//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a target specifier matcher for converting parsed // assembly operands in the MCInst structures. // // The input to the target specific matcher is a list of literal tokens and // operands. The target specific parser should generally eliminate any syntax // which is not relevant for matching; for example, comma tokens should have // already been consumed and eliminated by the parser. Most instructions will // end up with a single literal token (the instruction name) and some number of // operands. // // Some example inputs, for X86: // 'addl' (immediate ...) (register ...) // 'add' (immediate ...) (memory ...) // 'call' '*' %epc // // The assembly matcher is responsible for converting this input into a precise // machine instruction (i.e., an instruction with a well defined encoding). This // mapping has several properties which complicate matching: // // - It may be ambiguous; many architectures can legally encode particular // variants of an instruction in different ways (for example, using a smaller // encoding for small immediates). Such ambiguities should never be // arbitrarily resolved by the assembler, the assembler is always responsible // for choosing the "best" available instruction. // // - It may depend on the subtarget or the assembler context. Instructions // which are invalid for the current mode, but otherwise unambiguous (e.g., // an SSE instruction in a file being assembled for i486) should be accepted // and rejected by the assembler front end. However, if the proper encoding // for an instruction is dependent on the assembler context then the matcher // is responsible for selecting the correct machine instruction for the // current mode. // // The core matching algorithm attempts to exploit the regularity in most // instruction sets to quickly determine the set of possibly matching // instructions, and the simplify the generated code. Additionally, this helps // to ensure that the ambiguities are intentionally resolved by the user. // // The matching is divided into two distinct phases: // // 1. Classification: Each operand is mapped to the unique set which (a) // contains it, and (b) is the largest such subset for which a single // instruction could match all members. // // For register classes, we can generate these subgroups automatically. For // arbitrary operands, we expect the user to define the classes and their // relations to one another (for example, 8-bit signed immediates as a // subset of 32-bit immediates). // // By partitioning the operands in this way, we guarantee that for any // tuple of classes, any single instruction must match either all or none // of the sets of operands which could classify to that tuple. // // In addition, the subset relation amongst classes induces a partial order // on such tuples, which we use to resolve ambiguities. // // FIXME: What do we do if a crazy case shows up where this is the wrong // resolution? // // 2. The input can now be treated as a tuple of classes (static tokens are // simple singleton sets). Each such tuple should generally map to a single // instruction (we currently ignore cases where this isn't true, whee!!!), // which we can emit a simple matcher for. // //===----------------------------------------------------------------------===// #include "AsmMatcherEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include #include using namespace llvm; namespace { static cl::opt MatchOneInstr("match-one-instr", cl::desc("Match only the named instruction"), cl::init("")); } /// FlattenVariants - Flatten an .td file assembly string by selecting the /// variant at index \arg N. static std::string FlattenVariants(const std::string &AsmString, unsigned N) { StringRef Cur = AsmString; std::string Res = ""; for (;;) { // Find the start of the next variant string. size_t VariantsStart = 0; for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart) if (Cur[VariantsStart] == '{' && (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' && Cur[VariantsStart-1] != '\\'))) break; // Add the prefix to the result. Res += Cur.slice(0, VariantsStart); if (VariantsStart == Cur.size()) break; ++VariantsStart; // Skip the '{'. // Scan to the end of the variants string. size_t VariantsEnd = VariantsStart; unsigned NestedBraces = 1; for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) { if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') { if (--NestedBraces == 0) break; } else if (Cur[VariantsEnd] == '{') ++NestedBraces; } // Select the Nth variant (or empty). StringRef Selection = Cur.slice(VariantsStart, VariantsEnd); for (unsigned i = 0; i != N; ++i) Selection = Selection.split('|').second; Res += Selection.split('|').first; assert(VariantsEnd != Cur.size() && "Unterminated variants in assembly string!"); Cur = Cur.substr(VariantsEnd + 1); } return Res; } /// TokenizeAsmString - Tokenize a simplified assembly string. static void TokenizeAsmString(const StringRef &AsmString, SmallVectorImpl &Tokens) { unsigned Prev = 0; bool InTok = true; for (unsigned i = 0, e = AsmString.size(); i != e; ++i) { switch (AsmString[i]) { case '[': case ']': case '*': case '!': case ' ': case '\t': case ',': if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } if (!isspace(AsmString[i]) && AsmString[i] != ',') Tokens.push_back(AsmString.substr(i, 1)); Prev = i + 1; break; case '\\': if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } ++i; assert(i != AsmString.size() && "Invalid quoted character"); Tokens.push_back(AsmString.substr(i, 1)); Prev = i + 1; break; case '$': { // If this isn't "${", treat like a normal token. if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') { if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } Prev = i; break; } if (InTok) { Tokens.push_back(AsmString.slice(Prev, i)); InTok = false; } StringRef::iterator End = std::find(AsmString.begin() + i, AsmString.end(), '}'); assert(End != AsmString.end() && "Missing brace in operand reference!"); size_t EndPos = End - AsmString.begin(); Tokens.push_back(AsmString.slice(i, EndPos+1)); Prev = EndPos + 1; i = EndPos; break; } default: InTok = true; } } if (InTok && Prev != AsmString.size()) Tokens.push_back(AsmString.substr(Prev)); } static bool IsAssemblerInstruction(const StringRef &Name, const CodeGenInstruction &CGI, const SmallVectorImpl &Tokens) { // Ignore psuedo ops. // // FIXME: This is a hack. if (const RecordVal *Form = CGI.TheDef->getValue("Form")) if (Form->getValue()->getAsString() == "Pseudo") return false; // Ignore "PHI" node. // // FIXME: This is also a hack. if (Name == "PHI") return false; // Ignore instructions with no .s string. // // FIXME: What are these? if (CGI.AsmString.empty()) return false; // FIXME: Hack; ignore any instructions with a newline in them. if (std::find(CGI.AsmString.begin(), CGI.AsmString.end(), '\n') != CGI.AsmString.end()) return false; // Ignore instructions with attributes, these are always fake instructions for // simplifying codegen. // // FIXME: Is this true? // // Also, we ignore instructions which reference the operand multiple times; // this implies a constraint we would not currently honor. These are // currently always fake instructions for simplifying codegen. // // FIXME: Encode this assumption in the .td, so we can error out here. std::set OperandNames; for (unsigned i = 1, e = Tokens.size(); i < e; ++i) { if (Tokens[i][0] == '$' && std::find(Tokens[i].begin(), Tokens[i].end(), ':') != Tokens[i].end()) { DEBUG({ errs() << "warning: '" << Name << "': " << "ignoring instruction; operand with attribute '" << Tokens[i] << "', \n"; }); return false; } if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) { DEBUG({ errs() << "warning: '" << Name << "': " << "ignoring instruction; tied operand '" << Tokens[i] << "', \n"; }); return false; } } return true; } namespace { /// InstructionInfo - Helper class for storing the necessary information for an /// instruction which is capable of being matched. struct InstructionInfo { struct Operand { enum { Token, Class } Kind; struct ClassData { /// Operand - The tablegen operand this class corresponds to. const CodeGenInstruction::OperandInfo *Operand; /// ClassName - The name of this operand's class. std::string ClassName; /// PredicateMethod - The name of the operand method to test whether the /// operand matches this class. std::string PredicateMethod; /// RenderMethod - The name of the operand method to add this operand to /// an MCInst. std::string RenderMethod; } AsClass; }; /// InstrName - The target name for this instruction. std::string InstrName; /// Instr - The instruction this matches. const CodeGenInstruction *Instr; /// AsmString - The assembly string for this instruction (with variants /// removed). std::string AsmString; /// Tokens - The tokenized assembly pattern that this instruction matches. SmallVector Tokens; /// Operands - The operands that this instruction matches. SmallVector Operands; /// ConversionFnKind - The enum value which is passed to the generated /// ConvertToMCInst to convert parsed operands into an MCInst for this /// function. std::string ConversionFnKind; public: void dump(); }; } void InstructionInfo::dump() { errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"' << ", tokens:["; for (unsigned i = 0, e = Tokens.size(); i != e; ++i) { errs() << Tokens[i]; if (i + 1 != e) errs() << ", "; } errs() << "]\n"; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { Operand &Op = Operands[i]; errs() << " op[" << i << "] = "; if (Op.Kind == Operand::Token) { errs() << '\"' << Tokens[i] << "\"\n"; continue; } assert(Op.Kind == Operand::Class && "Invalid kind!"); const CodeGenInstruction::OperandInfo &OI = *Op.AsClass.Operand; errs() << OI.Name << " " << OI.Rec->getName() << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n"; } } static void BuildInstructionInfos(CodeGenTarget &Target, std::vector &Infos) { const std::map &Instructions = Target.getInstructions(); for (std::map::const_iterator it = Instructions.begin(), ie = Instructions.end(); it != ie; ++it) { const CodeGenInstruction &CGI = it->second; if (!MatchOneInstr.empty() && it->first != MatchOneInstr) continue; OwningPtr II(new InstructionInfo); II->InstrName = it->first; II->Instr = &it->second; II->AsmString = FlattenVariants(CGI.AsmString, 0); TokenizeAsmString(II->AsmString, II->Tokens); // Ignore instructions which shouldn't be matched. if (!IsAssemblerInstruction(it->first, CGI, II->Tokens)) continue; for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) { StringRef Token = II->Tokens[i]; // Check for simple tokens. if (Token[0] != '$') { InstructionInfo::Operand Op; Op.Kind = InstructionInfo::Operand::Token; II->Operands.push_back(Op); continue; } // Otherwise this is an operand reference. InstructionInfo::Operand Op; Op.Kind = InstructionInfo::Operand::Class; StringRef OperandName; if (Token[1] == '{') OperandName = Token.substr(2, Token.size() - 3); else OperandName = Token.substr(1); // Map this token to an operand. FIXME: Move elsewhere. unsigned Idx; try { Idx = CGI.getOperandNamed(OperandName); } catch(...) { errs() << "error: unable to find operand: '" << OperandName << "'!\n"; break; } const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx]; Op.AsClass.Operand = &OI; if (OI.Rec->isSubClassOf("RegisterClass")) { Op.AsClass.ClassName = "Reg"; Op.AsClass.PredicateMethod = "isReg"; Op.AsClass.RenderMethod = "addRegOperands"; } else if (OI.Rec->isSubClassOf("Operand")) { // FIXME: This should not be hard coded. const RecordVal *RV = OI.Rec->getValue("Type"); // FIXME: Yet another total hack. if (RV->getValue()->getAsString() == "iPTR" || OI.Rec->getName() == "i8mem_NOREX" || OI.Rec->getName() == "lea32mem" || OI.Rec->getName() == "lea64mem" || OI.Rec->getName() == "i128mem" || OI.Rec->getName() == "sdmem" || OI.Rec->getName() == "ssmem" || OI.Rec->getName() == "lea64_32mem") { Op.AsClass.ClassName = "Mem"; Op.AsClass.PredicateMethod = "isMem"; Op.AsClass.RenderMethod = "addMemOperands"; } else { Op.AsClass.ClassName = "Imm"; Op.AsClass.PredicateMethod = "isImm"; Op.AsClass.RenderMethod = "addImmOperands"; } } else { OI.Rec->dump(); assert(0 && "Unexpected instruction operand record!"); } II->Operands.push_back(Op); } // If we broke out, ignore the instruction. if (II->Operands.size() != II->Tokens.size()) continue; Infos.push_back(II.take()); } } static void ConstructConversionFunctions(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { // Write the convert function to a separate stream, so we can drop it after // the enum. std::string ConvertFnBody; raw_string_ostream CvtOS(ConvertFnBody); // Function we have already generated. std::set GeneratedFns; // Start the unified conversion function. CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " SmallVectorImpl<" << Target.getName() << "Operand> &Operands) {\n"; CvtOS << " Inst.setOpcode(Opcode);\n"; CvtOS << " switch (Kind) {\n"; CvtOS << " default:\n"; // Start the enum, which we will generate inline. OS << "// Unified function for converting operants to MCInst instances.\n\n"; OS << "namespace {\n\n"; OS << "enum ConversionKind {\n"; for (std::vector::const_iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { InstructionInfo &II = **it; // Order the (class) operands by the order to convert them into an MCInst. SmallVector, 4> MIOperandList; for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[i]; if (Op.Kind == InstructionInfo::Operand::Class) MIOperandList.push_back(std::make_pair(Op.AsClass.Operand->MIOperandNo, i)); } std::sort(MIOperandList.begin(), MIOperandList.end()); // Compute the total number of operands. unsigned NumMIOperands = 0; for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) { const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i]; NumMIOperands = std::max(NumMIOperands, OI.MIOperandNo + OI.MINumOperands); } // Build the conversion function signature. std::string Signature = "Convert"; unsigned CurIndex = 0; for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; assert(CurIndex <= Op.AsClass.Operand->MIOperandNo && "Duplicate match for instruction operand!"); Signature += "_"; // Skip operands which weren't matched by anything, this occurs when the // .td file encodes "implicit" operands as explicit ones. // // FIXME: This should be removed from the MCInst structure. for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex) Signature += "Imp"; Signature += Op.AsClass.ClassName; Signature += utostr(Op.AsClass.Operand->MINumOperands); Signature += "_" + utostr(MIOperandList[i].second); CurIndex += Op.AsClass.Operand->MINumOperands; } // Add any trailing implicit operands. for (; CurIndex != NumMIOperands; ++CurIndex) Signature += "Imp"; II.ConversionFnKind = Signature; // Check if we have already generated this signature. if (!GeneratedFns.insert(Signature).second) continue; // If not, emit it now. // Add to the enum list. OS << " " << Signature << ",\n"; // And to the convert function. CvtOS << " case " << Signature << ":\n"; CurIndex = 0; for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second]; // Add the implicit operands. for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex) CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; CvtOS << " Operands[" << MIOperandList[i].second << "]." << Op.AsClass.RenderMethod << "(Inst, " << Op.AsClass.Operand->MINumOperands << ");\n"; CurIndex += Op.AsClass.Operand->MINumOperands; } // And add trailing implicit operands. for (; CurIndex != NumMIOperands; ++CurIndex) CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; CvtOS << " break;\n"; } // Finish the convert function. CvtOS << " }\n"; CvtOS << " return false;\n"; CvtOS << "}\n\n"; // Finish the enum, and drop the convert function after it. OS << " NumConversionVariants\n"; OS << "};\n\n"; OS << "}\n\n"; OS << CvtOS.str(); } /// EmitMatchRegisterName - Emit the function to match a string to the target /// specific register enum. static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { const std::vector &Registers = Target.getRegisters(); OS << "bool " << Target.getName() << AsmParser->getValueAsString("AsmParserClassName") << "::MatchRegisterName(const StringRef &Name, unsigned &RegNo) {\n"; // FIXME: TableGen should have a fast string matcher generator. for (unsigned i = 0, e = Registers.size(); i != e; ++i) { const CodeGenRegister &Reg = Registers[i]; if (Reg.TheDef->getValueAsString("AsmName").empty()) continue; OS << " if (Name == \"" << Reg.TheDef->getValueAsString("AsmName") << "\")\n" << " return RegNo=" << i + 1 << ", false;\n"; } OS << " return true;\n"; OS << "}\n\n"; } void AsmMatcherEmitter::run(raw_ostream &OS) { CodeGenTarget Target; Record *AsmParser = Target.getAsmParser(); std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); // Emit the function to match a register name to number. EmitMatchRegisterName(Target, AsmParser, OS); // Compute the information on the list of instructions to match. std::vector Infos; BuildInstructionInfos(Target, Infos); DEBUG_WITH_TYPE("instruction_info", { for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) (*it)->dump(); }); // FIXME: At this point we should be able to totally order Infos, if not then // we have an ambiguity which the .td file should be forced to resolve. // Generate the terminal actions to convert operands into an MCInst. ConstructConversionFunctions(Target, Infos, OS); // Build a very stupid version of the match function which just checks each // instruction in order. OS << "bool " << Target.getName() << ClassName << "::MatchInstruction(" << "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, " << "MCInst &Inst) {\n"; for (std::vector::const_iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { InstructionInfo &II = **it; // The parser is expected to arrange things so that each "token" matches // exactly one target specific operand. OS << " if (Operands.size() == " << II.Operands.size(); for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) { InstructionInfo::Operand &Op = II.Operands[i]; OS << " &&\n"; OS << " "; if (Op.Kind == InstructionInfo::Operand::Token) OS << "Operands[" << i << "].isToken(\"" << II.Tokens[i] << "\")"; else OS << "Operands[" << i << "]." << Op.AsClass.PredicateMethod << "()"; } OS << ")\n"; OS << " return ConvertToMCInst(" << II.ConversionFnKind << ", Inst, " << Target.getName() << "::" << II.InstrName << ", Operands);\n\n"; } OS << " return true;\n"; OS << "}\n\n"; }