//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of a target // register file for a code generator. It uses instances of the Register, // RegisterAliases, and RegisterClass classes to gather this information. // //===----------------------------------------------------------------------===// #include "RegisterInfoEmitter.h" #include "CodeGenTarget.h" #include "CodeGenRegisters.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; // runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS) { CodeGenTarget Target; const std::vector &Registers = Target.getRegisters(); std::string Namespace = Registers[0].TheDef->getValueAsString("Namespace"); EmitSourceFileHeader("Target Register Enum Values", OS); OS << "namespace llvm {\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) OS << " " << Registers[i].getName() << ", \t// " << i+1 << "\n"; OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; const std::vector SubRegIndices = Target.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n"; Namespace = SubRegIndices[0]->getValueAsString("Namespace"); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoSubRegister,\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) OS << " " << SubRegIndices[i]->getName() << ",\t// " << i+1 << "\n"; OS << " NUM_TARGET_SUBREGS = " << SubRegIndices.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; } OS << "} // End llvm namespace \n"; } void RegisterInfoEmitter::runHeader(raw_ostream &OS) { EmitSourceFileHeader("Register Information Header Fragment", OS); CodeGenTarget Target; const std::string &TargetName = Target.getName(); std::string ClassName = TargetName + "GenRegisterInfo"; OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n"; OS << "#include \n\n"; OS << "namespace llvm {\n\n"; OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" << " explicit " << ClassName << "(int CallFrameSetupOpcode = -1, int CallFrameDestroyOpcode = -1);\n" << " virtual int getDwarfRegNumFull(unsigned RegNum, " << "unsigned Flavour) const;\n" << " virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;\n" << " virtual bool needsStackRealignment(const MachineFunction &) const\n" << " { return false; }\n" << " unsigned getSubReg(unsigned RegNo, unsigned Index) const;\n" << " unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const;\n" << " unsigned composeSubRegIndices(unsigned, unsigned) const;\n" << "};\n\n"; const std::vector &RegisterClasses = Target.getRegisterClasses(); if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses[0].Namespace << " { // Register classes\n"; OS << " enum {\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { if (i) OS << ",\n"; OS << " " << RegisterClasses[i].getName() << "RegClassID"; OS << " = " << i; } OS << "\n };\n\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const std::string &Name = RegisterClasses[i].getName(); // Output the register class definition. OS << " struct " << Name << "Class : public TargetRegisterClass {\n" << " " << Name << "Class();\n" << RegisterClasses[i].MethodProtos << " };\n"; // Output the extern for the instance. OS << " extern " << Name << "Class\t" << Name << "RegClass;\n"; // Output the extern for the pointer to the instance (should remove). OS << " static TargetRegisterClass * const "<< Name <<"RegisterClass = &" << Name << "RegClass;\n"; } OS << "} // end of namespace " << TargetName << "\n\n"; } OS << "} // End llvm namespace \n"; } static void addSuperReg(Record *R, Record *S, std::map, LessRecord> &SubRegs, std::map, LessRecord> &SuperRegs, std::map, LessRecord> &Aliases) { if (R == S) { errs() << "Error: recursive sub-register relationship between" << " register " << getQualifiedName(R) << " and its sub-registers?\n"; abort(); } if (!SuperRegs[R].insert(S).second) return; SubRegs[S].insert(R); Aliases[R].insert(S); Aliases[S].insert(R); if (SuperRegs.count(S)) for (std::set::iterator I = SuperRegs[S].begin(), E = SuperRegs[S].end(); I != E; ++I) addSuperReg(R, *I, SubRegs, SuperRegs, Aliases); } static void addSubSuperReg(Record *R, Record *S, std::map, LessRecord> &SubRegs, std::map, LessRecord> &SuperRegs, std::map, LessRecord> &Aliases) { if (R == S) { errs() << "Error: recursive sub-register relationship between" << " register " << getQualifiedName(R) << " and its sub-registers?\n"; abort(); } if (!SubRegs[R].insert(S).second) return; addSuperReg(S, R, SubRegs, SuperRegs, Aliases); Aliases[R].insert(S); Aliases[S].insert(R); if (SubRegs.count(S)) for (std::set::iterator I = SubRegs[S].begin(), E = SubRegs[S].end(); I != E; ++I) addSubSuperReg(R, *I, SubRegs, SuperRegs, Aliases); } struct RegisterMaps { // Map SubRegIndex -> Register typedef std::map SubRegMap; // Map Register -> SubRegMap typedef std::map SubRegMaps; SubRegMaps SubReg; SubRegMap &inferSubRegIndices(Record *Reg); // Composite SubRegIndex instances. // Map (SubRegIndex,SubRegIndex) -> SubRegIndex typedef DenseMap,Record*> CompositeMap; CompositeMap Composite; // Compute SubRegIndex compositions after inferSubRegIndices has run on all // registers. void computeComposites(); }; // Calculate all subregindices for Reg. Loopy subregs cause infinite recursion. RegisterMaps::SubRegMap &RegisterMaps::inferSubRegIndices(Record *Reg) { SubRegMap &SRM = SubReg[Reg]; if (!SRM.empty()) return SRM; std::vector SubRegs = Reg->getValueAsListOfDefs("SubRegs"); std::vector Indices = Reg->getValueAsListOfDefs("SubRegIndices"); if (SubRegs.size() != Indices.size()) throw "Register " + Reg->getName() + " SubRegIndices doesn't match SubRegs"; // First insert the direct subregs and make sure they are fully indexed. for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) { if (!SRM.insert(std::make_pair(Indices[i], SubRegs[i])).second) throw "SubRegIndex " + Indices[i]->getName() + " appears twice in Register " + Reg->getName(); inferSubRegIndices(SubRegs[i]); } // Keep track of inherited subregs and how they can be reached. // Register -> (SubRegIndex, SubRegIndex) typedef std::map, LessRecord> OrphanMap; OrphanMap Orphans; // Clone inherited subregs. Here the order is important - earlier subregs take // precedence. for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) { SubRegMap &M = SubReg[SubRegs[i]]; for (SubRegMap::iterator si = M.begin(), se = M.end(); si != se; ++si) if (!SRM.insert(*si).second) Orphans[si->second] = std::make_pair(Indices[i], si->first); } // Finally process the composites. ListInit *Comps = Reg->getValueAsListInit("CompositeIndices"); for (unsigned i = 0, e = Comps->size(); i != e; ++i) { DagInit *Pat = dynamic_cast(Comps->getElement(i)); if (!Pat) throw "Invalid dag '" + Comps->getElement(i)->getAsString() + "' in CompositeIndices"; DefInit *BaseIdxInit = dynamic_cast(Pat->getOperator()); if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex")) throw "Invalid SubClassIndex in " + Pat->getAsString(); // Resolve list of subreg indices into R2. Record *R2 = Reg; for (DagInit::const_arg_iterator di = Pat->arg_begin(), de = Pat->arg_end(); di != de; ++di) { DefInit *IdxInit = dynamic_cast(*di); if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex")) throw "Invalid SubClassIndex in " + Pat->getAsString(); SubRegMap::const_iterator ni = SubReg[R2].find(IdxInit->getDef()); if (ni == SubReg[R2].end()) throw "Composite " + Pat->getAsString() + " refers to bad index in " + R2->getName(); R2 = ni->second; } // Insert composite index. Allow overriding inherited indices etc. SRM[BaseIdxInit->getDef()] = R2; // R2 is now directly addressable, no longer an orphan. Orphans.erase(R2); } // Now, Orphans contains the inherited subregisters without a direct index. if (!Orphans.empty()) { errs() << "Error: Register " << getQualifiedName(Reg) << " inherited subregisters without an index:\n"; for (OrphanMap::iterator i = Orphans.begin(), e = Orphans.end(); i != e; ++i) { errs() << " " << getQualifiedName(i->first) << " = " << i->second.first->getName() << ", " << i->second.second->getName() << "\n"; } abort(); } return SRM; } void RegisterMaps::computeComposites() { for (SubRegMaps::const_iterator sri = SubReg.begin(), sre = SubReg.end(); sri != sre; ++sri) { Record *Reg1 = sri->first; const SubRegMap &SRM1 = sri->second; for (SubRegMap::const_iterator i1 = SRM1.begin(), e1 = SRM1.end(); i1 != e1; ++i1) { Record *Idx1 = i1->first; Record *Reg2 = i1->second; // Ignore identity compositions. if (Reg1 == Reg2) continue; // If Reg2 has no subregs, Idx1 doesn't compose. if (!SubReg.count(Reg2)) continue; const SubRegMap &SRM2 = SubReg[Reg2]; // Try composing Idx1 with another SubRegIndex. for (SubRegMap::const_iterator i2 = SRM2.begin(), e2 = SRM2.end(); i2 != e2; ++i2) { std::pair IdxPair(Idx1, i2->first); Record *Reg3 = i2->second; // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. for (SubRegMap::const_iterator i1d = SRM1.begin(), e1d = SRM1.end(); i1d != e1d; ++i1d) { // Ignore identity compositions. if (Reg2 == Reg3) continue; if (i1d->second == Reg3) { std::pair Ins = Composite.insert(std::make_pair(IdxPair, i1d->first)); // Conflicting composition? if (!Ins.second && Ins.first->second != i1d->first) { errs() << "Error: SubRegIndex " << getQualifiedName(Idx1) << " and " << getQualifiedName(IdxPair.second) << " compose ambiguously as " << getQualifiedName(Ins.first->second) << " or " << getQualifiedName(i1d->first) << "\n"; abort(); } } } } } } // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid // compositions, so remove any mappings of that form. for (CompositeMap::iterator i = Composite.begin(), e = Composite.end(); i != e;) { CompositeMap::iterator j = i; ++i; if (j->first.second == j->second) Composite.erase(j); } } class RegisterSorter { private: std::map, LessRecord> &RegisterSubRegs; public: RegisterSorter(std::map, LessRecord> &RS) : RegisterSubRegs(RS) {} bool operator()(Record *RegA, Record *RegB) { // B is sub-register of A. return RegisterSubRegs.count(RegA) && RegisterSubRegs[RegA].count(RegB); } }; // RegisterInfoEmitter::run - Main register file description emitter. // void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenTarget Target; EmitSourceFileHeader("Register Information Source Fragment", OS); OS << "namespace llvm {\n\n"; // Start out by emitting each of the register classes... to do this, we build // a set of registers which belong to a register class, this is to ensure that // each register is only in a single register class. // const std::vector &RegisterClasses = Target.getRegisterClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // RegClassesBelongedTo - Keep track of which register classes each reg // belongs to. std::multimap RegClassesBelongedTo; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " static const unsigned " << Name << "[] = {\n "; for (unsigned i = 0, e = RC.Elements.size(); i != e; ++i) { Record *Reg = RC.Elements[i]; OS << getQualifiedName(Reg) << ", "; // Keep track of which regclasses this register is in. RegClassesBelongedTo.insert(std::make_pair(Reg, &RC)); } OS << "\n };\n\n"; } // Emit the ValueType arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName() + "VTs"; // Emit the register list now. OS << " // " << Name << " Register Class Value Types...\n" << " static const EVT " << Name << "[] = {\n "; for (unsigned i = 0, e = RC.VTs.size(); i != e; ++i) OS << getEnumName(RC.VTs[i]) << ", "; OS << "MVT::Other\n };\n\n"; } OS << "} // end anonymous namespace\n\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses[0].Namespace << " { // Register class instances\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) OS << " " << RegisterClasses[i].getName() << "Class\t" << RegisterClasses[i].getName() << "RegClass;\n"; std::map > SuperClassMap; std::map > SuperRegClassMap; OS << "\n"; unsigned NumSubRegIndices = Target.getSubRegIndices().size(); if (NumSubRegIndices) { // Emit the sub-register classes for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; std::vector SRC(NumSubRegIndices); for (DenseMap::const_iterator i = RC.SubRegClasses.begin(), e = RC.SubRegClasses.end(); i != e; ++i) { // Build SRC array. unsigned idx = Target.getSubRegIndexNo(i->first); SRC.at(idx-1) = i->second; // Find the register class number of i->second for SuperRegClassMap. for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) { const CodeGenRegisterClass &RC2 = RegisterClasses[rc2]; if (RC2.TheDef == i->second) { SuperRegClassMap[rc2].insert(rc); break; } } } // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Sub-register Classes...\n" << " static const TargetRegisterClass* const " << Name << "SubRegClasses[] = {\n "; for (unsigned idx = 0; idx != NumSubRegIndices; ++idx) { if (idx) OS << ", "; if (SRC[idx]) OS << "&" << getQualifiedName(SRC[idx]) << "RegClass"; else OS << "0"; } OS << "\n };\n\n"; } // Emit the super-register classes for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Super-register Classes...\n" << " static const TargetRegisterClass* const " << Name << "SuperRegClasses[] = {\n "; bool Empty = true; std::map >::iterator I = SuperRegClassMap.find(rc); if (I != SuperRegClassMap.end()) { for (std::set::iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) { const CodeGenRegisterClass &RC2 = RegisterClasses[*II]; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; } } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } } else { // No subregindices in this target OS << " static const TargetRegisterClass* const " << "NullRegClasses[] = { NULL };\n\n"; } // Emit the sub-classes array for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Register Class sub-classes...\n" << " static const TargetRegisterClass* const " << Name << "Subclasses[] = {\n "; bool Empty = true; for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) { const CodeGenRegisterClass &RC2 = RegisterClasses[rc2]; // Sub-classes are used to determine if a virtual register can be used // as an instruction operand, or if it must be copied first. if (rc == rc2 || !RC.hasSubClass(&RC2)) continue; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; std::map >::iterator SCMI = SuperClassMap.find(rc2); if (SCMI == SuperClassMap.end()) { SuperClassMap.insert(std::make_pair(rc2, std::set())); SCMI = SuperClassMap.find(rc2); } SCMI->second.insert(rc); } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Register Class super-classes...\n" << " static const TargetRegisterClass* const " << Name << "Superclasses[] = {\n "; bool Empty = true; std::map >::iterator I = SuperClassMap.find(rc); if (I != SuperClassMap.end()) { for (std::set::iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) { const CodeGenRegisterClass &RC2 = RegisterClasses[*II]; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; } } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const CodeGenRegisterClass &RC = RegisterClasses[i]; OS << RC.MethodBodies << "\n"; OS << RC.getName() << "Class::" << RC.getName() << "Class() : TargetRegisterClass(" << RC.getName() + "RegClassID" << ", " << '\"' << RC.getName() << "\", " << RC.getName() + "VTs" << ", " << RC.getName() + "Subclasses" << ", " << RC.getName() + "Superclasses" << ", " << (NumSubRegIndices ? RC.getName() + "Sub" : std::string("Null")) << "RegClasses, " << (NumSubRegIndices ? RC.getName() + "Super" : std::string("Null")) << "RegClasses, " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.getName() << ", " << RC.getName() << " + " << RC.Elements.size() << ") {}\n"; } OS << "}\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) OS << " &" << getQualifiedName(RegisterClasses[i].TheDef) << "RegClass,\n"; OS << " };\n"; // Emit register sub-registers / super-registers, aliases... std::map, LessRecord> RegisterSubRegs; std::map, LessRecord> RegisterSuperRegs; std::map, LessRecord> RegisterAliases; typedef std::map, LessRecord> DwarfRegNumsMapTy; DwarfRegNumsMapTy DwarfRegNums; const std::vector &Regs = Target.getRegisters(); for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *R = Regs[i].TheDef; std::vector LI = Regs[i].TheDef->getValueAsListOfDefs("Aliases"); // Add information that R aliases all of the elements in the list... and // that everything in the list aliases R. for (unsigned j = 0, e = LI.size(); j != e; ++j) { Record *Reg = LI[j]; if (RegisterAliases[R].count(Reg)) errs() << "Warning: register alias between " << getQualifiedName(R) << " and " << getQualifiedName(Reg) << " specified multiple times!\n"; RegisterAliases[R].insert(Reg); if (RegisterAliases[Reg].count(R)) errs() << "Warning: register alias between " << getQualifiedName(R) << " and " << getQualifiedName(Reg) << " specified multiple times!\n"; RegisterAliases[Reg].insert(R); } } // Process sub-register sets. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *R = Regs[i].TheDef; std::vector LI = Regs[i].TheDef->getValueAsListOfDefs("SubRegs"); // Process sub-register set and add aliases information. for (unsigned j = 0, e = LI.size(); j != e; ++j) { Record *SubReg = LI[j]; if (RegisterSubRegs[R].count(SubReg)) errs() << "Warning: register " << getQualifiedName(SubReg) << " specified as a sub-register of " << getQualifiedName(R) << " multiple times!\n"; addSubSuperReg(R, SubReg, RegisterSubRegs, RegisterSuperRegs, RegisterAliases); } } // Print the SubregHashTable, a simple quadratically probed // hash table for determining if a register is a subregister // of another register. unsigned NumSubRegs = 0; std::map RegNo; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegNo[Regs[i].TheDef] = i; NumSubRegs += RegisterSubRegs[Regs[i].TheDef].size(); } unsigned SubregHashTableSize = 2 * NextPowerOf2(2 * NumSubRegs); unsigned* SubregHashTable = new unsigned[2 * SubregHashTableSize]; std::fill(SubregHashTable, SubregHashTable + 2 * SubregHashTableSize, ~0U); unsigned hashMisses = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record* R = Regs[i].TheDef; for (std::set::iterator I = RegisterSubRegs[R].begin(), E = RegisterSubRegs[R].end(); I != E; ++I) { Record* RJ = *I; // We have to increase the indices of both registers by one when // computing the hash because, in the generated code, there // will be an extra empty slot at register 0. size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (SubregHashTableSize-1); unsigned ProbeAmt = 2; while (SubregHashTable[index*2] != ~0U && SubregHashTable[index*2+1] != ~0U) { index = (index + ProbeAmt) & (SubregHashTableSize-1); ProbeAmt += 2; hashMisses++; } SubregHashTable[index*2] = i; SubregHashTable[index*2+1] = RegNo[RJ]; } } OS << "\n\n // Number of hash collisions: " << hashMisses << "\n"; if (SubregHashTableSize) { std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace"); OS << " const unsigned SubregHashTable[] = { "; for (unsigned i = 0; i < SubregHashTableSize - 1; ++i) { if (i != 0) // Insert spaces for nice formatting. OS << " "; if (SubregHashTable[2*i] != ~0U) { OS << getQualifiedName(Regs[SubregHashTable[2*i]].TheDef) << ", " << getQualifiedName(Regs[SubregHashTable[2*i+1]].TheDef) << ", \n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n"; } } unsigned Idx = SubregHashTableSize*2-2; if (SubregHashTable[Idx] != ~0U) { OS << " " << getQualifiedName(Regs[SubregHashTable[Idx]].TheDef) << ", " << getQualifiedName(Regs[SubregHashTable[Idx+1]].TheDef) << " };\n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n"; } OS << " const unsigned SubregHashTableSize = " << SubregHashTableSize << ";\n"; } else { OS << " const unsigned SubregHashTable[] = { ~0U, ~0U };\n" << " const unsigned SubregHashTableSize = 1;\n"; } delete [] SubregHashTable; // Print the AliasHashTable, a simple quadratically probed // hash table for determining if a register aliases another register. unsigned NumAliases = 0; RegNo.clear(); for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegNo[Regs[i].TheDef] = i; NumAliases += RegisterAliases[Regs[i].TheDef].size(); } unsigned AliasesHashTableSize = 2 * NextPowerOf2(2 * NumAliases); unsigned* AliasesHashTable = new unsigned[2 * AliasesHashTableSize]; std::fill(AliasesHashTable, AliasesHashTable + 2 * AliasesHashTableSize, ~0U); hashMisses = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record* R = Regs[i].TheDef; for (std::set::iterator I = RegisterAliases[R].begin(), E = RegisterAliases[R].end(); I != E; ++I) { Record* RJ = *I; // We have to increase the indices of both registers by one when // computing the hash because, in the generated code, there // will be an extra empty slot at register 0. size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (AliasesHashTableSize-1); unsigned ProbeAmt = 2; while (AliasesHashTable[index*2] != ~0U && AliasesHashTable[index*2+1] != ~0U) { index = (index + ProbeAmt) & (AliasesHashTableSize-1); ProbeAmt += 2; hashMisses++; } AliasesHashTable[index*2] = i; AliasesHashTable[index*2+1] = RegNo[RJ]; } } OS << "\n\n // Number of hash collisions: " << hashMisses << "\n"; if (AliasesHashTableSize) { std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace"); OS << " const unsigned AliasesHashTable[] = { "; for (unsigned i = 0; i < AliasesHashTableSize - 1; ++i) { if (i != 0) // Insert spaces for nice formatting. OS << " "; if (AliasesHashTable[2*i] != ~0U) { OS << getQualifiedName(Regs[AliasesHashTable[2*i]].TheDef) << ", " << getQualifiedName(Regs[AliasesHashTable[2*i+1]].TheDef) << ", \n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n"; } } unsigned Idx = AliasesHashTableSize*2-2; if (AliasesHashTable[Idx] != ~0U) { OS << " " << getQualifiedName(Regs[AliasesHashTable[Idx]].TheDef) << ", " << getQualifiedName(Regs[AliasesHashTable[Idx+1]].TheDef) << " };\n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n"; } OS << " const unsigned AliasesHashTableSize = " << AliasesHashTableSize << ";\n"; } else { OS << " const unsigned AliasesHashTable[] = { ~0U, ~0U };\n" << " const unsigned AliasesHashTableSize = 1;\n"; } delete [] AliasesHashTable; if (!RegisterAliases.empty()) OS << "\n\n // Register Alias Sets...\n"; // Emit the empty alias list OS << " const unsigned Empty_AliasSet[] = { 0 };\n"; // Loop over all of the registers which have aliases, emitting the alias list // to memory. for (std::map, LessRecord >::iterator I = RegisterAliases.begin(), E = RegisterAliases.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_AliasSet[] = { "; for (std::set::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) OS << getQualifiedName(*ASI) << ", "; OS << "0 };\n"; } if (!RegisterSubRegs.empty()) OS << "\n\n // Register Sub-registers Sets...\n"; // Emit the empty sub-registers list OS << " const unsigned Empty_SubRegsSet[] = { 0 };\n"; // Loop over all of the registers which have sub-registers, emitting the // sub-registers list to memory. for (std::map, LessRecord>::iterator I = RegisterSubRegs.begin(), E = RegisterSubRegs.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_SubRegsSet[] = { "; std::vector SubRegsVector; for (std::set::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) SubRegsVector.push_back(*ASI); RegisterSorter RS(RegisterSubRegs); std::stable_sort(SubRegsVector.begin(), SubRegsVector.end(), RS); for (unsigned i = 0, e = SubRegsVector.size(); i != e; ++i) OS << getQualifiedName(SubRegsVector[i]) << ", "; OS << "0 };\n"; } if (!RegisterSuperRegs.empty()) OS << "\n\n // Register Super-registers Sets...\n"; // Emit the empty super-registers list OS << " const unsigned Empty_SuperRegsSet[] = { 0 };\n"; // Loop over all of the registers which have super-registers, emitting the // super-registers list to memory. for (std::map, LessRecord >::iterator I = RegisterSuperRegs.begin(), E = RegisterSuperRegs.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_SuperRegsSet[] = { "; std::vector SuperRegsVector; for (std::set::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) SuperRegsVector.push_back(*ASI); RegisterSorter RS(RegisterSubRegs); std::stable_sort(SuperRegsVector.begin(), SuperRegsVector.end(), RS); for (unsigned i = 0, e = SuperRegsVector.size(); i != e; ++i) OS << getQualifiedName(SuperRegsVector[i]) << ", "; OS << "0 };\n"; } OS<<"\n const TargetRegisterDesc RegisterDescriptors[] = { // Descriptors\n"; OS << " { \"NOREG\",\t0,\t0,\t0 },\n"; // Now that register alias and sub-registers sets have been emitted, emit the // register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = Regs[i]; OS << " { \""; OS << Reg.getName() << "\",\t"; if (!RegisterAliases[Reg.TheDef].empty()) OS << Reg.getName() << "_AliasSet,\t"; else OS << "Empty_AliasSet,\t"; if (!RegisterSubRegs[Reg.TheDef].empty()) OS << Reg.getName() << "_SubRegsSet,\t"; else OS << "Empty_SubRegsSet,\t"; if (!RegisterSuperRegs[Reg.TheDef].empty()) OS << Reg.getName() << "_SuperRegsSet },\n"; else OS << "Empty_SuperRegsSet },\n"; } OS << " };\n"; // End of register descriptors... // Emit SubRegIndex names, skipping 0 const std::vector SubRegIndices = Target.getSubRegIndices(); OS << "\n const char *const SubRegIndexTable[] = { \""; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << SubRegIndices[i]->getName(); if (i+1 != e) OS << "\", \""; } OS << "\" };\n\n"; OS << "}\n\n"; // End of anonymous namespace... std::string ClassName = Target.getName() + "GenRegisterInfo"; // Calculate the mapping of subregister+index pairs to physical registers. RegisterMaps RegMaps; // Emit the subregister + index mapping function based on the information // calculated above. OS << "unsigned " << ClassName << "::getSubReg(unsigned RegNo, unsigned Index) const {\n" << " switch (RegNo) {\n" << " default:\n return 0;\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegisterMaps::SubRegMap &SRM = RegMaps.inferSubRegIndices(Regs[i].TheDef); if (SRM.empty()) continue; OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n"; OS << " switch (Index) {\n"; OS << " default: return 0;\n"; for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(), ie = SRM.end(); ii != ie; ++ii) OS << " case " << getQualifiedName(ii->first) << ": return " << getQualifiedName(ii->second) << ";\n"; OS << " };\n" << " break;\n"; } OS << " };\n"; OS << " return 0;\n"; OS << "}\n\n"; OS << "unsigned " << ClassName << "::getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const {\n" << " switch (RegNo) {\n" << " default:\n return 0;\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegisterMaps::SubRegMap &SRM = RegMaps.SubReg[Regs[i].TheDef]; if (SRM.empty()) continue; OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n"; for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(), ie = SRM.end(); ii != ie; ++ii) OS << " if (SubRegNo == " << getQualifiedName(ii->second) << ") return " << getQualifiedName(ii->first) << ";\n"; OS << " return 0;\n"; } OS << " };\n"; OS << " return 0;\n"; OS << "}\n\n"; // Emit composeSubRegIndices RegMaps.computeComposites(); OS << "unsigned " << ClassName << "::composeSubRegIndices(unsigned IdxA, unsigned IdxB) const {\n" << " switch (IdxA) {\n" << " default:\n return IdxB;\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { bool Open = false; for (unsigned j = 0; j != e; ++j) { if (Record *Comp = RegMaps.Composite.lookup( std::make_pair(SubRegIndices[i], SubRegIndices[j]))) { if (!Open) { OS << " case " << getQualifiedName(SubRegIndices[i]) << ": switch(IdxB) {\n default: return IdxB;\n"; Open = true; } OS << " case " << getQualifiedName(SubRegIndices[j]) << ": return " << getQualifiedName(Comp) << ";\n"; } } if (Open) OS << " }\n"; } OS << " }\n}\n\n"; // Emit the constructor of the class... OS << ClassName << "::" << ClassName << "(int CallFrameSetupOpcode, int CallFrameDestroyOpcode)\n" << " : TargetRegisterInfo(RegisterDescriptors, " << Regs.size()+1 << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" << " SubRegIndexTable,\n" << " CallFrameSetupOpcode, CallFrameDestroyOpcode,\n" << " SubregHashTable, SubregHashTableSize,\n" << " AliasesHashTable, AliasesHashTableSize) {\n" << "}\n\n"; // Collect all information about dwarf register numbers // First, just pull all provided information to the map unsigned maxLength = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i].TheDef; std::vector RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); if (DwarfRegNums.count(Reg)) errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg) << "specified multiple times\n"; DwarfRegNums[Reg] = RegNums; } // Now we know maximal length of number list. Append -1's, where needed for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) I->second.push_back(-1); // Emit information about the dwarf register numbers. OS << "int " << ClassName << "::getDwarfRegNumFull(unsigned RegNum, " << "unsigned Flavour) const {\n" << " switch (Flavour) {\n" << " default:\n" << " assert(0 && \"Unknown DWARF flavour\");\n" << " return -1;\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n" << " switch (RegNum) {\n" << " default:\n" << " assert(0 && \"Invalid RegNum\");\n" << " return -1;\n"; // Sort by name to get a stable order. for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int RegNo = I->second[i]; if (RegNo != -2) OS << " case " << getQualifiedName(I->first) << ":\n" << " return " << RegNo << ";\n"; else OS << " case " << getQualifiedName(I->first) << ":\n" << " assert(0 && \"Invalid register for this mode\");\n" << " return -1;\n"; } OS << " };\n"; } OS << " };\n}\n\n"; OS << "} // End llvm namespace \n"; }