_iterator it = Info.Instructions.begin(), ie = Info.Instructions.end(); it != ie; ++it) MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size()); OS << "bool " << Target.getName() << ClassName << "::MatchInstruction(" << "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, " << "MCInst &Inst) {\n"; // Emit the static match table; unused classes get initalized to 0 which is // guaranteed to be InvalidMatchClass. // // FIXME: We can reduce the size of this table very easily. First, we change // it so that store the kinds in separate bit-fields for each index, which // only needs to be the max width used for classes at that index (we also need // to reject based on this during classification). If we then make sure to // order the match kinds appropriately (putting mnemonics last), then we // should only end up using a few bits for each class, especially the ones // following the mnemonic. OS << " static const struct MatchEntry {\n"; OS << " unsigned Opcode;\n"; OS << " ConversionKind ConvertFn;\n"; OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; OS << " } MatchTable[" << Info.Instructions.size() << "] = {\n"; for (std::vector::const_iterator it = Info.Instructions.begin(), ie = Info.Instructions.end(); it != ie; ++it) { InstructionInfo &II = **it; OS << " { " << Target.getName() << "::" << II.InstrName << ", " << II.ConversionFnKind << ", { "; for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[i]; if (i) OS << ", "; OS << Op.Class->Name; } OS << " } },\n"; } OS << " };\n\n"; // Emit code to compute the class list for this operand vector. OS << " // Eliminate obvious mismatches.\n"; OS << " if (Operands.size() > " << MaxNumOperands << ")\n"; OS << " return true;\n\n"; OS << " // Compute the class list for this operand vector.\n"; OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; OS << " for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n"; OS << " Classes[i] = ClassifyOperand(Operands[i]);\n\n"; OS << " // Check for invalid operands before matching.\n"; OS << " if (Classes[i] == InvalidMatchClass)\n"; OS << " return true;\n"; OS << " }\n\n"; OS << " // Mark unused classes.\n"; OS << " for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; " << "i != e; ++i)\n"; OS << " Classes[i] = InvalidMatchClass;\n\n"; // Emit code to search the table. OS << " // Search the table.\n"; OS << " for (const MatchEntry *it = MatchTable, " << "*ie = MatchTable + " << Info.Instructions.size() << "; it != ie; ++it) {\n"; for (unsigned i = 0; i != MaxNumOperands; ++i) { OS << " if (Classes[" << i << "] != it->Classes[" << i << "])\n"; OS << " continue;\n"; } OS << "\n"; OS << " return ConvertToMCInst(it->ConvertFn, Inst, " << "it->Opcode, Operands);\n"; OS << " }\n\n"; OS << " return true;\n"; OS << "}\n\n"; }