//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "DAGISelEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Helpers for working with extended types. /// FilterVTs - Filter a list of VT's according to a predicate. /// template static std::vector FilterVTs(const std::vector &InVTs, T Filter) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) if (Filter(InVTs[i])) Result.push_back(InVTs[i]); return Result; } template static std::vector FilterEVTs(const std::vector &InVTs, T Filter) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) if (Filter((MVT::ValueType)InVTs[i])) Result.push_back(InVTs[i]); return Result; } static std::vector ConvertVTs(const std::vector &InVTs) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) Result.push_back(InVTs[i]); return Result; } static bool LHSIsSubsetOfRHS(const std::vector &LHS, const std::vector &RHS) { if (LHS.size() > RHS.size()) return false; for (unsigned i = 0, e = LHS.size(); i != e; ++i) if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) return false; return true; } /// isExtIntegerVT - Return true if the specified extended value type vector /// contains isInt or an integer value type. static bool isExtIntegerInVTs(const std::vector &EVTs) { assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); } /// isExtFloatingPointVT - Return true if the specified extended value type /// vector contains isFP or a FP value type. static bool isExtFloatingPointInVTs(const std::vector &EVTs) { assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); return EVTs[0] == MVT::isFP || !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); } //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { ConstraintType = SDTCisIntVectorOfSameSize; x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else { cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, which has NumResults results. TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, TreePatternNode *N, unsigned NumResults) const { assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); if (OpNo >= (NumResults + N->getNumChildren())) { cerr << "Invalid operand number " << OpNo << " "; N->dump(); cerr << '\n'; exit(1); } if (OpNo < NumResults) return N; // FIXME: need value # else return N->getChild(OpNo-NumResults); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { unsigned NumResults = NodeInfo.getNumResults(); assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); // Check that the number of operands is sane. Negative operands -> varargs. if (NodeInfo.getNumOperands() >= 0) { if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) TP.error(N->getOperator()->getName() + " node requires exactly " + itostr(NodeInfo.getNumOperands()) + " operands!"); } const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); case SDTCisPtrTy: { // Operand must be same as target pointer type. return NodeToApply->UpdateNodeType(MVT::iPTR, TP); } case SDTCisInt: { // If there is only one integer type supported, this must be it. std::vector IntVTs = FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); // If we found exactly one supported integer type, apply it. if (IntVTs.size() == 1) return NodeToApply->UpdateNodeType(IntVTs[0], TP); return NodeToApply->UpdateNodeType(MVT::isInt, TP); } case SDTCisFP: { // If there is only one FP type supported, this must be it. std::vector FPVTs = FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); // If we found exactly one supported FP type, apply it. if (FPVTs.size() == 1) return NodeToApply->UpdateNodeType(FPVTs[0], TP); return NodeToApply->UpdateNodeType(MVT::isFP, TP); } case SDTCisSameAs: { TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !dynamic_cast(NodeToApply->getLeafValue()) || !static_cast(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::ValueType VT = getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); if (!MVT::isInteger(VT)) TP.error(N->getOperator()->getName() + " VT operand must be integer!"); TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); // It must be integer. bool MadeChange = false; MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); // This code only handles nodes that have one type set. Assert here so // that we can change this if we ever need to deal with multiple value // types at this point. assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. return false; } case SDTCisOpSmallerThanOp: { TreePatternNode *BigOperand = getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; // This code does not currently handle nodes which have multiple types, // where some types are integer, and some are fp. Assert that this is not // the case. assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && !(isExtIntegerInVTs(BigOperand->getExtTypes()) && isExtFloatingPointInVTs(BigOperand->getExtTypes())) && "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); if (isExtIntegerInVTs(NodeToApply->getExtTypes())) MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); if (isExtIntegerInVTs(BigOperand->getExtTypes())) MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); std::vector VTs = CGT.getLegalValueTypes(); if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { VTs = FilterVTs(VTs, MVT::isInteger); } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { VTs = FilterVTs(VTs, MVT::isFloatingPoint); } else { VTs.clear(); } switch (VTs.size()) { default: // Too many VT's to pick from. case 0: break; // No info yet. case 1: // Only one VT of this flavor. Cannot ever satisify the constraints. return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw case 2: // If we have exactly two possible types, the little operand must be the // small one, the big operand should be the big one. Common with // float/double for example. assert(VTs[0] < VTs[1] && "Should be sorted!"); MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); break; } return MadeChange; } case SDTCisIntVectorOfSameSize: { TreePatternNode *OtherOperand = getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, N, NumResults); if (OtherOperand->hasTypeSet()) { if (!MVT::isVector(OtherOperand->getTypeNum(0))) TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); MVT::ValueType IVT = OtherOperand->getTypeNum(0); IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); return NodeToApply->UpdateNodeType(IVT, TP); } return false; } } return false; } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) { if (PropList[i]->getName() == "SDNPCommutative") { Properties |= 1 << SDNPCommutative; } else if (PropList[i]->getName() == "SDNPAssociative") { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOutFlag") { Properties |= 1 << SDNPOutFlag; } else if (PropList[i]->getName() == "SDNPInFlag") { Properties |= 1 << SDNPInFlag; } else if (PropList[i]->getName() == "SDNPOptInFlag") { Properties |= 1 << SDNPOptInFlag; } else { cerr << "Unknown SD Node property '" << PropList[i]->getName() << "' on node '" << R->getName() << "'!\n"; exit(1); } } // Parse the type constraints. std::vector ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } /// UpdateNodeType - Set the node type of N to VT if VT contains /// information. If N already contains a conflicting type, then throw an /// exception. This returns true if any information was updated. /// bool TreePatternNode::UpdateNodeType(const std::vector &ExtVTs, TreePattern &TP) { assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) return false; if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { setTypes(ExtVTs); return true; } if (getExtTypeNum(0) == MVT::iPTR) { if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) return false; if (isExtIntegerInVTs(ExtVTs)) { std::vector FVTs = FilterEVTs(ExtVTs, MVT::isInteger); if (FVTs.size()) { setTypes(ExtVTs); return true; } } } if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); if (getExtTypes() == FVTs) return false; setTypes(FVTs); return true; } if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { //assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); if (getExtTypes() == FVTs) return false; if (FVTs.size()) { setTypes(FVTs); return true; } } if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isFloatingPoint); if (getExtTypes() == FVTs) return false; setTypes(FVTs); return true; } // If we know this is an int or fp type, and we are told it is a specific one, // take the advice. // // Similarly, we should probably set the type here to the intersection of // {isInt|isFP} and ExtVTs if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { setTypes(ExtVTs); return true; } if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { setTypes(ExtVTs); return true; } if (isLeaf()) { dump(); cerr << " "; TP.error("Type inference contradiction found in node!"); } else { TP.error("Type inference contradiction found in node " + getOperator()->getName() + "!"); } return true; // unreachable } void TreePatternNode::print(std::ostream &OS) const { if (isLeaf()) { OS << *getLeafValue(); } else { OS << "(" << getOperator()->getName(); } // FIXME: At some point we should handle printing all the value types for // nodes that are multiply typed. switch (getExtTypeNum(0)) { case MVT::Other: OS << ":Other"; break; case MVT::isInt: OS << ":isInt"; break; case MVT::isFP : OS << ":isFP"; break; case MVT::isUnknown: ; /*OS << ":?";*/ break; case MVT::iPTR: OS << ":iPTR"; break; default: { std::string VTName = llvm::getName(getTypeNum(0)); // Strip off MVT:: prefix if present. if (VTName.substr(0,5) == "MVT::") VTName = VTName.substr(5); OS << ":" << VTName; break; } } if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } if (!PredicateFn.empty()) OS << "<>"; if (TransformFn) OS << "<getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(*cerr.stream()); } /// isIsomorphicTo - Return true if this node is recursively isomorphic to /// the specified node. For this comparison, all of the state of the node /// is considered, except for the assigned name. Nodes with differing names /// that are otherwise identical are considered isomorphic. bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { if (N == this) return true; if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || getPredicateFn() != N->getPredicateFn() || getTransformFn() != N->getTransformFn()) return false; if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) if (DefInit *NDI = dynamic_cast(N->getLeafValue())) return DI->getDef() == NDI->getDef(); return getLeafValue() == N->getLeafValue(); } if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->isIsomorphicTo(N->getChild(i))) return false; return true; } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue()); } else { std::vector CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren); } New->setName(getName()); New->setTypes(getExtTypes()); New->setPredicateFn(getPredicateFn()); New->setTransformFn(getTransformFn()); return New; } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); if (dynamic_cast(Val) && static_cast(Val)->getDef()->getName() == "node") { // We found a use of a formal argument, replace it with its value. Child = ArgMap[Child->getName()]; assert(Child && "Couldn't find formal argument!"); setChild(i, Child); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) setChild(i, getChild(i)->InlinePatternFragments(TP)); return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); FragTree->UpdateNodeType(getExtTypes(), TP); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! return FragTree; } /// getImplicitType - Check to see if the specified record has an implicit /// type which should be applied to it. This infer the type of register /// references from the register file information, for example. /// static std::vector getImplicitType(Record *R, bool NotRegisters, TreePattern &TP) { // Some common return values std::vector Unknown(1, MVT::isUnknown); std::vector Other(1, MVT::Other); // Check to see if this is a register or a register class... if (R->isSubClassOf("RegisterClass")) { if (NotRegisters) return Unknown; const CodeGenRegisterClass &RC = TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); return ConvertVTs(RC.getValueTypes()); } else if (R->isSubClassOf("PatFrag")) { // Pattern fragment types will be resolved when they are inlined. return Unknown; } else if (R->isSubClassOf("Register")) { if (NotRegisters) return Unknown; const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); return T.getRegisterVTs(R); } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { // Using a VTSDNode or CondCodeSDNode. return Other; } else if (R->isSubClassOf("ComplexPattern")) { if (NotRegisters) return Unknown; std::vector ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); return ComplexPat; } else if (R->getName() == "ptr_rc") { Other[0] = MVT::iPTR; return Other; } else if (R->getName() == "node" || R->getName() == "srcvalue") { // Placeholder. return Unknown; } TP.error("Unknown node flavor used in pattern: " + R->getName()); return Other; } /// ApplyTypeConstraints - Apply all of the type constraints relevent to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { DAGISelEmitter &ISE = TP.getDAGISelEmitter(); if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) { // If it's a regclass or something else known, include the type. return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); } else if (IntInit *II = dynamic_cast(getLeafValue())) { // Int inits are always integers. :) bool MadeChange = UpdateNodeType(MVT::isInt, TP); if (hasTypeSet()) { // At some point, it may make sense for this tree pattern to have // multiple types. Assert here that it does not, so we revisit this // code when appropriate. assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); MVT::ValueType VT = getTypeNum(0); for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) assert(getTypeNum(i) == VT && "TreePattern has too many types!"); VT = getTypeNum(0); if (VT != MVT::iPTR) { unsigned Size = MVT::getSizeInBits(VT); // Make sure that the value is representable for this type. if (Size < 32) { int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val != II->getValue()) TP.error("Sign-extended integer value '" + itostr(II->getValue())+ "' is out of range for type '" + getEnumName(getTypeNum(0)) + "'!"); } } } return MadeChange; } return false; } // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); // Types of operands must match. MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); MadeChange |= UpdateNodeType(MVT::isVoid, TP); return MadeChange; } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || getOperator() == ISE.get_intrinsic_w_chain_sdnode() || getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { unsigned IID = dynamic_cast(getChild(0)->getLeafValue())->getValue(); const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); bool MadeChange = false; // Apply the result type to the node. MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); if (getNumChildren() != Int.ArgVTs.size()) TP.error("Intrinsic '" + Int.Name + "' expects " + utostr(Int.ArgVTs.size()-1) + " operands, not " + utostr(getNumChildren()-1) + " operands!"); // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { MVT::ValueType OpVT = Int.ArgVTs[i]; MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); } return MadeChange; } else if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); // Branch, etc. do not produce results and top-level forms in instr pattern // must have void types. if (NI.getNumResults() == 0) MadeChange |= UpdateNodeType(MVT::isVoid, TP); // If this is a vector_shuffle operation, apply types to the build_vector // operation. The types of the integers don't matter, but this ensures they // won't get checked. if (getOperator()->getName() == "vector_shuffle" && getChild(2)->getOperator()->getName() == "build_vector") { TreePatternNode *BV = getChild(2); const std::vector &LegalVTs = ISE.getTargetInfo().getLegalValueTypes(); MVT::ValueType LegalIntVT = MVT::Other; for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { LegalIntVT = LegalVTs[i]; break; } assert(LegalIntVT != MVT::Other && "No legal integer VT?"); for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); } return MadeChange; } else if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = ISE.getInstruction(getOperator()); bool MadeChange = false; unsigned NumResults = Inst.getNumResults(); assert(NumResults <= 1 && "Only supports zero or one result instrs!"); CodeGenInstruction &InstInfo = ISE.getTargetInfo().getInstruction(getOperator()->getName()); // Apply the result type to the node if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack. MadeChange = UpdateNodeType(MVT::isVoid, TP); } else { Record *ResultNode = Inst.getResult(0); if (ResultNode->getName() == "ptr_rc") { std::vector VT; VT.push_back(MVT::iPTR); MadeChange = UpdateNodeType(VT, TP); } else { assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); const CodeGenRegisterClass &RC = ISE.getTargetInfo().getRegisterClass(ResultNode); MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); } } unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); // If the instruction expects a predicate operand, we codegen this by // setting the predicate to it's "execute always" value. if (OperandNode->isSubClassOf("PredicateOperand")) continue; // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' expects more operands than were provided."); MVT::ValueType VT; TreePatternNode *Child = getChild(ChildNo++); if (OperandNode->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = ISE.getTargetInfo().getRegisterClass(OperandNode); MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); } else if (OperandNode->isSubClassOf("Operand")) { VT = getValueType(OperandNode->getValueAsDef("Type")); MadeChange |= Child->UpdateNodeType(VT, TP); } else if (OperandNode->getName() == "ptr_rc") { MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); } else { assert(0 && "Unknown operand type!"); abort(); } MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); } if (ChildNo != getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' was provided too many operands!"); return MadeChange; } else { assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); return MadeChange; } return false; } } /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the /// RHS of a commutative operation, not the on LHS. static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { if (!N->isLeaf() && N->getOperator()->getName() == "imm") return true; if (N->isLeaf() && dynamic_cast(N->getLeafValue())) return true; return false; } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. This is /// used as a santity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ if (isLeaf()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->canPatternMatch(Reason, ISE)) return false; // If this is an intrinsic, handle cases that would make it not match. For // example, if an operand is required to be an immediate. if (getOperator()->isSubClassOf("Intrinsic")) { // TODO: return true; } // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); if (NodeInfo.hasProperty(SDNPCommutative)) { // Scan all of the operands of the node and make sure that only the last one // is a constant node, unless the RHS also is. if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) if (OnlyOnRHSOfCommutative(getChild(i))) { Reason="Immediate value must be on the RHS of commutative operators!"; return false; } } } return true; } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; Trees.push_back(ParseTreePattern(Pat)); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; Trees.push_back(Pat); } void TreePattern::error(const std::string &Msg) const { dump(); throw "In " + TheRecord->getName() + ": " + Msg; } TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { DefInit *OpDef = dynamic_cast(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); Init *Arg = Dag->getArg(0); TreePatternNode *New; if (DefInit *DI = dynamic_cast(Arg)) { Record *R = DI->getDef(); if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(0, new DagInit(DI, std::vector >())); return ParseTreePattern(Dag); } New = new TreePatternNode(DI); } else if (DagInit *DI = dynamic_cast(Arg)) { New = ParseTreePattern(DI); } else if (IntInit *II = dynamic_cast(Arg)) { New = new TreePatternNode(II); if (!Dag->getArgName(0).empty()) error("Constant int argument should not have a name!"); } else if (BitsInit *BI = dynamic_cast(Arg)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); if (II == 0 || !dynamic_cast(II)) error("Bits value must be constants!"); New = new TreePatternNode(dynamic_cast(II)); if (!Dag->getArgName(0).empty()) error("Constant int argument should not have a name!"); } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); return 0; } // Apply the type cast. New->UpdateNodeType(getValueType(Operator), *this); New->setName(Dag->getArgName(0)); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && Operator->getName() != "set") error("Unrecognized node '" + Operator->getName() + "'!"); // Check to see if this is something that is illegal in an input pattern. if (isInputPattern && (Operator->isSubClassOf("Instruction") || Operator->isSubClassOf("SDNodeXForm"))) error("Cannot use '" + Operator->getName() + "' in an input pattern!"); std::vector Children; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { Init *Arg = Dag->getArg(i); if (DagInit *DI = dynamic_cast(Arg)) { Children.push_back(ParseTreePattern(DI)); if (Children.back()->getName().empty()) Children.back()->setName(Dag->getArgName(i)); } else if (DefInit *DefI = dynamic_cast(Arg)) { Record *R = DefI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(i, new DagInit(DefI, std::vector >())); --i; // Revisit this node... } else { TreePatternNode *Node = new TreePatternNode(DefI); Node->setName(Dag->getArgName(i)); Children.push_back(Node); // Input argument? if (R->getName() == "node") { if (Dag->getArgName(i).empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(Dag->getArgName(i)); } } } else if (IntInit *II = dynamic_cast(Arg)) { TreePatternNode *Node = new TreePatternNode(II); if (!Dag->getArgName(i).empty()) error("Constant int argument should not have a name!"); Children.push_back(Node); } else if (BitsInit *BI = dynamic_cast(Arg)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); if (II == 0 || !dynamic_cast(II)) error("Bits value must be constants!"); TreePatternNode *Node = new TreePatternNode(dynamic_cast(II)); if (!Dag->getArgName(i).empty()) error("Constant int argument should not have a name!"); Children.push_back(Node); } else { cerr << '"'; Arg->dump(); cerr << "\": "; error("Unknown leaf value for tree pattern!"); } } // If the operator is an intrinsic, then this is just syntactic sugar for for // (intrinsic_* , ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; // If this intrinsic returns void, it must have side-effects and thus a // chain. if (Int.ArgVTs[0] == MVT::isVoid) { Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { // Has side-effects, requires chain. Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); } else { // Otherwise, no chain. Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); } TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); Children.insert(Children.begin(), IIDNode); } return new TreePatternNode(Operator, Children); } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are infered, false /// otherwise. Throw an exception if a type contradiction is found. bool TreePattern::InferAllTypes() { bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(std::ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(*cerr.stream()); } //===----------------------------------------------------------------------===// // DAGISelEmitter implementation // // Parse all of the SDNode definitions for the target, populating SDNodes. void DAGISelEmitter::ParseNodeInfo() { std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } // Get the buildin intrinsic nodes. intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { OS << "\n// Node transformations.\n"; std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsCode("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, std::make_pair(SDNode, Code))); if (!Code.empty()) { std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline SDOperand Transform_" << XFormNode->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; } Xforms.pop_back(); } } void DAGISelEmitter::ParseComplexPatterns() { std::vector AMs = Records.getAllDerivedDefinitions("ComplexPattern"); while (!AMs.empty()) { ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); AMs.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// /// This also emits all of the predicate functions to the output file. /// void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments and emit predicate functions. OS << "\n// Predicate functions.\n"; for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; // Validate the argument list, converting it to map, to discard duplicates. std::vector &Args = P->getArgList(); std::set OperandsMap(Args.begin(), Args.end()); if (OperandsMap.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dynamic_cast(OpsList->getOperator()); if (!OpsOp || OpsOp->getDef()->getName() != "ops") P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast(OpsList->getArg(j)) || static_cast(OpsList->getArg(j))-> getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsMap.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsMap.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsMap.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsMap.begin() + "'!"); // If there is a code init for this fragment, emit the predicate code and // keep track of the fact that this fragment uses it. std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) { if (P->getOnlyTree()->isLeaf()) OS << "inline bool Predicate_" << Fragments[i]->getName() << "(SDNode *N) {\n"; else { std::string ClassName = getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline bool Predicate_" << Fragments[i]->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; } OS << Code << "\n}\n"; P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); } // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } OS << "\n\n"; // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) { TreePattern *ThePat = I->second; ThePat->InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { ThePat->InferAllTypes(); } catch (...) { // If this pattern fragment is not supported by this target (no types can // satisfy its constraints), just ignore it. If the bogus pattern is // actually used by instructions, the type consistency error will be // reported there. } // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } } void DAGISelEmitter::ParsePredicateOperands() { std::vector PredOps = Records.getAllDerivedDefinitions("PredicateOperand"); // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = new DefInit(SDNodes.begin()->first); for (unsigned i = 0, e = PredOps.size(); i != e; ++i) { DagInit *AlwaysInfo = PredOps[i]->getValueAsDag("ExecuteAlways"); // Clone the AlwaysInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector > Ops; for (unsigned op = 0, e = AlwaysInfo->getNumArgs(); op != e; ++op) Ops.push_back(std::make_pair(AlwaysInfo->getArg(op), AlwaysInfo->getArgName(op))); DagInit *DI = new DagInit(SomeSDNode, Ops); // Create a TreePattern to parse this. TreePattern P(PredOps[i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGPredicateOperand. DAGPredicateOperand PredOpInfo; TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; if (TPN->ContainsUnresolvedType()) throw "Value #" + utostr(i) + " of PredicateOperand '" + PredOps[i]->getName() + "' doesn't have a concrete type!"; PredOpInfo.AlwaysOps.push_back(TPN); } // Insert it into the PredicateOperands map so we can find it later. PredicateOperands[PredOps[i]] = PredOpInfo; } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::vector &InstImpInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (DI && DI->getDef()->isSubClassOf("RegisterClass")) I->error("Input " + DI->getDef()->getName() + " must be named!"); else if (DI && DI->getDef()->isSubClassOf("Register")) InstImpInputs.push_back(DI->getDef()); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); Rec = Pat->getOperator(); } // SRCVALUE nodes are ignored. if (Rec->getName() == "srcvalue") return false; TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; } else { Record *SlotRec; if (Slot->isLeaf()) { SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getExtTypes() != Pat->getExtTypes()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); } return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void DAGISelEmitter:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::map&InstResults, std::vector &InstImpInputs, std::vector &InstImpResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } else if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpInputs, InstImpResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = false; if (Pat->getNumChildren() == 0) isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); else if (Pat->getNumChildren() & 1) I->error("set requires an even number of operands"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumValues = Pat->getNumChildren()/2; for (unsigned i = 0; i != NumValues; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val) I->error("set destination should be a register!"); if (Val->getDef()->isSubClassOf("RegisterClass") || Val->getDef()->getName() == "ptr_rc") { if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Dest; } else if (Val->getDef()->isSubClassOf("Register")) { InstImpResults.push_back(Val->getDef()); } else { I->error("set destination should be a register!"); } // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), InstInputs, InstResults, InstImpInputs, InstImpResults); } } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void DAGISelEmitter::ParseInstructions() { std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector Results; std::vector Operands; CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); if (InstInfo.OperandList.size() != 0) { // FIXME: temporary hack... if (InstInfo.noResults) { // These produce no results for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } else { // Assume the first operand is the result. Results.push_back(InstInfo.OperandList[0].Rec); // The rest are inputs. for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } } // Create and insert the instruction. std::vector ImpResults; std::vector ImpOperands; Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands, ImpResults, ImpOperands))); continue; // no pattern. } // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map InstResults; std::vector InstImpInputs; std::vector InstImpResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getExtTypeNum(0) != MVT::isVoid) I->error("Top-level forms in instruction pattern should have" " void types"); // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, InstImpInputs, InstImpResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. std::vector &Args = I->getArgList(); assert(Args.empty() && "Args list should still be empty here!"); CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); // Check that all of the results occur first in the list. std::vector Results; TreePatternNode *Res0Node = NULL; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.OperandList.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.OperandList[i].Name; // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (RNode == 0) I->error("Operand $" + OpName + " does not exist in operand list!"); if (i == 0) Res0Node = RNode; Record *R = dynamic_cast(RNode->getLeafValue())->getDef(); if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (CGI.OperandList[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. Results.push_back(CGI.OperandList[i].Rec); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map InstInputsCheck(InstInputs); std::vector ResultNodeOperands; std::vector Operands; for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; const std::string &OpName = Op.Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) { // If this is an predicate operand with an ExecuteAlways set filled in, // we can ignore this. When we codegen it, we will do so as always // executed. if (Op.Rec->isSubClassOf("PredicateOperand")) { // Does it have a non-empty ExecuteAlways field? If so, ignore this // operand. if (!getPredicateOperand(Op.Rec).AlwaysOps.empty()) continue; } I->error("Operand $" + OpName + " does not appear in the instruction pattern"); } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (InVal->isLeaf() && dynamic_cast(InVal->getLeafValue())) { Record *InRec = static_cast(InVal->getLeafValue())->getDef(); if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) I->error("Operand $" + OpName + "'s register class disagrees" " between the operand and pattern"); } Operands.push_back(Op.Rec); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->setPredicateFn(""); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands); // Copy fully inferred output node type to instruction result pattern. if (NumResults > 0) ResultPattern->setTypes(Res0Node->getExtTypes()); // Create and insert the instruction. DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); Instructions.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the Instructions map. TreePattern Temp(I->getRecord(), ResultPattern, false, *this); Temp.InferAllTypes(); DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); DEBUG(I->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { DAGInstruction &TheInst = II->second; TreePattern *I = TheInst.getPattern(); if (I == 0) continue; // No pattern. if (I->getNumTrees() != 1) { cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; continue; } TreePatternNode *Pattern = I->getTree(0); TreePatternNode *SrcPattern; if (Pattern->getOperator()->getName() == "set") { if (Pattern->getNumChildren() != 2) continue; // Not a set of a single value (not handled so far) SrcPattern = Pattern->getChild(1)->clone(); } else{ // Not a set (store or something?) SrcPattern = Pattern; } std::string Reason; if (!SrcPattern->canPatternMatch(Reason, *this)) I->error("Instruction can never match: " + Reason); Record *Instr = II->first; TreePatternNode *DstPattern = TheInst.getResultPattern(); PatternsToMatch. push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), SrcPattern, DstPattern, Instr->getValueAsInt("AddedComplexity"))); } } void DAGISelEmitter::ParsePatterns() { std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); // Inline pattern fragments into it. Pattern->InlinePatternFragments(); ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); // Inline pattern fragments into it. Result->InlinePatternFragments(); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(); // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result->InferAllTypes(); // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or // 64-bits. Infer the other way for good measure. IterateInference = Pattern->getOnlyTree()-> UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); IterateInference |= Result->getOnlyTree()-> UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); } while (IterateInference); // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) Pattern->error("Could not infer all types in pattern!"); if (!InferredAllResultTypes) Result->error("Could not infer all types in pattern result!"); // Validate that the input pattern is correct. { std::map InstInputs; std::map InstResults; std::vector InstImpInputs; std::vector InstImpResults; FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), InstInputs, InstResults, InstImpInputs, InstImpResults); } // Promote the xform function to be an explicit node if set. std::vector ResultNodeOperands; TreePatternNode *DstPattern = Result->getOnlyTree(); for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { TreePatternNode *OpNode = DstPattern->getChild(ii); if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } DstPattern = Result->getOnlyTree(); if (!DstPattern->isLeaf()) DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands); DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); TreePattern Temp(Result->getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); std::string Reason; if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); PatternsToMatch. push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), Pattern->getOnlyTree(), Temp.getOnlyTree(), Patterns[i]->getValueAsInt("AddedComplexity"))); } } /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. static void CombineChildVariants(TreePatternNode *Orig, const std::vector > &ChildVariants, std::vector &OutVariants, DAGISelEmitter &ISE) { // Make sure that each operand has at least one variant to choose from. for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; // The end result is an all-pairs construction of the resultant pattern. std::vector Idxs; Idxs.resize(ChildVariants.size()); bool NotDone = true; while (NotDone) { // Create the variant and add it to the output list. std::vector NewChildren; for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); // Copy over properties. R->setName(Orig->getName()); R->setPredicateFn(Orig->getPredicateFn()); R->setTransformFn(Orig->getTransformFn()); R->setTypes(Orig->getExtTypes()); // If this pattern cannot every match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, ISE)) { delete R; } else { bool AlreadyExists = false; // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) // which are the same pattern. Ignore the dups. for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) if (R->isIsomorphicTo(OutVariants[i])) { AlreadyExists = true; break; } if (AlreadyExists) delete R; else OutVariants.push_back(R); } // Increment indices to the next permutation. NotDone = false; // Look for something we can increment without causing a wrap-around. for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { NotDone = true; // Found something to increment. break; } Idxs[IdxsIdx] = 0; } } } /// CombineChildVariants - A helper function for binary operators. /// static void CombineChildVariants(TreePatternNode *Orig, const std::vector &LHS, const std::vector &RHS, std::vector &OutVariants, DAGISelEmitter &ISE) { std::vector > ChildVariants; ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); } static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFn().empty() || N->getTransformFn()) { Children.push_back(N); return; } if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) Children.push_back(N->getChild(0)); else GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) Children.push_back(N->getChild(1)); else GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); } /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of /// the (potentially recursive) pattern by using algebraic laws. /// static void GenerateVariantsOf(TreePatternNode *N, std::vector &OutVariants, DAGISelEmitter &ISE) { // We cannot permute leaves. if (N->isLeaf()) { OutVariants.push_back(N); return; } // Look up interesting info about the node. const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); // If this node is associative, reassociate. if (NodeInfo.hasProperty(SDNPAssociative)) { // Reassociate by pulling together all of the linked operators std::vector MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); // Only handle child sizes of 3. Otherwise we'll end up trying too many // permutations. if (MaximalChildren.size() == 3) { // Find the variants of all of our maximal children. std::vector AVariants, BVariants, CVariants; GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. // Generate legal pair permutations of A/B/C. std::vector ABVariants; std::vector BAVariants; std::vector ACVariants; std::vector CAVariants; std::vector BCVariants; std::vector CBVariants; CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); // Combine those into the result: (x op x) op x CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); // Combine those into the result: x op (x op x) CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); return; } } // Compute permutations of all children. std::vector > ChildVariants; ChildVariants.resize(N->getNumChildren()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); // Build all permutations based on how the children were formed. CombineChildVariants(N, ChildVariants, OutVariants, ISE); // If this node is commutative, consider the commuted order. if (NodeInfo.hasProperty(SDNPCommutative)) { assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); // Don't count children which are actually register references. unsigned NC = 0; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (Child->isLeaf()) if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) continue; } NC++; } // Consider the commuted order. if (NC == 2) CombineChildVariants(N, ChildVariants[1], ChildVariants[0], OutVariants, ISE); } } // GenerateVariants - Generate variants. For example, commutative patterns can // match multiple ways. Add them to PatternsToMatch as well. void DAGISelEmitter::GenerateVariants() { DOUT << "Generating instruction variants.\n"; // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide agressive matching without // the .td file having to contain tons of variants of instructions. // // Note that this loop adds new patterns to the PatternsToMatch list, but we // intentionally do not reconsider these. Any variants of added patterns have // already been added. // for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { std::vector Variants; GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. if (Variants.empty()) // No variants for this pattern. continue; DOUT << "FOUND VARIANTS OF: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); DOUT << "\n"; for (unsigned v = 0, e = Variants.size(); v != e; ++v) { TreePatternNode *Variant = Variants[v]; DOUT << " VAR#" << v << ": "; DEBUG(Variant->dump()); DOUT << "\n"; // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { // Check to see if this variant already exists. if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { DOUT << " *** ALREADY EXISTS, ignoring variant.\n"; AlreadyExists = true; break; } } // If we already have it, ignore the variant. if (AlreadyExists) continue; // Otherwise, add it to the list of patterns we have. PatternsToMatch. push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), Variant, PatternsToMatch[i].getDstPattern(), PatternsToMatch[i].getAddedComplexity())); } DOUT << "\n"; } } // NodeIsComplexPattern - return true if N is a leaf node and a subclass of // ComplexPattern. static bool NodeIsComplexPattern(TreePatternNode *N) { return (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")); } // NodeGetComplexPattern - return the pointer to the ComplexPattern if N // is a leaf node and a subclass of ComplexPattern, else it returns NULL. static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, DAGISelEmitter &ISE) { if (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")) { return &ISE.getComplexPattern(static_cast(N->getLeafValue()) ->getDef()); } return NULL; } /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { assert((isExtIntegerInVTs(P->getExtTypes()) || isExtFloatingPointInVTs(P->getExtTypes()) || P->getExtTypeNum(0) == MVT::isVoid || P->getExtTypeNum(0) == MVT::Flag || P->getExtTypeNum(0) == MVT::iPTR) && "Not a valid pattern node to size!"); unsigned Size = 3; // The node itself. // If the root node is a ConstantSDNode, increases its size. // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast(P->getLeafValue())) Size += 2; // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); if (AM) Size += AM->getNumOperands() * 3; // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFn().empty()) ++Size; // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) Size += getPatternSize(Child, ISE); else if (Child->isLeaf()) { if (dynamic_cast(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (NodeIsComplexPattern(Child)) Size += getPatternSize(Child, ISE); else if (!Child->getPredicateFn().empty()) ++Size; } } return Size; } /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); if (II.usesCustomDAGSchedInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternCost(P->getChild(i), ISE); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternSize(P->getChild(i), ISE); return Cost; } // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; DAGISelEmitter &ISE; bool operator()(PatternToMatch *LHS, PatternToMatch *RHS) { unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); LHSSize += LHS->getAddedComplexity(); RHSSize += RHS->getAddedComplexity(); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; return getResultPatternSize(LHS->getDstPattern(), ISE) < getResultPatternSize(RHS->getDstPattern(), ISE); } }; /// getRegisterValueType - Look up and return the first ValueType of specified /// RegisterClass record static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) return RC->getValueTypeNum(0); return MVT::Other; } /// RemoveAllTypes - A quick recursive walk over a pattern which removes all /// type information from it. static void RemoveAllTypes(TreePatternNode *N) { N->removeTypes(); if (!N->isLeaf()) for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) RemoveAllTypes(N->getChild(i)); } Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { Record *N = Records.getDef(Name); if (!N || !N->isSubClassOf("SDNode")) { cerr << "Error getting SDNode '" << Name << "'!\n"; exit(1); } return N; } /// NodeHasProperty - return true if TreePatternNode has the specified /// property. static bool NodeHasProperty(TreePatternNode *N, SDNP Property, DAGISelEmitter &ISE) { if (N->isLeaf()) { const ComplexPattern *CP = NodeGetComplexPattern(N, ISE); if (CP) return CP->hasProperty(Property); return false; } Record *Operator = N->getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); return NodeInfo.hasProperty(Property); } static bool PatternHasProperty(TreePatternNode *N, SDNP Property, DAGISelEmitter &ISE) { if (NodeHasProperty(N, Property, ISE)) return true; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (PatternHasProperty(Child, Property, ISE)) return true; } return false; } class PatternCodeEmitter { private: DAGISelEmitter &ISE; // Predicates. ListInit *Predicates; // Pattern cost. unsigned Cost; // Instruction selector pattern. TreePatternNode *Pattern; // Matched instruction. TreePatternNode *Instruction; // Node to name mapping std::map VariableMap; // Node to operator mapping std::map OperatorMap; // Names of all the folded nodes which produce chains. std::vector > FoldedChains; // Original input chain(s). std::vector > OrigChains; std::set Duplicates; /// GeneratedCode - This is the buffer that we emit code to. The first int /// indicates whether this is an exit predicate (something that should be /// tested, and if true, the match fails) [when 1], or normal code to emit /// [when 0], or initialization code to emit [when 2]. std::vector > &GeneratedCode; /// GeneratedDecl - This is the set of all SDOperand declarations needed for /// the set of patterns for each top-level opcode. std::set &GeneratedDecl; /// TargetOpcodes - The target specific opcodes used by the resulting /// instructions. std::vector &TargetOpcodes; std::vector &TargetVTs; std::string ChainName; unsigned TmpNo; unsigned OpcNo; unsigned VTNo; void emitCheck(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(1, S)); } void emitCode(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(0, S)); } void emitInit(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(2, S)); } void emitDecl(const std::string &S) { assert(!S.empty() && "Invalid declaration"); GeneratedDecl.insert(S); } void emitOpcode(const std::string &Opc) { TargetOpcodes.push_back(Opc); OpcNo++; } void emitVT(const std::string &VT) { TargetVTs.push_back(VT); VTNo++; } public: PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, TreePatternNode *pattern, TreePatternNode *instr, std::vector > &gc, std::set &gd, std::vector &to, std::vector &tv) : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), GeneratedCode(gc), GeneratedDecl(gd), TargetOpcodes(to), TargetVTs(tv), TmpNo(0), OpcNo(0), VTNo(0) {} /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo /// if the match fails. At this point, we already know that the opcode for N /// matches, and the SDNode for the result has the RootName specified name. void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, const std::string &RootName, const std::string &ChainSuffix, bool &FoundChain) { bool isRoot = (P == NULL); // Emit instruction predicates. Each predicate is just a string for now. if (isRoot) { std::string PredicateCheck; for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { if (DefInit *Pred = dynamic_cast(Predicates->getElement(i))) { Record *Def = Pred->getDef(); if (!Def->isSubClassOf("Predicate")) { #ifndef NDEBUG Def->dump(); #endif assert(0 && "Unknown predicate type!"); } if (!PredicateCheck.empty()) PredicateCheck += " && "; PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; } } emitCheck(PredicateCheck); } if (N->isLeaf()) { if (IntInit *II = dynamic_cast(N->getLeafValue())) { emitCheck("cast(" + RootName + ")->getSignExtended() == " + itostr(II->getValue())); return; } else if (!NodeIsComplexPattern(N)) { assert(0 && "Cannot match this as a leaf value!"); abort(); } } // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) { std::string &VarMapEntry = VariableMap[N->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName; } else { // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. emitCheck(VarMapEntry + " == " + RootName); return; } if (!N->isLeaf()) OperatorMap[N->getName()] = N->getOperator(); } // Emit code to load the child nodes and match their contents recursively. unsigned OpNo = 0; bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE); bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE); bool EmittedUseCheck = false; if (HasChain) { if (NodeHasChain) OpNo = 1; if (!isRoot) { // Multiple uses of actual result? emitCheck(RootName + ".hasOneUse()"); EmittedUseCheck = true; if (NodeHasChain) { // If the immediate use can somehow reach this node through another // path, then can't fold it either or it will create a cycle. // e.g. In the following diagram, XX can reach ld through YY. If // ld is folded into XX, then YY is both a predecessor and a successor // of XX. // // [ld] // ^ ^ // | | // / \--- // / [YY] // | ^ // [XX]-------| bool NeedCheck = false; if (P != Pattern) NeedCheck = true; else { const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); NeedCheck = P->getOperator() == ISE.get_intrinsic_void_sdnode() || P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() || P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || PInfo.hasProperty(SDNPInFlag) || PInfo.hasProperty(SDNPOptInFlag); } if (NeedCheck) { std::string ParentName(RootName.begin(), RootName.end()-1); emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + ".Val, N.Val)"); } } } if (NodeHasChain) { if (FoundChain) { emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || " "IsChainCompatible(" + ChainName + ".Val, " + RootName + ".Val))"); OrigChains.push_back(std::make_pair(ChainName, RootName)); } else FoundChain = true; ChainName = "Chain" + ChainSuffix; emitInit("SDOperand " + ChainName + " = " + RootName + ".getOperand(0);"); } } // Don't fold any node which reads or writes a flag and has multiple uses. // FIXME: We really need to separate the concepts of flag and "glue". Those // real flag results, e.g. X86CMP output, can have multiple uses. // FIXME: If the optional incoming flag does not exist. Then it is ok to // fold it. if (!isRoot && (PatternHasProperty(N, SDNPInFlag, ISE) || PatternHasProperty(N, SDNPOptInFlag, ISE) || PatternHasProperty(N, SDNPOutFlag, ISE))) { if (!EmittedUseCheck) { // Multiple uses of actual result? emitCheck(RootName + ".hasOneUse()"); } } // If there is a node predicate for this, emit the call. if (!N->getPredicateFn().empty()) emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special // handling of certain large constants (e.g. alpha with it's 8/16/32-bit // handling stuff). Using these instructions is often far more efficient // than materializing the constant. Unfortunately, both the instcombiner // and the dag combiner can often infer that bits are dead, and thus drop // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. if (!N->isLeaf() && (N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFn().empty()) { if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. emitInit("SDOperand " + RootName + "0" + " = " + RootName + ".getOperand(" + utostr(0) + ");"); emitInit("SDOperand " + RootName + "1" + " = " + RootName + ".getOperand(" + utostr(1) + ");"); emitCheck("isa(" + RootName + "1)"); const char *MaskPredicate = N->getOperator()->getName() == "or" ? "CheckOrMask(" : "CheckAndMask("; emitCheck(MaskPredicate + RootName + "0, cast(" + RootName + "1), " + itostr(II->getValue()) + ")"); EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), ChainSuffix + utostr(0), FoundChain); return; } } } for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { emitInit("SDOperand " + RootName + utostr(OpNo) + " = " + RootName + ".getOperand(" +utostr(OpNo) + ");"); EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), ChainSuffix + utostr(OpNo), FoundChain); } // Handle cases when root is a complex pattern. const ComplexPattern *CP; if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { std::string Fn = CP->getSelectFunc(); unsigned NumOps = CP->getNumOperands(); for (unsigned i = 0; i < NumOps; ++i) { emitDecl("CPTmp" + utostr(i)); emitCode("SDOperand CPTmp" + utostr(i) + ";"); } if (CP->hasProperty(SDNPHasChain)) { emitDecl("CPInChain"); emitDecl("Chain" + ChainSuffix); emitCode("SDOperand CPInChain;"); emitCode("SDOperand Chain" + ChainSuffix + ";"); } std::string Code = Fn + "(" + RootName + ", " + RootName; for (unsigned i = 0; i < NumOps; i++) Code += ", CPTmp" + utostr(i); if (CP->hasProperty(SDNPHasChain)) { ChainName = "Chain" + ChainSuffix; Code += ", CPInChain, Chain" + ChainSuffix; } emitCheck(Code + ")"); } } void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, const std::string &RootName, const std::string &ChainSuffix, bool &FoundChain) { if (!Child->isLeaf()) { // If it's not a leaf, recursively match. const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); emitCheck(RootName + ".getOpcode() == " + CInfo.getEnumName()); EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); if (NodeHasProperty(Child, SDNPHasChain, ISE)) FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); } else { // If this child has a name associated with it, capture it in VarMap. If // we already saw this in the pattern, emit code to verify dagness. if (!Child->getName().empty()) { std::string &VarMapEntry = VariableMap[Child->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName; } else { // If we get here, this is a second reference to a specific name. // Since we already have checked that the first reference is valid, // we don't have to recursively match it, just check that it's the // same as the previously named thing. emitCheck(VarMapEntry + " == " + RootName); Duplicates.insert(RootName); return; } } // Handle leaves of various types. if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *LeafRec = DI->getDef(); if (LeafRec->isSubClassOf("RegisterClass") || LeafRec->getName() == "ptr_rc") { // Handle register references. Nothing to do here. } else if (LeafRec->isSubClassOf("Register")) { // Handle register references. } else if (LeafRec->isSubClassOf("ComplexPattern")) { // Handle complex pattern. const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE); std::string Fn = CP->getSelectFunc(); unsigned NumOps = CP->getNumOperands(); for (unsigned i = 0; i < NumOps; ++i) { emitDecl("CPTmp" + utostr(i)); emitCode("SDOperand CPTmp" + utostr(i) + ";"); } if (CP->hasProperty(SDNPHasChain)) { const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator()); FoldedChains.push_back(std::make_pair("CPInChain", PInfo.getNumResults())); ChainName = "Chain" + ChainSuffix; emitDecl("CPInChain"); emitDecl(ChainName); emitCode("SDOperand CPInChain;"); emitCode("SDOperand " + ChainName + ";"); } std::string Code = Fn + "(N, "; if (CP->hasProperty(SDNPHasChain)) { std::string ParentName(RootName.begin(), RootName.end()-1); Code += ParentName + ", "; } Code += RootName; for (unsigned i = 0; i < NumOps; i++) Code += ", CPTmp" + utostr(i); if (CP->hasProperty(SDNPHasChain)) Code += ", CPInChain, Chain" + ChainSuffix; emitCheck(Code + ")"); } else if (LeafRec->getName() == "srcvalue") { // Place holder for SRCVALUE nodes. Nothing to do here. } else if (LeafRec->isSubClassOf("ValueType")) { // Make sure this is the specified value type. emitCheck("cast(" + RootName + ")->getVT() == MVT::" + LeafRec->getName()); } else if (LeafRec->isSubClassOf("CondCode")) { // Make sure this is the specified cond code. emitCheck("cast(" + RootName + ")->get() == ISD::" + LeafRec->getName()); } else { #ifndef NDEBUG Child->dump(); cerr << " "; #endif assert(0 && "Unknown leaf type!"); } // If there is a node predicate for this, emit the call. if (!Child->getPredicateFn().empty()) emitCheck(Child->getPredicateFn() + "(" + RootName + ".Val)"); } else if (IntInit *II = dynamic_cast(Child->getLeafValue())) { emitCheck("isa(" + RootName + ")"); unsigned CTmp = TmpNo++; emitCode("int64_t CN"+utostr(CTmp)+" = cast("+ RootName + ")->getSignExtended();"); emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); } else { #ifndef NDEBUG Child->dump(); #endif assert(0 && "Unknown leaf type!"); } } } /// EmitResultCode - Emit the action for a pattern. Now that it has matched /// we actually have to build a DAG! std::vector EmitResultCode(TreePatternNode *N, bool RetSelected, bool InFlagDecled, bool ResNodeDecled, bool LikeLeaf = false, bool isRoot = false) { // List of arguments of getTargetNode() or SelectNodeTo(). std::vector NodeOps; // This is something selected from the pattern we matched. if (!N->getName().empty()) { std::string &Val = VariableMap[N->getName()]; assert(!Val.empty() && "Variable referenced but not defined and not caught earlier!"); if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { // Already selected this operand, just return the tmpval. NodeOps.push_back(Val); return NodeOps; } const ComplexPattern *CP; unsigned ResNo = TmpNo++; if (!N->isLeaf() && N->getOperator()->getName() == "imm") { assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); std::string CastType; switch (N->getTypeNum(0)) { default: cerr << "Cannot handle " << getEnumName(N->getTypeNum(0)) << " type as an immediate constant. Aborting\n"; abort(); case MVT::i1: CastType = "bool"; break; case MVT::i8: CastType = "unsigned char"; break; case MVT::i16: CastType = "unsigned short"; break; case MVT::i32: CastType = "unsigned"; break; case MVT::i64: CastType = "uint64_t"; break; } emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTargetConstant(((" + CastType + ") cast(" + Val + ")->getValue()), " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ Record *Op = OperatorMap[N->getName()]; // Transform ExternalSymbol to TargetExternalSymbol if (Op && Op->getName() == "externalsym") { emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" "ExternalSymbol(cast(" + Val + ")->getSymbol(), " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); // Add Tmp to VariableMap, so that we don't multiply select // this value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); } else { NodeOps.push_back(Val); } } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" || N->getOperator()->getName() == "tglobaltlsaddr")) { Record *Op = OperatorMap[N->getName()]; // Transform GlobalAddress to TargetGlobalAddress if (Op && (Op->getName() == "globaladdr" || Op->getName() == "globaltlsaddr")) { emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" "GlobalAddress(cast(" + Val + ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); // Add Tmp to VariableMap, so that we don't multiply select // this value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); } else { NodeOps.push_back(Val); } } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ NodeOps.push_back(Val); // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { NodeOps.push_back(Val); // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { for (unsigned i = 0; i < CP->getNumOperands(); ++i) { emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");"); NodeOps.push_back("CPTmp" + utostr(i)); } } else { // This node, probably wrapped in a SDNodeXForm, behaves like a leaf // node even if it isn't one. Don't select it. if (!LikeLeaf) { emitCode("AddToISelQueue(" + Val + ");"); if (isRoot && N->isLeaf()) { emitCode("ReplaceUses(N, " + Val + ");"); emitCode("return NULL;"); } } NodeOps.push_back(Val); } return NodeOps; } if (N->isLeaf()) { // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; if (DI->getDef()->isSubClassOf("Register")) { emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + ISE.getQualifiedName(DI->getDef()) + ", " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } } else if (IntInit *II = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + ", " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } #ifndef NDEBUG N->dump(); #endif assert(0 && "Unknown leaf type!"); return NodeOps; } Record *Op = N->getOperator(); if (Op->isSubClassOf("Instruction")) { const CodeGenTarget &CGT = ISE.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op->getName()); const DAGInstruction &Inst = ISE.getInstruction(Op); TreePattern *InstPat = Inst.getPattern(); TreePatternNode *InstPatNode = isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) : (InstPat ? InstPat->getOnlyTree() : NULL); if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { InstPatNode = InstPatNode->getChild(1); } bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; bool NodeHasOptInFlag = isRoot && PatternHasProperty(Pattern, SDNPOptInFlag, ISE); bool NodeHasInFlag = isRoot && PatternHasProperty(Pattern, SDNPInFlag, ISE); bool NodeHasOutFlag = HasImpResults || (isRoot && PatternHasProperty(Pattern, SDNPOutFlag, ISE)); bool NodeHasChain = InstPatNode && PatternHasProperty(InstPatNode, SDNPHasChain, ISE); bool InputHasChain = isRoot && NodeHasProperty(Pattern, SDNPHasChain, ISE); unsigned NumResults = Inst.getNumResults(); if (NodeHasOptInFlag) { emitCode("bool HasInFlag = " "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); } if (HasVarOps) emitCode("SmallVector Ops" + utostr(OpcNo) + ";"); // How many results is this pattern expected to produce? unsigned PatResults = 0; for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { MVT::ValueType VT = Pattern->getTypeNum(i); if (VT != MVT::isVoid && VT != MVT::Flag) PatResults++; } if (OrigChains.size() > 0) { // The original input chain is being ignored. If it is not just // pointing to the op that's being folded, we should create a // TokenFactor with it and the chain of the folded op as the new chain. // We could potentially be doing multiple levels of folding, in that // case, the TokenFactor can have more operands. emitCode("SmallVector InChains;"); for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { emitCode("if (" + OrigChains[i].first + ".Val != " + OrigChains[i].second + ".Val) {"); emitCode(" AddToISelQueue(" + OrigChains[i].first + ");"); emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); emitCode("}"); } emitCode("AddToISelQueue(" + ChainName + ");"); emitCode("InChains.push_back(" + ChainName + ");"); emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, " "&InChains[0], InChains.size());"); } // Loop over all of the operands of the instruction pattern, emitting code // to fill them all in. The node 'N' usually has number children equal to // the number of input operands of the instruction. However, in cases // where there are predicate operands for an instruction, we need to fill // in the 'execute always' values. Match up the node operands to the // instruction operands to do this. std::vector AllOps; for (unsigned ChildNo = 0, InstOpNo = NumResults; InstOpNo != II.OperandList.size(); ++InstOpNo) { std::vector Ops; // If this is a normal operand, emit it. if (!II.OperandList[InstOpNo].Rec->isSubClassOf("PredicateOperand")) { Ops = EmitResultCode(N->getChild(ChildNo), RetSelected, InFlagDecled, ResNodeDecled); AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); ++ChildNo; } else { // Otherwise, this is a predicate operand, emit the 'execute always' // operands. const DAGPredicateOperand &Pred = ISE.getPredicateOperand(II.OperandList[InstOpNo].Rec); for (unsigned i = 0, e = Pred.AlwaysOps.size(); i != e; ++i) { Ops = EmitResultCode(Pred.AlwaysOps[i], RetSelected, InFlagDecled, ResNodeDecled); AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); } } } // Emit all the chain and CopyToReg stuff. bool ChainEmitted = NodeHasChain; if (NodeHasChain) emitCode("AddToISelQueue(" + ChainName + ");"); if (NodeHasInFlag || HasImpInputs) EmitInFlagSelectCode(Pattern, "N", ChainEmitted, InFlagDecled, ResNodeDecled, true); if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { if (!InFlagDecled) { emitCode("SDOperand InFlag(0, 0);"); InFlagDecled = true; } if (NodeHasOptInFlag) { emitCode("if (HasInFlag) {"); emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); emitCode(" AddToISelQueue(InFlag);"); emitCode("}"); } } unsigned ResNo = TmpNo++; if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || NodeHasOptInFlag) { std::string Code; std::string Code2; std::string NodeName; if (!isRoot) { NodeName = "Tmp" + utostr(ResNo); Code2 = "SDOperand " + NodeName + " = SDOperand("; } else { NodeName = "ResNode"; if (!ResNodeDecled) { Code2 = "SDNode *" + NodeName + " = "; ResNodeDecled = true; } else Code2 = NodeName + " = "; } Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); unsigned OpsNo = OpcNo; emitOpcode(II.Namespace + "::" + II.TheDef->getName()); // Output order: results, chain, flags // Result types. if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { Code += ", VT" + utostr(VTNo); emitVT(getEnumName(N->getTypeNum(0))); } if (NodeHasChain) Code += ", MVT::Other"; if (NodeHasOutFlag) Code += ", MVT::Flag"; // Figure out how many fixed inputs the node has. This is important to // know which inputs are the variable ones if present. unsigned NumInputs = AllOps.size(); NumInputs += NodeHasChain; // Inputs. if (HasVarOps) { for (unsigned i = 0, e = AllOps.size(); i != e; ++i) emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); AllOps.clear(); } if (HasVarOps) { // Figure out whether any operands at the end of the op list are not // part of the variable section. std::string EndAdjust; if (NodeHasInFlag || HasImpInputs) EndAdjust = "-1"; // Always has one flag. else if (NodeHasOptInFlag) EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. emitCode("for (unsigned i = " + utostr(NumInputs) + ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); emitCode(" AddToISelQueue(N.getOperand(i));"); emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); emitCode("}"); } if (NodeHasChain) { if (HasVarOps) emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); else AllOps.push_back(ChainName); } if (HasVarOps) { if (NodeHasInFlag || HasImpInputs) emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); else if (NodeHasOptInFlag) { emitCode("if (HasInFlag)"); emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); } Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + ".size()"; } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) AllOps.push_back("InFlag"); unsigned NumOps = AllOps.size(); if (NumOps) { if (!NodeHasOptInFlag && NumOps < 4) { for (unsigned i = 0; i != NumOps; ++i) Code += ", " + AllOps[i]; } else { std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { "; for (unsigned i = 0; i != NumOps; ++i) { OpsCode += AllOps[i]; if (i != NumOps-1) OpsCode += ", "; } emitCode(OpsCode + " };"); Code += ", Ops" + utostr(OpsNo) + ", "; if (NodeHasOptInFlag) { Code += "HasInFlag ? "; Code += utostr(NumOps) + " : " + utostr(NumOps-1); } else Code += utostr(NumOps); } } if (!isRoot) Code += "), 0"; emitCode(Code2 + Code + ");"); if (NodeHasChain) // Remember which op produces the chain. if (!isRoot) emitCode(ChainName + " = SDOperand(" + NodeName + ".Val, " + utostr(PatResults) + ");"); else emitCode(ChainName + " = SDOperand(" + NodeName + ", " + utostr(PatResults) + ");"); if (!isRoot) { NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } bool NeedReplace = false; if (NodeHasOutFlag) { if (!InFlagDecled) { emitCode("SDOperand InFlag = SDOperand(ResNode, " + utostr(NumResults + (unsigned)NodeHasChain) + ");"); InFlagDecled = true; } else emitCode("InFlag = SDOperand(ResNode, " + utostr(NumResults + (unsigned)NodeHasChain) + ");"); } if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) { emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));"); NumResults = 1; } if (FoldedChains.size() > 0) { std::string Code; for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) emitCode("ReplaceUses(SDOperand(" + FoldedChains[j].first + ".Val, " + utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + utostr(NumResults) + "));"); NeedReplace = true; } if (NodeHasOutFlag) { emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); NeedReplace = true; } if (NeedReplace) { for (unsigned i = 0; i < NumResults; i++) emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); if (InputHasChain) emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " + ChainName + ".ResNo" + "));"); } else RetSelected = true; // User does not expect the instruction would produce a chain! if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { ; } else if (InputHasChain && !NodeHasChain) { // One of the inner node produces a chain. if (NodeHasOutFlag) emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) + "), SDOperand(ResNode, N.ResNo-1));"); for (unsigned i = 0; i < PatResults; ++i) emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + "), " + ChainName + ");"); RetSelected = false; } if (RetSelected) emitCode("return ResNode;"); else emitCode("return NULL;"); } else { std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" + utostr(OpcNo); if (N->getTypeNum(0) != MVT::isVoid) Code += ", VT" + utostr(VTNo); if (NodeHasOutFlag) Code += ", MVT::Flag"; if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) AllOps.push_back("InFlag"); unsigned NumOps = AllOps.size(); if (NumOps) { if (!NodeHasOptInFlag && NumOps < 4) { for (unsigned i = 0; i != NumOps; ++i) Code += ", " + AllOps[i]; } else { std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { "; for (unsigned i = 0; i != NumOps; ++i) { OpsCode += AllOps[i]; if (i != NumOps-1) OpsCode += ", "; } emitCode(OpsCode + " };"); Code += ", Ops" + utostr(OpcNo) + ", "; Code += utostr(NumOps); } } emitCode(Code + ");"); emitOpcode(II.Namespace + "::" + II.TheDef->getName()); if (N->getTypeNum(0) != MVT::isVoid) emitVT(getEnumName(N->getTypeNum(0))); } return NodeOps; } else if (Op->isSubClassOf("SDNodeXForm")) { assert(N->getNumChildren() == 1 && "node xform should have one child!"); // PatLeaf node - the operand may or may not be a leaf node. But it should // behave like one. std::vector Ops = EmitResultCode(N->getChild(0), RetSelected, InFlagDecled, ResNodeDecled, true); unsigned ResNo = TmpNo++; emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() + "(" + Ops.back() + ".Val);"); NodeOps.push_back("Tmp" + utostr(ResNo)); if (isRoot) emitCode("return Tmp" + utostr(ResNo) + ".Val;"); return NodeOps; } else { N->dump(); cerr << "\n"; throw std::string("Unknown node in result pattern!"); } } /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that /// 'Pat' may be missing types. If we find an unresolved type to add a check /// for, this returns true otherwise false if Pat has all types. bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, const std::string &Prefix, bool isRoot = false) { // Did we find one? if (Pat->getExtTypes() != Other->getExtTypes()) { // Move a type over from 'other' to 'pat'. Pat->setTypes(Other->getExtTypes()); // The top level node type is checked outside of the select function. if (!isRoot) emitCheck(Prefix + ".Val->getValueType(0) == " + getName(Pat->getTypeNum(0))); return true; } unsigned OpNo = (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE); for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), Prefix + utostr(OpNo))) return true; return false; } private: /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is /// being built. void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, bool &ChainEmitted, bool &InFlagDecled, bool &ResNodeDecled, bool isRoot = false) { const CodeGenTarget &T = ISE.getTargetInfo(); unsigned OpNo = (unsigned) NodeHasProperty(N, SDNPHasChain, ISE); bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, InFlagDecled, ResNodeDecled); } else { if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { if (!Child->getName().empty()) { std::string Name = RootName + utostr(OpNo); if (Duplicates.find(Name) != Duplicates.end()) // A duplicate! Do not emit a copy for this node. continue; } Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) { MVT::ValueType RVT = getRegisterValueType(RR, T); if (RVT == MVT::Flag) { if (!InFlagDecled) { emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";"); InFlagDecled = true; } else emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); emitCode("AddToISelQueue(InFlag);"); } else { if (!ChainEmitted) { emitCode("SDOperand Chain = CurDAG->getEntryNode();"); ChainName = "Chain"; ChainEmitted = true; } emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");"); if (!InFlagDecled) { emitCode("SDOperand InFlag(0, 0);"); InFlagDecled = true; } std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + ", " + ISE.getQualifiedName(RR) + ", " + RootName + utostr(OpNo) + ", InFlag).Val;"); ResNodeDecled = true; emitCode(ChainName + " = SDOperand(ResNode, 0);"); emitCode("InFlag = SDOperand(ResNode, 1);"); } } } } } if (HasInFlag) { if (!InFlagDecled) { emitCode("SDOperand InFlag = " + RootName + ".getOperand(" + utostr(OpNo) + ");"); InFlagDecled = true; } else emitCode("InFlag = " + RootName + ".getOperand(" + utostr(OpNo) + ");"); emitCode("AddToISelQueue(InFlag);"); } } /// EmitCopyFromRegs - Emit code to copy result to physical registers /// as specified by the instruction. It returns true if any copy is /// emitted. bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled, bool &ChainEmitted) { bool RetVal = false; Record *Op = N->getOperator(); if (Op->isSubClassOf("Instruction")) { const DAGInstruction &Inst = ISE.getInstruction(Op); const CodeGenTarget &CGT = ISE.getTargetInfo(); unsigned NumImpResults = Inst.getNumImpResults(); for (unsigned i = 0; i < NumImpResults; i++) { Record *RR = Inst.getImpResult(i); if (RR->isSubClassOf("Register")) { MVT::ValueType RVT = getRegisterValueType(RR, CGT); if (RVT != MVT::Flag) { if (!ChainEmitted) { emitCode("SDOperand Chain = CurDAG->getEntryNode();"); ChainEmitted = true; ChainName = "Chain"; } std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName + ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + ", InFlag).Val;"); ResNodeDecled = true; emitCode(ChainName + " = SDOperand(ResNode, 1);"); emitCode("InFlag = SDOperand(ResNode, 2);"); RetVal = true; } } } } return RetVal; } }; /// EmitCodeForPattern - Given a pattern to match, emit code to the specified /// stream to match the pattern, and generate the code for the match if it /// succeeds. Returns true if the pattern is not guaranteed to match. void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, std::vector > &GeneratedCode, std::set &GeneratedDecl, std::vector &TargetOpcodes, std::vector &TargetVTs) { PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), Pattern.getSrcPattern(), Pattern.getDstPattern(), GeneratedCode, GeneratedDecl, TargetOpcodes, TargetVTs); // Emit the matcher, capturing named arguments in VariableMap. bool FoundChain = false; Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); // TP - Get *SOME* tree pattern, we don't care which. TreePattern &TP = *PatternFragments.begin()->second; // At this point, we know that we structurally match the pattern, but the // types of the nodes may not match. Figure out the fewest number of type // comparisons we need to emit. For example, if there is only one integer // type supported by a target, there should be no type comparisons at all for // integer patterns! // // To figure out the fewest number of type checks needed, clone the pattern, // remove the types, then perform type inference on the pattern as a whole. // If there are unresolved types, emit an explicit check for those types, // apply the type to the tree, then rerun type inference. Iterate until all // types are resolved. // TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); RemoveAllTypes(Pat); do { // Resolve/propagate as many types as possible. try { bool MadeChange = true; while (MadeChange) MadeChange = Pat->ApplyTypeConstraints(TP, true/*Ignore reg constraints*/); } catch (...) { assert(0 && "Error: could not find consistent types for something we" " already decided was ok!"); abort(); } // Insert a check for an unresolved type and add it to the tree. If we find // an unresolved type to add a check for, this returns true and we iterate, // otherwise we are done. } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); Emitter.EmitResultCode(Pattern.getDstPattern(), false, false, false, false, true); delete Pat; } /// EraseCodeLine - Erase one code line from all of the patterns. If removing /// a line causes any of them to be empty, remove them and return true when /// done. static bool EraseCodeLine(std::vector > > > &Patterns) { bool ErasedPatterns = false; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { Patterns[i].second.pop_back(); if (Patterns[i].second.empty()) { Patterns.erase(Patterns.begin()+i); --i; --e; ErasedPatterns = true; } } return ErasedPatterns; } /// EmitPatterns - Emit code for at least one pattern, but try to group common /// code together between the patterns. void DAGISelEmitter::EmitPatterns(std::vector > > > &Patterns, unsigned Indent, std::ostream &OS) { typedef std::pair CodeLine; typedef std::vector CodeList; typedef std::vector > PatternList; if (Patterns.empty()) return; // Figure out how many patterns share the next code line. Explicitly copy // FirstCodeLine so that we don't invalidate a reference when changing // Patterns. const CodeLine FirstCodeLine = Patterns.back().second.back(); unsigned LastMatch = Patterns.size()-1; while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) --LastMatch; // If not all patterns share this line, split the list into two pieces. The // first chunk will use this line, the second chunk won't. if (LastMatch != 0) { PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); // FIXME: Emit braces? if (Shared.size() == 1) { PatternToMatch &Pattern = *Shared.back().first; OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; Pattern.getSrcPattern()->print(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; Pattern.getDstPattern()->print(OS); OS << "\n"; unsigned AddedComplexity = Pattern.getAddedComplexity(); OS << std::string(Indent, ' ') << "// Pattern complexity = " << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity << " cost = " << getResultPatternCost(Pattern.getDstPattern(), *this) << " size = " << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; } if (FirstCodeLine.first != 1) { OS << std::string(Indent, ' ') << "{\n"; Indent += 2; } EmitPatterns(Shared, Indent, OS); if (FirstCodeLine.first != 1) { Indent -= 2; OS << std::string(Indent, ' ') << "}\n"; } if (Other.size() == 1) { PatternToMatch &Pattern = *Other.back().first; OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; Pattern.getSrcPattern()->print(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; Pattern.getDstPattern()->print(OS); OS << "\n"; unsigned AddedComplexity = Pattern.getAddedComplexity(); OS << std::string(Indent, ' ') << "// Pattern complexity = " << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity << " cost = " << getResultPatternCost(Pattern.getDstPattern(), *this) << " size = " << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; } EmitPatterns(Other, Indent, OS); return; } // Remove this code from all of the patterns that share it. bool ErasedPatterns = EraseCodeLine(Patterns); bool isPredicate = FirstCodeLine.first == 1; // Otherwise, every pattern in the list has this line. Emit it. if (!isPredicate) { // Normal code. OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; } else { OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; // If the next code line is another predicate, and if all of the pattern // in this group share the same next line, emit it inline now. Do this // until we run out of common predicates. while (!ErasedPatterns && Patterns.back().second.back().first == 1) { // Check that all of fhe patterns in Patterns end with the same predicate. bool AllEndWithSamePredicate = true; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) if (Patterns[i].second.back() != Patterns.back().second.back()) { AllEndWithSamePredicate = false; break; } // If all of the predicates aren't the same, we can't share them. if (!AllEndWithSamePredicate) break; // Otherwise we can. Emit it shared now. OS << " &&\n" << std::string(Indent+4, ' ') << Patterns.back().second.back().second; ErasedPatterns = EraseCodeLine(Patterns); } OS << ") {\n"; Indent += 2; } EmitPatterns(Patterns, Indent, OS); if (isPredicate) OS << std::string(Indent-2, ' ') << "}\n"; } static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) { const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op); return OpcodeInfo.getEnumName(); } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { // Get the namespace to insert instructions into. Make sure not to pick up // "TargetInstrInfo" by accidentally getting the namespace off the PHI // instruction or something. std::string InstNS; for (CodeGenTarget::inst_iterator i = Target.inst_begin(), e = Target.inst_end(); i != e; ++i) { InstNS = i->second.Namespace; if (InstNS != "TargetInstrInfo") break; } if (!InstNS.empty()) InstNS += "::"; // Group the patterns by their top-level opcodes. std::map > PatternsByOpcode; // All unique target node emission functions. std::map EmitFunctions; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); if (!Node->isLeaf()) { PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)]. push_back(&PatternsToMatch[i]); } else { const ComplexPattern *CP; if (dynamic_cast(Node->getLeafValue())) { PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)]. push_back(&PatternsToMatch[i]); } else if ((CP = NodeGetComplexPattern(Node, *this))) { std::vector OpNodes = CP->getRootNodes(); for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { PatternsByOpcode[getOpcodeName(OpNodes[j], *this)] .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(), &PatternsToMatch[i]); } } else { cerr << "Unrecognized opcode '"; Node->dump(); cerr << "' on tree pattern '"; cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName(); cerr << "'!\n"; exit(1); } } } // For each opcode, there might be multiple select functions, one per // ValueType of the node (or its first operand if it doesn't produce a // non-chain result. std::map > OpcodeVTMap; // Emit one Select_* method for each top-level opcode. We do this instead of // emitting one giant switch statement to support compilers where this will // result in the recursive functions taking less stack space. for (std::map >::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const std::string &OpName = PBOI->first; std::vector &PatternsOfOp = PBOI->second; assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); // We want to emit all of the matching code now. However, we want to emit // the matches in order of minimal cost. Sort the patterns so the least // cost one is at the start. std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), PatternSortingPredicate(*this)); // Split them into groups by type. std::map > PatternsByType; for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { PatternToMatch *Pat = PatternsOfOp[i]; TreePatternNode *SrcPat = Pat->getSrcPattern(); MVT::ValueType VT = SrcPat->getTypeNum(0); std::map >::iterator TI = PatternsByType.find(VT); if (TI != PatternsByType.end()) TI->second.push_back(Pat); else { std::vector PVec; PVec.push_back(Pat); PatternsByType.insert(std::make_pair(VT, PVec)); } } for (std::map >::iterator II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; ++II) { MVT::ValueType OpVT = II->first; std::vector &Patterns = II->second; typedef std::vector > CodeList; typedef std::vector >::iterator CodeListI; std::vector > CodeForPatterns; std::vector > PatternOpcodes; std::vector > PatternVTs; std::vector > PatternDecls; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { CodeList GeneratedCode; std::set GeneratedDecl; std::vector TargetOpcodes; std::vector TargetVTs; GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, TargetOpcodes, TargetVTs); CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); PatternDecls.push_back(GeneratedDecl); PatternOpcodes.push_back(TargetOpcodes); PatternVTs.push_back(TargetVTs); } // Scan the code to see if all of the patterns are reachable and if it is // possible that the last one might not match. bool mightNotMatch = true; for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; mightNotMatch = false; for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { if (GeneratedCode[j].first == 1) { // predicate. mightNotMatch = true; break; } } // If this pattern definitely matches, and if it isn't the last one, the // patterns after it CANNOT ever match. Error out. if (mightNotMatch == false && i != CodeForPatterns.size()-1) { cerr << "Pattern '"; CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream()); cerr << "' is impossible to select!\n"; exit(1); } } // Factor target node emission code (emitted by EmitResultCode) into // separate functions. Uniquing and share them among all instruction // selection routines. for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; std::vector &TargetOpcodes = PatternOpcodes[i]; std::vector &TargetVTs = PatternVTs[i]; std::set Decls = PatternDecls[i]; std::vector AddedInits; int CodeSize = (int)GeneratedCode.size(); int LastPred = -1; for (int j = CodeSize-1; j >= 0; --j) { if (LastPred == -1 && GeneratedCode[j].first == 1) LastPred = j; else if (LastPred != -1 && GeneratedCode[j].first == 2) AddedInits.push_back(GeneratedCode[j].second); } std::string CalleeCode = "(const SDOperand &N"; std::string CallerCode = "(N"; for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { CalleeCode += ", unsigned Opc" + utostr(j); CallerCode += ", " + TargetOpcodes[j]; } for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { CalleeCode += ", MVT::ValueType VT" + utostr(j); CallerCode += ", " + TargetVTs[j]; } for (std::set::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { std::string Name = *I; CalleeCode += ", SDOperand &" + Name; CallerCode += ", " + Name; } CallerCode += ");"; CalleeCode += ") "; // Prevent emission routines from being inlined to reduce selection // routines stack frame sizes. CalleeCode += "DISABLE_INLINE "; CalleeCode += "{\n"; for (std::vector::const_reverse_iterator I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) CalleeCode += " " + *I + "\n"; for (int j = LastPred+1; j < CodeSize; ++j) CalleeCode += " " + GeneratedCode[j].second + "\n"; for (int j = LastPred+1; j < CodeSize; ++j) GeneratedCode.pop_back(); CalleeCode += "}\n"; // Uniquing the emission routines. unsigned EmitFuncNum; std::map::iterator EFI = EmitFunctions.find(CalleeCode); if (EFI != EmitFunctions.end()) { EmitFuncNum = EFI->second; } else { EmitFuncNum = EmitFunctions.size(); EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; } // Replace the emission code within selection routines with calls to the // emission functions. CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; GeneratedCode.push_back(std::make_pair(false, CallerCode)); } // Print function. std::string OpVTStr; if (OpVT == MVT::iPTR) { OpVTStr = "_iPTR"; } else if (OpVT == MVT::isVoid) { // Nodes with a void result actually have a first result type of either // Other (a chain) or Flag. Since there is no one-to-one mapping from // void to this case, we handle it specially here. } else { OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' } std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); if (OpVTI == OpcodeVTMap.end()) { std::vector VTSet; VTSet.push_back(OpVTStr); OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); } else OpVTI->second.push_back(OpVTStr); OS << "SDNode *Select_" << getLegalCName(OpName) << OpVTStr << "(const SDOperand &N) {\n"; // Loop through and reverse all of the CodeList vectors, as we will be // accessing them from their logical front, but accessing the end of a // vector is more efficient. for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; std::reverse(GeneratedCode.begin(), GeneratedCode.end()); } // Next, reverse the list of patterns itself for the same reason. std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); // Emit all of the patterns now, grouped together to share code. EmitPatterns(CodeForPatterns, 2, OS); // If the last pattern has predicates (which could fail) emit code to // catch the case where nothing handles a pattern. if (mightNotMatch) { OS << " cerr << \"Cannot yet select: \";\n"; if (OpName != "ISD::INTRINSIC_W_CHAIN" && OpName != "ISD::INTRINSIC_WO_CHAIN" && OpName != "ISD::INTRINSIC_VOID") { OS << " N.Val->dump(CurDAG);\n"; } else { OS << " unsigned iid = cast(N.getOperand(" "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" << " cerr << \"intrinsic %\"<< " "Intrinsic::getName((Intrinsic::ID)iid);\n"; } OS << " cerr << '\\n';\n" << " abort();\n" << " return NULL;\n"; } OS << "}\n\n"; } } // Emit boilerplate. OS << "SDNode *Select_INLINEASM(SDOperand N) {\n" << " std::vector Ops(N.Val->op_begin(), N.Val->op_end());\n" << " AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n" << " // Select the flag operand.\n" << " if (Ops.back().getValueType() == MVT::Flag)\n" << " AddToISelQueue(Ops.back());\n" << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n" << " std::vector VTs;\n" << " VTs.push_back(MVT::Other);\n" << " VTs.push_back(MVT::Flag);\n" << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " "Ops.size());\n" << " return New.Val;\n" << "}\n\n"; OS << "SDNode *Select_LABEL(const SDOperand &N) {\n" << " SDOperand Chain = N.getOperand(0);\n" << " SDOperand N1 = N.getOperand(1);\n" << " unsigned C = cast(N1)->getValue();\n" << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" << " AddToISelQueue(Chain);\n" << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n" << " MVT::Other, Tmp, Chain);\n" << "}\n\n"; OS << "// The main instruction selector code.\n" << "SDNode *SelectCode(SDOperand N) {\n" << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS << "INSTRUCTION_LIST_END)) {\n" << " return NULL; // Already selected.\n" << " }\n\n" << " MVT::ValueType NVT = N.Val->getValueType(0);\n" << " switch (N.getOpcode()) {\n" << " default: break;\n" << " case ISD::EntryToken: // These leaves remain the same.\n" << " case ISD::BasicBlock:\n" << " case ISD::Register:\n" << " case ISD::HANDLENODE:\n" << " case ISD::TargetConstant:\n" << " case ISD::TargetConstantPool:\n" << " case ISD::TargetFrameIndex:\n" << " case ISD::TargetJumpTable:\n" << " case ISD::TargetGlobalTLSAddress:\n" << " case ISD::TargetGlobalAddress: {\n" << " return NULL;\n" << " }\n" << " case ISD::AssertSext:\n" << " case ISD::AssertZext: {\n" << " AddToISelQueue(N.getOperand(0));\n" << " ReplaceUses(N, N.getOperand(0));\n" << " return NULL;\n" << " }\n" << " case ISD::TokenFactor:\n" << " case ISD::CopyFromReg:\n" << " case ISD::CopyToReg: {\n" << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" << " AddToISelQueue(N.getOperand(i));\n" << " return NULL;\n" << " }\n" << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" << " case ISD::LABEL: return Select_LABEL(N);\n"; // Loop over all of the case statements, emiting a call to each method we // emitted above. for (std::map >::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const std::string &OpName = PBOI->first; // Potentially multiple versions of select for this opcode. One for each // ValueType of the node (or its first true operand if it doesn't produce a // result. std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); std::vector &OpVTs = OpVTI->second; OS << " case " << OpName << ": {\n"; if (OpVTs.size() == 1) { std::string &VTStr = OpVTs[0]; OS << " return Select_" << getLegalCName(OpName) << VTStr << "(N);\n"; } else { // Keep track of whether we see a pattern that has an iPtr result. bool HasPtrPattern = false; bool HasDefaultPattern = false; OS << " switch (NVT) {\n"; for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { std::string &VTStr = OpVTs[i]; if (VTStr.empty()) { HasDefaultPattern = true; continue; } // If this is a match on iPTR: don't emit it directly, we need special // code. if (VTStr == "_iPTR") { HasPtrPattern = true; continue; } OS << " case MVT::" << VTStr.substr(1) << ":\n" << " return Select_" << getLegalCName(OpName) << VTStr << "(N);\n"; } OS << " default:\n"; // If there is an iPTR result version of this pattern, emit it here. if (HasPtrPattern) { OS << " if (NVT == TLI.getPointerTy())\n"; OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; } if (HasDefaultPattern) { OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; } OS << " break;\n"; OS << " }\n"; OS << " break;\n"; } OS << " }\n"; } OS << " } // end of big switch.\n\n" << " cerr << \"Cannot yet select: \";\n" << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" << " N.Val->dump(CurDAG);\n" << " } else {\n" << " unsigned iid = cast(N.getOperand(" "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" << " cerr << \"intrinsic %\"<< " "Intrinsic::getName((Intrinsic::ID)iid);\n" << " }\n" << " cerr << '\\n';\n" << " abort();\n" << " return NULL;\n" << "}\n"; } void DAGISelEmitter::run(std::ostream &OS) { EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; OS << "#include \"llvm/Support/Compiler.h\"\n"; OS << "// Instruction selector priority queue:\n" << "std::vector ISelQueue;\n"; OS << "/// Keep track of nodes which have already been added to queue.\n" << "unsigned char *ISelQueued;\n"; OS << "/// Keep track of nodes which have already been selected.\n" << "unsigned char *ISelSelected;\n"; OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" << "std::vector ISelKilled;\n\n"; OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n"; OS << "/// not reach Op.\n"; OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n"; OS << " if (Chain->getOpcode() == ISD::EntryToken)\n"; OS << " return true;\n"; OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n"; OS << " return false;\n"; OS << " else if (Chain->getNumOperands() > 0) {\n"; OS << " SDOperand C0 = Chain->getOperand(0);\n"; OS << " if (C0.getValueType() == MVT::Other)\n"; OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n"; OS << " }\n"; OS << " return true;\n"; OS << "}\n"; OS << "/// Sorting functions for the selection queue.\n" << "struct isel_sort : public std::binary_function" << " {\n" << " bool operator()(const SDNode* left, const SDNode* right) " << "const {\n" << " return (left->getNodeId() > right->getNodeId());\n" << " }\n" << "};\n\n"; OS << "inline void setQueued(int Id) {\n"; OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; OS << "}\n"; OS << "inline bool isQueued(int Id) {\n"; OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; OS << "}\n"; OS << "inline void setSelected(int Id) {\n"; OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; OS << "}\n"; OS << "inline bool isSelected(int Id) {\n"; OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; OS << "}\n\n"; OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n"; OS << " int Id = N.Val->getNodeId();\n"; OS << " if (Id != -1 && !isQueued(Id)) {\n"; OS << " ISelQueue.push_back(N.Val);\n"; OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; OS << " setQueued(Id);\n"; OS << " }\n"; OS << "}\n\n"; OS << "inline void RemoveKilled() {\n"; OS << " unsigned NumKilled = ISelKilled.size();\n"; OS << " if (NumKilled) {\n"; OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; OS << " SDNode *Temp = ISelKilled[i];\n"; OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), " << "Temp), ISelQueue.end());\n"; OS << " };\n"; OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; OS << " ISelKilled.clear();\n"; OS << " }\n"; OS << "}\n\n"; OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n"; OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; OS << " setSelected(F.Val->getNodeId());\n"; OS << " RemoveKilled();\n"; OS << "}\n"; OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n"; OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n"; OS << " setSelected(F->getNodeId());\n"; OS << " RemoveKilled();\n"; OS << "}\n\n"; OS << "// SelectRoot - Top level entry to DAG isel.\n"; OS << "SDOperand SelectRoot(SDOperand Root) {\n"; OS << " SelectRootInit();\n"; OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; OS << " ISelQueued = new unsigned char[NumBytes];\n"; OS << " ISelSelected = new unsigned char[NumBytes];\n"; OS << " memset(ISelQueued, 0, NumBytes);\n"; OS << " memset(ISelSelected, 0, NumBytes);\n"; OS << "\n"; OS << " // Create a dummy node (which is not added to allnodes), that adds\n" << " // a reference to the root node, preventing it from being deleted,\n" << " // and tracking any changes of the root.\n" << " HandleSDNode Dummy(CurDAG->getRoot());\n" << " ISelQueue.push_back(CurDAG->getRoot().Val);\n"; OS << " while (!ISelQueue.empty()) {\n"; OS << " SDNode *Node = ISelQueue.front();\n"; OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; OS << " ISelQueue.pop_back();\n"; OS << " if (!isSelected(Node->getNodeId())) {\n"; OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n"; OS << " if (ResNode != Node) {\n"; OS << " if (ResNode)\n"; OS << " ReplaceUses(Node, ResNode);\n"; OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n"; OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n"; OS << " RemoveKilled();\n"; OS << " }\n"; OS << " }\n"; OS << " }\n"; OS << " }\n"; OS << "\n"; OS << " delete[] ISelQueued;\n"; OS << " ISelQueued = NULL;\n"; OS << " delete[] ISelSelected;\n"; OS << " ISelSelected = NULL;\n"; OS << " return Dummy.getValue();\n"; OS << "}\n"; Intrinsics = LoadIntrinsics(Records); ParseNodeInfo(); ParseNodeTransforms(OS); ParseComplexPatterns(); ParsePatternFragments(OS); ParsePredicateOperands(); ParseInstructions(); ParsePatterns(); // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); DOUT << "\n\nALL PATTERNS TO MATCH:\n\n"; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump()); DOUT << "\n"; } // At this point, we have full information about the 'Patterns' we need to // parse, both implicitly from instructions as well as from explicit pattern // definitions. Emit the resultant instruction selector. EmitInstructionSelector(OS); for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) delete I->second; PatternFragments.clear(); Instructions.clear(); }