//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class wraps target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes throw exceptions on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenIntrinsics.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; static cl::opt AsmParserNum("asmparsernum", cl::init(0), cl::desc("Make -gen-asm-parser emit assembly parser #N")); static cl::opt AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N")); /// getValueType - Return the EVT::SimpleValueType that the specified TableGen /// record corresponds to. EVT::SimpleValueType llvm::getValueType(Record *Rec) { return (EVT::SimpleValueType)Rec->getValueAsInt("Value"); } std::string llvm::getName(EVT::SimpleValueType T) { switch (T) { case EVT::Other: return "UNKNOWN"; case EVT::iPTR: return "TLI.getPointerTy()"; case EVT::iPTRAny: return "TLI.getPointerTy()"; default: return getEnumName(T); } } std::string llvm::getEnumName(EVT::SimpleValueType T) { switch (T) { case EVT::Other: return "EVT::Other"; case EVT::i1: return "EVT::i1"; case EVT::i8: return "EVT::i8"; case EVT::i16: return "EVT::i16"; case EVT::i32: return "EVT::i32"; case EVT::i64: return "EVT::i64"; case EVT::i128: return "EVT::i128"; case EVT::iAny: return "EVT::iAny"; case EVT::fAny: return "EVT::fAny"; case EVT::vAny: return "EVT::vAny"; case EVT::f32: return "EVT::f32"; case EVT::f64: return "EVT::f64"; case EVT::f80: return "EVT::f80"; case EVT::f128: return "EVT::f128"; case EVT::ppcf128: return "EVT::ppcf128"; case EVT::Flag: return "EVT::Flag"; case EVT::isVoid:return "EVT::isVoid"; case EVT::v2i8: return "EVT::v2i8"; case EVT::v4i8: return "EVT::v4i8"; case EVT::v8i8: return "EVT::v8i8"; case EVT::v16i8: return "EVT::v16i8"; case EVT::v32i8: return "EVT::v32i8"; case EVT::v2i16: return "EVT::v2i16"; case EVT::v4i16: return "EVT::v4i16"; case EVT::v8i16: return "EVT::v8i16"; case EVT::v16i16: return "EVT::v16i16"; case EVT::v2i32: return "EVT::v2i32"; case EVT::v4i32: return "EVT::v4i32"; case EVT::v8i32: return "EVT::v8i32"; case EVT::v1i64: return "EVT::v1i64"; case EVT::v2i64: return "EVT::v2i64"; case EVT::v4i64: return "EVT::v4i64"; case EVT::v2f32: return "EVT::v2f32"; case EVT::v4f32: return "EVT::v4f32"; case EVT::v8f32: return "EVT::v8f32"; case EVT::v2f64: return "EVT::v2f64"; case EVT::v4f64: return "EVT::v4f64"; case EVT::Metadata: return "EVT::Metadata"; case EVT::iPTR: return "EVT::iPTR"; case EVT::iPTRAny: return "EVT::iPTRAny"; default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; } } /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. /// std::string llvm::getQualifiedName(const Record *R) { std::string Namespace = R->getValueAsString("Namespace"); if (Namespace.empty()) return R->getName(); return Namespace + "::" + R->getName(); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget() { std::vector Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) throw std::string("ERROR: No 'Target' subclasses defined!"); if (Targets.size() != 1) throw std::string("ERROR: Multiple subclasses of Target defined!"); TargetRec = Targets[0]; } const std::string &CodeGenTarget::getName() const { return TargetRec->getName(); } std::string CodeGenTarget::getInstNamespace() const { std::string InstNS; for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { InstNS = i->second.Namespace; // Make sure not to pick up "TargetInstrInfo" by accidentally getting // the namespace off the PHI instruction or something. if (InstNS != "TargetInstrInfo") break; } return InstNS; } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *CodeGenTarget::getAsmParser() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); if (AsmParserNum >= LI.size()) throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; return LI[AsmParserNum]; } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; return LI[AsmWriterNum]; } void CodeGenTarget::ReadRegisters() const { std::vector Regs = Records.getAllDerivedDefinitions("Register"); if (Regs.empty()) throw std::string("No 'Register' subclasses defined!"); Registers.reserve(Regs.size()); Registers.assign(Regs.begin(), Regs.end()); } CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { DeclaredSpillSize = R->getValueAsInt("SpillSize"); DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); } const std::string &CodeGenRegister::getName() const { return TheDef->getName(); } void CodeGenTarget::ReadRegisterClasses() const { std::vector RegClasses = Records.getAllDerivedDefinitions("RegisterClass"); if (RegClasses.empty()) throw std::string("No 'RegisterClass' subclasses defined!"); RegisterClasses.reserve(RegClasses.size()); RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); } std::vector CodeGenTarget::getRegisterVTs(Record *R) const { std::vector Result; const std::vector &RCs = getRegisterClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) { const CodeGenRegisterClass &RC = RegisterClasses[i]; for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { if (R == RC.Elements[ei]) { const std::vector &InVTs = RC.getValueTypes(); for (unsigned i = 0, e = InVTs.size(); i != e; ++i) Result.push_back(InVTs[i]); } } } return Result; } CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { // Rename anonymous register classes. if (R->getName().size() > 9 && R->getName()[9] == '.') { static unsigned AnonCounter = 0; R->setName("AnonRegClass_"+utostr(AnonCounter++)); } std::vector TypeList = R->getValueAsListOfDefs("RegTypes"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) throw "RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"; VTs.push_back(getValueType(Type)); } assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); std::vector RegList = R->getValueAsListOfDefs("MemberList"); for (unsigned i = 0, e = RegList.size(); i != e; ++i) { Record *Reg = RegList[i]; if (!Reg->isSubClassOf("Register")) throw "Register Class member '" + Reg->getName() + "' does not derive from the Register class!"; Elements.push_back(Reg); } std::vector SubRegClassList = R->getValueAsListOfDefs("SubRegClassList"); for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) { Record *SubRegClass = SubRegClassList[i]; if (!SubRegClass->isSubClassOf("RegisterClass")) throw "Register Class member '" + SubRegClass->getName() + "' does not derive from the RegisterClass class!"; SubRegClasses.push_back(SubRegClass); } // Allow targets to override the size in bits of the RegisterClass. unsigned Size = R->getValueAsInt("Size"); Namespace = R->getValueAsString("Namespace"); SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); SpillAlignment = R->getValueAsInt("Alignment"); CopyCost = R->getValueAsInt("CopyCost"); MethodBodies = R->getValueAsCode("MethodBodies"); MethodProtos = R->getValueAsCode("MethodProtos"); } const std::string &CodeGenRegisterClass::getName() const { return TheDef->getName(); } void CodeGenTarget::ReadLegalValueTypes() const { const std::vector &RCs = getRegisterClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) LegalValueTypes.push_back(RCs[i].VTs[ri]); // Remove duplicates. std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), LegalValueTypes.end()), LegalValueTypes.end()); } void CodeGenTarget::ReadInstructions() const { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) throw std::string("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. std::string InstFormatName = getAsmWriter()->getValueAsString("InstFormatName"); for (unsigned i = 0, e = Insts.size(); i != e; ++i) { std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); Instructions.insert(std::make_pair(Insts[i]->getName(), CodeGenInstruction(Insts[i], AsmStr))); } } /// getInstructionsByEnumValue - Return all of the instructions defined by the /// target, ordered by their enum value. void CodeGenTarget:: getInstructionsByEnumValue(std::vector &NumberedInstructions) { std::map::const_iterator I; I = getInstructions().find("PHI"); if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; const CodeGenInstruction *PHI = &I->second; I = getInstructions().find("INLINEASM"); if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; const CodeGenInstruction *INLINEASM = &I->second; I = getInstructions().find("DBG_LABEL"); if (I == Instructions.end()) throw "Could not find 'DBG_LABEL' instruction!"; const CodeGenInstruction *DBG_LABEL = &I->second; I = getInstructions().find("EH_LABEL"); if (I == Instructions.end()) throw "Could not find 'EH_LABEL' instruction!"; const CodeGenInstruction *EH_LABEL = &I->second; I = getInstructions().find("GC_LABEL"); if (I == Instructions.end()) throw "Could not find 'GC_LABEL' instruction!"; const CodeGenInstruction *GC_LABEL = &I->second; I = getInstructions().find("DECLARE"); if (I == Instructions.end()) throw "Could not find 'DECLARE' instruction!"; const CodeGenInstruction *DECLARE = &I->second; I = getInstructions().find("EXTRACT_SUBREG"); if (I == Instructions.end()) throw "Could not find 'EXTRACT_SUBREG' instruction!"; const CodeGenInstruction *EXTRACT_SUBREG = &I->second; I = getInstructions().find("INSERT_SUBREG"); if (I == Instructions.end()) throw "Could not find 'INSERT_SUBREG' instruction!"; const CodeGenInstruction *INSERT_SUBREG = &I->second; I = getInstructions().find("IMPLICIT_DEF"); if (I == Instructions.end()) throw "Could not find 'IMPLICIT_DEF' instruction!"; const CodeGenInstruction *IMPLICIT_DEF = &I->second; I = getInstructions().find("SUBREG_TO_REG"); if (I == Instructions.end()) throw "Could not find 'SUBREG_TO_REG' instruction!"; const CodeGenInstruction *SUBREG_TO_REG = &I->second; I = getInstructions().find("COPY_TO_REGCLASS"); if (I == Instructions.end()) throw "Could not find 'COPY_TO_REGCLASS' instruction!"; const CodeGenInstruction *COPY_TO_REGCLASS = &I->second; // Print out the rest of the instructions now. NumberedInstructions.push_back(PHI); NumberedInstructions.push_back(INLINEASM); NumberedInstructions.push_back(DBG_LABEL); NumberedInstructions.push_back(EH_LABEL); NumberedInstructions.push_back(GC_LABEL); NumberedInstructions.push_back(DECLARE); NumberedInstructions.push_back(EXTRACT_SUBREG); NumberedInstructions.push_back(INSERT_SUBREG); NumberedInstructions.push_back(IMPLICIT_DEF); NumberedInstructions.push_back(SUBREG_TO_REG); NumberedInstructions.push_back(COPY_TO_REGCLASS); for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) if (&II->second != PHI && &II->second != INLINEASM && &II->second != DBG_LABEL && &II->second != EH_LABEL && &II->second != GC_LABEL && &II->second != DECLARE && &II->second != EXTRACT_SUBREG && &II->second != INSERT_SUBREG && &II->second != IMPLICIT_DEF && &II->second != SUBREG_TO_REG && &II->second != COPY_TO_REGCLASS) NumberedInstructions.push_back(&II->second); } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = ::getValueType(R->getValueAsDef("Ty")); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = R->getValueAsString("SelectFunc"); RootNodes = R->getValueAsListOfDefs("RootNodes"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInFlag") { Properties |= 1 << SDNPOptInFlag; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else { errs() << "Unsupported SD Node property '" << PropList[i]->getName() << "' on ComplexPattern '" << R->getName() << "'!\n"; exit(1); } // Parse the attributes. Attributes = 0; PropList = R->getValueAsListOfDefs("Attributes"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "CPAttrParentAsRoot") { Attributes |= 1 << CPAttrParentAsRoot; } else { errs() << "Unsupported pattern attribute '" << PropList[i]->getName() << "' on ComplexPattern '" << R->getName() << "'!\n"; exit(1); } } //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// std::vector llvm::LoadIntrinsics(const RecordKeeper &RC, bool TargetOnly) { std::vector I = RC.getAllDerivedDefinitions("Intrinsic"); std::vector Result; for (unsigned i = 0, e = I.size(); i != e; ++i) { bool isTarget = I[i]->getValueAsBit("isTarget"); if (isTarget == TargetOnly) Result.push_back(CodeGenIntrinsic(I[i])); } return Result; } CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { TheDef = R; std::string DefName = R->getName(); ModRef = WriteMem; isOverloaded = false; isCommutative = false; if (DefName.size() <= 4 || std::string(DefName.begin(), DefName.begin() + 4) != "int_") throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; EnumName = std::string(DefName.begin()+4, DefName.end()); if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); TargetPrefix = R->getValueAsString("TargetPrefix"); Name = R->getValueAsString("LLVMName"); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm."; for (unsigned i = 0, e = EnumName.size(); i != e; ++i) Name += (EnumName[i] == '_') ? '.' : EnumName[i]; } else { // Verify it starts with "llvm.". if (Name.size() <= 5 || std::string(Name.begin(), Name.begin() + 5) != "llvm.") throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; } // If TargetPrefix is specified, make sure that Name starts with // "llvm..". if (!TargetPrefix.empty()) { if (Name.size() < 6+TargetPrefix.size() || std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) != (TargetPrefix + ".")) throw "Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"; } // Parse the list of return types. std::vector OverloadedVTs; ListInit *TypeList = R->getValueAsListInit("RetTypes"); for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); EVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || VT == EVT::iAny || VT == EVT::vAny) && "Expected iAny or vAny type"); } else { VT = getValueType(TyEl->getValueAsDef("VT")); } if (EVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded |= true; } IS.RetVTs.push_back(VT); IS.RetTypeDefs.push_back(TyEl); } if (IS.RetVTs.size() == 0) throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; // Parse the list of parameter types. TypeList = R->getValueAsListInit("ParamTypes"); for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); EVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || VT == EVT::iAny || VT == EVT::vAny) && "Expected iAny or vAny type"); } else VT = getValueType(TyEl->getValueAsDef("VT")); if (EVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded |= true; } IS.ParamVTs.push_back(VT); IS.ParamTypeDefs.push_back(TyEl); } // Parse the intrinsic properties. ListInit *PropList = R->getValueAsListInit("Properties"); for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); if (Property->getName() == "IntrNoMem") ModRef = NoMem; else if (Property->getName() == "IntrReadArgMem") ModRef = ReadArgMem; else if (Property->getName() == "IntrReadMem") ModRef = ReadMem; else if (Property->getName() == "IntrWriteArgMem") ModRef = WriteArgMem; else if (Property->getName() == "IntrWriteMem") ModRef = WriteMem; else if (Property->getName() == "Commutative") isCommutative = true; else if (Property->isSubClassOf("NoCapture")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); } else assert(0 && "Unknown property!"); } }