//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is emits an assembly printer for the current target. // Note that this is currently fairly skeletal, but will grow over time. // //===----------------------------------------------------------------------===// #include "AsmWriterInst.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include using namespace llvm; namespace { class AsmWriterEmitter { RecordKeeper &Records; CodeGenTarget Target; std::map CGIAWIMap; std::vector NumberedInstructions; std::vector Instructions; public: AsmWriterEmitter(RecordKeeper &R); void run(raw_ostream &o); private: void EmitPrintInstruction(raw_ostream &o); void EmitGetRegisterName(raw_ostream &o); void EmitPrintAliasInstruction(raw_ostream &O); AsmWriterInst *getAsmWriterInstByID(unsigned ID) const { assert(ID < NumberedInstructions.size()); std::map::const_iterator I = CGIAWIMap.find(NumberedInstructions[ID]); assert(I != CGIAWIMap.end() && "Didn't find inst!"); return I->second; } void FindUniqueOperandCommands(std::vector &UOC, std::vector &InstIdxs, std::vector &InstOpsUsed) const; }; } // end anonymous namespace static void PrintCases(std::vector > &OpsToPrint, raw_ostream &O) { O << " case " << OpsToPrint.back().first << ": "; AsmWriterOperand TheOp = OpsToPrint.back().second; OpsToPrint.pop_back(); // Check to see if any other operands are identical in this list, and if so, // emit a case label for them. for (unsigned i = OpsToPrint.size(); i != 0; --i) if (OpsToPrint[i-1].second == TheOp) { O << "\n case " << OpsToPrint[i-1].first << ": "; OpsToPrint.erase(OpsToPrint.begin()+i-1); } // Finally, emit the code. O << TheOp.getCode(); O << "break;\n"; } /// EmitInstructions - Emit the last instruction in the vector and any other /// instructions that are suitably similar to it. static void EmitInstructions(std::vector &Insts, raw_ostream &O) { AsmWriterInst FirstInst = Insts.back(); Insts.pop_back(); std::vector SimilarInsts; unsigned DifferingOperand = ~0; for (unsigned i = Insts.size(); i != 0; --i) { unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst); if (DiffOp != ~1U) { if (DifferingOperand == ~0U) // First match! DifferingOperand = DiffOp; // If this differs in the same operand as the rest of the instructions in // this class, move it to the SimilarInsts list. if (DifferingOperand == DiffOp || DiffOp == ~0U) { SimilarInsts.push_back(Insts[i-1]); Insts.erase(Insts.begin()+i-1); } } } O << " case " << FirstInst.CGI->Namespace << "::" << FirstInst.CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i) O << " case " << SimilarInsts[i].CGI->Namespace << "::" << SimilarInsts[i].CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) { if (i != DifferingOperand) { // If the operand is the same for all instructions, just print it. O << " " << FirstInst.Operands[i].getCode(); } else { // If this is the operand that varies between all of the instructions, // emit a switch for just this operand now. O << " switch (MI->getOpcode()) {\n"; std::vector > OpsToPrint; OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" + FirstInst.CGI->TheDef->getName(), FirstInst.Operands[i])); for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) { AsmWriterInst &AWI = SimilarInsts[si]; OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+ AWI.CGI->TheDef->getName(), AWI.Operands[i])); } std::reverse(OpsToPrint.begin(), OpsToPrint.end()); while (!OpsToPrint.empty()) PrintCases(OpsToPrint, O); O << " }"; } O << "\n"; } O << " break;\n"; } void AsmWriterEmitter:: FindUniqueOperandCommands(std::vector &UniqueOperandCommands, std::vector &InstIdxs, std::vector &InstOpsUsed) const { InstIdxs.assign(NumberedInstructions.size(), ~0U); // This vector parallels UniqueOperandCommands, keeping track of which // instructions each case are used for. It is a comma separated string of // enums. std::vector InstrsForCase; InstrsForCase.resize(UniqueOperandCommands.size()); InstOpsUsed.assign(UniqueOperandCommands.size(), 0); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const AsmWriterInst *Inst = getAsmWriterInstByID(i); if (Inst == 0) continue; // PHI, INLINEASM, PROLOG_LABEL, etc. std::string Command; if (Inst->Operands.empty()) continue; // Instruction already done. Command = " " + Inst->Operands[0].getCode() + "\n"; // Check to see if we already have 'Command' in UniqueOperandCommands. // If not, add it. bool FoundIt = false; for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx) if (UniqueOperandCommands[idx] == Command) { InstIdxs[i] = idx; InstrsForCase[idx] += ", "; InstrsForCase[idx] += Inst->CGI->TheDef->getName(); FoundIt = true; break; } if (!FoundIt) { InstIdxs[i] = UniqueOperandCommands.size(); UniqueOperandCommands.push_back(Command); InstrsForCase.push_back(Inst->CGI->TheDef->getName()); // This command matches one operand so far. InstOpsUsed.push_back(1); } } // For each entry of UniqueOperandCommands, there is a set of instructions // that uses it. If the next command of all instructions in the set are // identical, fold it into the command. for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size(); CommandIdx != e; ++CommandIdx) { for (unsigned Op = 1; ; ++Op) { // Scan for the first instruction in the set. std::vector::iterator NIT = std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx); if (NIT == InstIdxs.end()) break; // No commonality. // If this instruction has no more operands, we isn't anything to merge // into this command. const AsmWriterInst *FirstInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!FirstInst || FirstInst->Operands.size() == Op) break; // Otherwise, scan to see if all of the other instructions in this command // set share the operand. bool AllSame = true; // Keep track of the maximum, number of operands or any // instruction we see in the group. size_t MaxSize = FirstInst->Operands.size(); for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx); NIT != InstIdxs.end(); NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) { // Okay, found another instruction in this command set. If the operand // matches, we're ok, otherwise bail out. const AsmWriterInst *OtherInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (OtherInst && OtherInst->Operands.size() > FirstInst->Operands.size()) MaxSize = std::max(MaxSize, OtherInst->Operands.size()); if (!OtherInst || OtherInst->Operands.size() == Op || OtherInst->Operands[Op] != FirstInst->Operands[Op]) { AllSame = false; break; } } if (!AllSame) break; // Okay, everything in this command set has the same next operand. Add it // to UniqueOperandCommands and remember that it was consumed. std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n"; UniqueOperandCommands[CommandIdx] += Command; InstOpsUsed[CommandIdx]++; } } // Prepend some of the instructions each case is used for onto the case val. for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) { std::string Instrs = InstrsForCase[i]; if (Instrs.size() > 70) { Instrs.erase(Instrs.begin()+70, Instrs.end()); Instrs += "..."; } if (!Instrs.empty()) UniqueOperandCommands[i] = " // " + Instrs + "\n" + UniqueOperandCommands[i]; } } static void UnescapeString(std::string &Str) { for (unsigned i = 0; i != Str.size(); ++i) { if (Str[i] == '\\' && i != Str.size()-1) { switch (Str[i+1]) { default: continue; // Don't execute the code after the switch. case 'a': Str[i] = '\a'; break; case 'b': Str[i] = '\b'; break; case 'e': Str[i] = 27; break; case 'f': Str[i] = '\f'; break; case 'n': Str[i] = '\n'; break; case 'r': Str[i] = '\r'; break; case 't': Str[i] = '\t'; break; case 'v': Str[i] = '\v'; break; case '"': Str[i] = '\"'; break; case '\'': Str[i] = '\''; break; case '\\': Str[i] = '\\'; break; } // Nuke the second character. Str.erase(Str.begin()+i+1); } } } /// EmitPrintInstruction - Generate the code for the "printInstruction" method /// implementation. Destroys all instances of AsmWriterInst information, by /// clearing the Instructions vector. void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); O << "/// printInstruction - This method is automatically generated by tablegen\n" "/// from the instruction set description.\n" "void " << Target.getName() << ClassName << "::printInstruction(const MCInst *MI, raw_ostream &O) {\n"; // Build an aggregate string, and build a table of offsets into it. SequenceToOffsetTable StringTable; /// OpcodeInfo - This encodes the index of the string to use for the first /// chunk of the output as well as indices used for operand printing. /// To reduce the number of unhandled cases, we expand the size from 32-bit /// to 32+16 = 48-bit. std::vector OpcodeInfo; // Add all strings to the string table upfront so it can generate an optimized // representation. for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]]; if (AWI != 0 && AWI->Operands[0].OperandType == AsmWriterOperand::isLiteralTextOperand && !AWI->Operands[0].Str.empty()) { std::string Str = AWI->Operands[0].Str; UnescapeString(Str); StringTable.add(Str); } } StringTable.layout(); unsigned MaxStringIdx = 0; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]]; unsigned Idx; if (AWI == 0) { // Something not handled by the asmwriter printer. Idx = ~0U; } else if (AWI->Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand || AWI->Operands[0].Str.empty()) { // Something handled by the asmwriter printer, but with no leading string. Idx = StringTable.get(""); } else { std::string Str = AWI->Operands[0].Str; UnescapeString(Str); Idx = StringTable.get(Str); MaxStringIdx = std::max(MaxStringIdx, Idx); // Nuke the string from the operand list. It is now handled! AWI->Operands.erase(AWI->Operands.begin()); } // Bias offset by one since we want 0 as a sentinel. OpcodeInfo.push_back(Idx+1); } // Figure out how many bits we used for the string index. unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2); // To reduce code size, we compactify common instructions into a few bits // in the opcode-indexed table. unsigned BitsLeft = 64-AsmStrBits; std::vector > TableDrivenOperandPrinters; while (1) { std::vector UniqueOperandCommands; std::vector InstIdxs; std::vector NumInstOpsHandled; FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, NumInstOpsHandled); // If we ran out of operands to print, we're done. if (UniqueOperandCommands.empty()) break; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size()); // If we don't have enough bits for this operand, don't include it. if (NumBits > BitsLeft) { DEBUG(errs() << "Not enough bits to densely encode " << NumBits << " more bits\n"); break; } // Otherwise, we can include this in the initial lookup table. Add it in. for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i) if (InstIdxs[i] != ~0U) { OpcodeInfo[i] |= (uint64_t)InstIdxs[i] << (64-BitsLeft); } BitsLeft -= NumBits; // Remove the info about this operand. for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { if (AsmWriterInst *Inst = getAsmWriterInstByID(i)) if (!Inst->Operands.empty()) { unsigned NumOps = NumInstOpsHandled[InstIdxs[i]]; assert(NumOps <= Inst->Operands.size() && "Can't remove this many ops!"); Inst->Operands.erase(Inst->Operands.begin(), Inst->Operands.begin()+NumOps); } } // Remember the handlers for this set of operands. TableDrivenOperandPrinters.push_back(UniqueOperandCommands); } // We always emit at least one 32-bit table. A second table is emitted if // more bits are needed. O<<" static const uint32_t OpInfo[] = {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { O << " " << (OpcodeInfo[i] & 0xffffffff) << "U,\t// " << NumberedInstructions[i]->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; if (BitsLeft < 32) { // Add a second OpInfo table only when it is necessary. // Adjust the type of the second table based on the number of bits needed. O << " static const uint" << ((BitsLeft < 16) ? "32" : (BitsLeft < 24) ? "16" : "8") << "_t OpInfo2[] = {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { O << " " << (OpcodeInfo[i] >> 32) << "U,\t// " << NumberedInstructions[i]->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; } // Emit the string itself. O << " const char AsmStrs[] = {\n"; StringTable.emit(O, printChar); O << " };\n\n"; O << " O << \"\\t\";\n\n"; O << " // Emit the opcode for the instruction.\n"; if (BitsLeft < 32) { // If we have two tables then we need to perform two lookups and combine // the results into a single 64-bit value. O << " uint64_t Bits1 = OpInfo[MI->getOpcode()];\n" << " uint64_t Bits2 = OpInfo2[MI->getOpcode()];\n" << " uint64_t Bits = (Bits2 << 32) | Bits1;\n"; } else { // If only one table is used we just need to perform a single lookup. O << " uint32_t Bits = OpInfo[MI->getOpcode()];\n"; } O << " assert(Bits != 0 && \"Cannot print this instruction.\");\n" << " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n"; // Output the table driven operand information. BitsLeft = 64-AsmStrBits; for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) { std::vector &Commands = TableDrivenOperandPrinters[i]; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(Commands.size()); assert(NumBits <= BitsLeft && "consistency error"); // Emit code to extract this field from Bits. O << "\n // Fragment " << i << " encoded into " << NumBits << " bits for " << Commands.size() << " unique commands.\n"; if (Commands.size() == 2) { // Emit two possibilitys with if/else. O << " if ((Bits >> " << (64-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << Commands[1] << " } else {\n" << Commands[0] << " }\n\n"; } else if (Commands.size() == 1) { // Emit a single possibility. O << Commands[0] << "\n\n"; } else { O << " switch ((Bits >> " << (64-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << " default: // unreachable.\n"; // Print out all the cases. for (unsigned i = 0, e = Commands.size(); i != e; ++i) { O << " case " << i << ":\n"; O << Commands[i]; O << " break;\n"; } O << " }\n\n"; } BitsLeft -= NumBits; } // Okay, delete instructions with no operand info left. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { // Entire instruction has been emitted? AsmWriterInst &Inst = Instructions[i]; if (Inst.Operands.empty()) { Instructions.erase(Instructions.begin()+i); --i; --e; } } // Because this is a vector, we want to emit from the end. Reverse all of the // elements in the vector. std::reverse(Instructions.begin(), Instructions.end()); // Now that we've emitted all of the operand info that fit into 32 bits, emit // information for those instructions that are left. This is a less dense // encoding, but we expect the main 32-bit table to handle the majority of // instructions. if (!Instructions.empty()) { // Find the opcode # of inline asm. O << " switch (MI->getOpcode()) {\n"; while (!Instructions.empty()) EmitInstructions(Instructions, O); O << " }\n"; O << " return;\n"; } O << "}\n"; } static void emitRegisterNameString(raw_ostream &O, StringRef AltName, const std::vector &Registers) { SequenceToOffsetTable StringTable; SmallVector AsmNames(Registers.size()); for (unsigned i = 0, e = Registers.size(); i != e; ++i) { const CodeGenRegister &Reg = *Registers[i]; std::string &AsmName = AsmNames[i]; // "NoRegAltName" is special. We don't need to do a lookup for that, // as it's just a reference to the default register name. if (AltName == "" || AltName == "NoRegAltName") { AsmName = Reg.TheDef->getValueAsString("AsmName"); if (AsmName.empty()) AsmName = Reg.getName(); } else { // Make sure the register has an alternate name for this index. std::vector AltNameList = Reg.TheDef->getValueAsListOfDefs("RegAltNameIndices"); unsigned Idx = 0, e; for (e = AltNameList.size(); Idx < e && (AltNameList[Idx]->getName() != AltName); ++Idx) ; // If the register has an alternate name for this index, use it. // Otherwise, leave it empty as an error flag. if (Idx < e) { std::vector AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); if (AltNames.size() <= Idx) PrintFatalError(Reg.TheDef->getLoc(), (Twine("Register definition missing alt name for '") + AltName + "'.").str()); AsmName = AltNames[Idx]; } } StringTable.add(AsmName); } StringTable.layout(); O << " static const char AsmStrs" << AltName << "[] = {\n"; StringTable.emit(O, printChar); O << " };\n\n"; O << " static const uint32_t RegAsmOffset" << AltName << "[] = {"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) { if ((i % 14) == 0) O << "\n "; O << StringTable.get(AsmNames[i]) << ", "; } O << "\n };\n" << "\n"; } void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); const std::vector &Registers = Target.getRegBank().getRegisters(); std::vector AltNameIndices = Target.getRegAltNameIndices(); bool hasAltNames = AltNameIndices.size() > 1; O << "\n\n/// getRegisterName - This method is automatically generated by tblgen\n" "/// from the register set description. This returns the assembler name\n" "/// for the specified register.\n" "const char *" << Target.getName() << ClassName << "::"; if (hasAltNames) O << "\ngetRegisterName(unsigned RegNo, unsigned AltIdx) {\n"; else O << "getRegisterName(unsigned RegNo) {\n"; O << " assert(RegNo && RegNo < " << (Registers.size()+1) << " && \"Invalid register number!\");\n" << "\n"; if (hasAltNames) { for (unsigned i = 0, e = AltNameIndices.size(); i < e; ++i) emitRegisterNameString(O, AltNameIndices[i]->getName(), Registers); } else emitRegisterNameString(O, "", Registers); if (hasAltNames) { O << " const uint32_t *RegAsmOffset;\n" << " const char *AsmStrs;\n" << " switch(AltIdx) {\n" << " default: llvm_unreachable(\"Invalid register alt name index!\");\n"; for (unsigned i = 0, e = AltNameIndices.size(); i < e; ++i) { StringRef Namespace = AltNameIndices[1]->getValueAsString("Namespace"); StringRef AltName(AltNameIndices[i]->getName()); O << " case " << Namespace << "::" << AltName << ":\n" << " AsmStrs = AsmStrs" << AltName << ";\n" << " RegAsmOffset = RegAsmOffset" << AltName << ";\n" << " break;\n"; } O << "}\n"; } O << " assert (*(AsmStrs+RegAsmOffset[RegNo-1]) &&\n" << " \"Invalid alt name index for register!\");\n" << " return AsmStrs+RegAsmOffset[RegNo-1];\n" << "}\n"; } namespace { // IAPrinter - Holds information about an InstAlias. Two InstAliases match if // they both have the same conditionals. In which case, we cannot print out the // alias for that pattern. class IAPrinter { std::vector Conds; std::map OpMap; std::string Result; std::string AsmString; SmallVector ReqFeatures; public: IAPrinter(std::string R, std::string AS) : Result(R), AsmString(AS) {} void addCond(const std::string &C) { Conds.push_back(C); } void addOperand(StringRef Op, unsigned Idx) { assert(Idx < 0xFF && "Index too large!"); OpMap[Op] = Idx; } unsigned getOpIndex(StringRef Op) { return OpMap[Op]; } bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); } void print(raw_ostream &O) { if (Conds.empty() && ReqFeatures.empty()) { O.indent(6) << "return true;\n"; return; } O << "if ("; for (std::vector::iterator I = Conds.begin(), E = Conds.end(); I != E; ++I) { if (I != Conds.begin()) { O << " &&\n"; O.indent(8); } O << *I; } O << ") {\n"; O.indent(6) << "// " << Result << "\n"; // Directly mangle mapped operands into the string. Each operand is // identified by a '$' sign followed by a byte identifying the number of the // operand. We add one to the index to avoid zero bytes. std::pair ASM = StringRef(AsmString).split(' '); SmallString<128> OutString = ASM.first; if (!ASM.second.empty()) { raw_svector_ostream OS(OutString); OS << ' '; for (StringRef::iterator I = ASM.second.begin(), E = ASM.second.end(); I != E;) { OS << *I; if (*I == '$') { StringRef::iterator Start = ++I; while (I != E && ((*I >= 'a' && *I <= 'z') || (*I >= 'A' && *I <= 'Z') || (*I >= '0' && *I <= '9') || *I == '_')) ++I; StringRef Name(Start, I - Start); assert(isOpMapped(Name) && "Unmapped operand!"); OS << format("\\x%02X", (unsigned char)getOpIndex(Name) + 1); } else { ++I; } } } // Emit the string. O.indent(6) << "AsmString = \"" << OutString.str() << "\";\n"; O.indent(6) << "break;\n"; O.indent(4) << '}'; } bool operator==(const IAPrinter &RHS) { if (Conds.size() != RHS.Conds.size()) return false; unsigned Idx = 0; for (std::vector::iterator I = Conds.begin(), E = Conds.end(); I != E; ++I) if (*I != RHS.Conds[Idx++]) return false; return true; } bool operator()(const IAPrinter &RHS) { if (Conds.size() < RHS.Conds.size()) return true; unsigned Idx = 0; for (std::vector::iterator I = Conds.begin(), E = Conds.end(); I != E; ++I) if (*I != RHS.Conds[Idx++]) return *I < RHS.Conds[Idx++]; return false; } }; } // end anonymous namespace static unsigned CountNumOperands(StringRef AsmString) { unsigned NumOps = 0; std::pair ASM = AsmString.split(' '); while (!ASM.second.empty()) { ++NumOps; ASM = ASM.second.split(' '); } return NumOps; } static unsigned CountResultNumOperands(StringRef AsmString) { unsigned NumOps = 0; std::pair ASM = AsmString.split('\t'); if (!ASM.second.empty()) { size_t I = ASM.second.find('{'); StringRef Str = ASM.second; if (I != StringRef::npos) Str = ASM.second.substr(I, ASM.second.find('|', I)); ASM = Str.split(' '); do { ++NumOps; ASM = ASM.second.split(' '); } while (!ASM.second.empty()); } return NumOps; } void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); O << "\n#ifdef PRINT_ALIAS_INSTR\n"; O << "#undef PRINT_ALIAS_INSTR\n\n"; // Emit the method that prints the alias instruction. std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); std::vector AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); // Create a map from the qualified name to a list of potential matches. std::map > AliasMap; for (std::vector::iterator I = AllInstAliases.begin(), E = AllInstAliases.end(); I != E; ++I) { CodeGenInstAlias *Alias = new CodeGenInstAlias(*I, Target); const Record *R = *I; if (!R->getValueAsBit("EmitAlias")) continue; // We were told not to emit the alias, but to emit the aliasee. const DagInit *DI = R->getValueAsDag("ResultInst"); const DefInit *Op = cast(DI->getOperator()); AliasMap[getQualifiedName(Op->getDef())].push_back(Alias); } // A map of which conditions need to be met for each instruction operand // before it can be matched to the mnemonic. std::map > IAPrinterMap; for (std::map >::iterator I = AliasMap.begin(), E = AliasMap.end(); I != E; ++I) { std::vector &Aliases = I->second; for (std::vector::iterator II = Aliases.begin(), IE = Aliases.end(); II != IE; ++II) { const CodeGenInstAlias *CGA = *II; unsigned LastOpNo = CGA->ResultInstOperandIndex.size(); unsigned NumResultOps = CountResultNumOperands(CGA->ResultInst->AsmString); // Don't emit the alias if it has more operands than what it's aliasing. if (NumResultOps < CountNumOperands(CGA->AsmString)) continue; IAPrinter *IAP = new IAPrinter(CGA->Result->getAsString(), CGA->AsmString); std::string Cond; Cond = std::string("MI->getNumOperands() == ") + llvm::utostr(LastOpNo); IAP->addCond(Cond); bool CantHandle = false; for (unsigned i = 0, e = LastOpNo; i != e; ++i) { const CodeGenInstAlias::ResultOperand &RO = CGA->ResultOperands[i]; switch (RO.Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { const Record *Rec = RO.getRecord(); StringRef ROName = RO.getName(); if (Rec->isSubClassOf("RegisterOperand")) Rec = Rec->getValueAsDef("RegClass"); if (Rec->isSubClassOf("RegisterClass")) { Cond = std::string("MI->getOperand(")+llvm::utostr(i)+").isReg()"; IAP->addCond(Cond); if (!IAP->isOpMapped(ROName)) { IAP->addOperand(ROName, i); Record *R = CGA->ResultOperands[i].getRecord(); if (R->isSubClassOf("RegisterOperand")) R = R->getValueAsDef("RegClass"); Cond = std::string("MRI.getRegClass(") + Target.getName() + "::" + R->getName() + "RegClassID)" ".contains(MI->getOperand(" + llvm::utostr(i) + ").getReg())"; IAP->addCond(Cond); } else { Cond = std::string("MI->getOperand(") + llvm::utostr(i) + ").getReg() == MI->getOperand(" + llvm::utostr(IAP->getOpIndex(ROName)) + ").getReg()"; IAP->addCond(Cond); } } else { assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); // FIXME: We may need to handle these situations. delete IAP; IAP = 0; CantHandle = true; break; } break; } case CodeGenInstAlias::ResultOperand::K_Imm: { std::string Op = "MI->getOperand(" + llvm::utostr(i) + ")"; // Just because the alias has an immediate result, doesn't mean the // MCInst will. An MCExpr could be present, for example. IAP->addCond(Op + ".isImm()"); Cond = Op + ".getImm() == " + llvm::utostr(CGA->ResultOperands[i].getImm()); IAP->addCond(Cond); break; } case CodeGenInstAlias::ResultOperand::K_Reg: // If this is zero_reg, something's playing tricks we're not // equipped to handle. if (!CGA->ResultOperands[i].getRegister()) { CantHandle = true; break; } Cond = std::string("MI->getOperand(") + llvm::utostr(i) + ").getReg() == " + Target.getName() + "::" + CGA->ResultOperands[i].getRegister()->getName(); IAP->addCond(Cond); break; } if (!IAP) break; } if (CantHandle) continue; IAPrinterMap[I->first].push_back(IAP); } } std::string Header; raw_string_ostream HeaderO(Header); HeaderO << "bool " << Target.getName() << ClassName << "::printAliasInstr(const MCInst" << " *MI, raw_ostream &OS) {\n"; std::string Cases; raw_string_ostream CasesO(Cases); for (std::map >::iterator I = IAPrinterMap.begin(), E = IAPrinterMap.end(); I != E; ++I) { std::vector &IAPs = I->second; std::vector UniqueIAPs; for (std::vector::iterator II = IAPs.begin(), IE = IAPs.end(); II != IE; ++II) { IAPrinter *LHS = *II; bool IsDup = false; for (std::vector::iterator III = IAPs.begin(), IIE = IAPs.end(); III != IIE; ++III) { IAPrinter *RHS = *III; if (LHS != RHS && *LHS == *RHS) { IsDup = true; break; } } if (!IsDup) UniqueIAPs.push_back(LHS); } if (UniqueIAPs.empty()) continue; CasesO.indent(2) << "case " << I->first << ":\n"; for (std::vector::iterator II = UniqueIAPs.begin(), IE = UniqueIAPs.end(); II != IE; ++II) { IAPrinter *IAP = *II; CasesO.indent(4); IAP->print(CasesO); CasesO << '\n'; } CasesO.indent(4) << "return false;\n"; } if (CasesO.str().empty()) { O << HeaderO.str(); O << " return false;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; return; } O << HeaderO.str(); O.indent(2) << "const char *AsmString;\n"; O.indent(2) << "switch (MI->getOpcode()) {\n"; O.indent(2) << "default: return false;\n"; O << CasesO.str(); O.indent(2) << "}\n\n"; // Code that prints the alias, replacing the operands with the ones from the // MCInst. O << " unsigned I = 0;\n"; O << " while (AsmString[I] != ' ' && AsmString[I] != '\\0')\n"; O << " ++I;\n"; O << " OS << '\\t' << StringRef(AsmString, I);\n"; O << " if (AsmString[I] != '\\0') {\n"; O << " OS << '\\t';\n"; O << " do {\n"; O << " if (AsmString[I] == '$') {\n"; O << " ++I;\n"; O << " printOperand(MI, unsigned(AsmString[I++]) - 1, OS);\n"; O << " } else {\n"; O << " OS << AsmString[I++];\n"; O << " }\n"; O << " } while (AsmString[I] != '\\0');\n"; O << " }\n\n"; O << " return true;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; } AsmWriterEmitter::AsmWriterEmitter(RecordKeeper &R) : Records(R), Target(R) { Record *AsmWriter = Target.getAsmWriter(); for (CodeGenTarget::inst_iterator I = Target.inst_begin(), E = Target.inst_end(); I != E; ++I) if (!(*I)->AsmString.empty() && (*I)->TheDef->getName() != "PHI") Instructions.push_back( AsmWriterInst(**I, AsmWriter->getValueAsInt("Variant"), AsmWriter->getValueAsInt("OperandSpacing"))); // Get the instruction numbering. NumberedInstructions = Target.getInstructionsByEnumValue(); // Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not // all machine instructions are necessarily being printed, so there may be // target instructions not in this map. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i])); } void AsmWriterEmitter::run(raw_ostream &O) { EmitPrintInstruction(O); EmitGetRegisterName(O); EmitPrintAliasInstruction(O); } namespace llvm { void EmitAsmWriter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Assembly Writer Source Fragment", OS); AsmWriterEmitter(RK).run(OS); } } // End llvm namespace