//===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of the disassembler tables. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86DisassemblerShared.h" #include "X86DisassemblerTables.h" #include "llvm/TableGen/TableGenBackend.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" using namespace llvm; using namespace X86Disassembler; /// inheritsFrom - Indicates whether all instructions in one class also belong /// to another class. /// /// @param child - The class that may be the subset /// @param parent - The class that may be the superset /// @return - True if child is a subset of parent, false otherwise. static inline bool inheritsFrom(InstructionContext child, InstructionContext parent, bool VEX_LIG = false) { if (child == parent) return true; switch (parent) { case IC: return(inheritsFrom(child, IC_64BIT) || inheritsFrom(child, IC_OPSIZE) || inheritsFrom(child, IC_ADSIZE) || inheritsFrom(child, IC_XD) || inheritsFrom(child, IC_XS)); case IC_64BIT: return(inheritsFrom(child, IC_64BIT_REXW) || inheritsFrom(child, IC_64BIT_OPSIZE) || inheritsFrom(child, IC_64BIT_ADSIZE) || inheritsFrom(child, IC_64BIT_XD) || inheritsFrom(child, IC_64BIT_XS)); case IC_OPSIZE: return inheritsFrom(child, IC_64BIT_OPSIZE); case IC_ADSIZE: case IC_64BIT_ADSIZE: return false; case IC_XD: return inheritsFrom(child, IC_64BIT_XD); case IC_XS: return inheritsFrom(child, IC_64BIT_XS); case IC_XD_OPSIZE: return inheritsFrom(child, IC_64BIT_XD_OPSIZE); case IC_XS_OPSIZE: return inheritsFrom(child, IC_64BIT_XS_OPSIZE); case IC_64BIT_REXW: return(inheritsFrom(child, IC_64BIT_REXW_XS) || inheritsFrom(child, IC_64BIT_REXW_XD) || inheritsFrom(child, IC_64BIT_REXW_OPSIZE)); case IC_64BIT_OPSIZE: return(inheritsFrom(child, IC_64BIT_REXW_OPSIZE)); case IC_64BIT_XD: return(inheritsFrom(child, IC_64BIT_REXW_XD)); case IC_64BIT_XS: return(inheritsFrom(child, IC_64BIT_REXW_XS)); case IC_64BIT_XD_OPSIZE: case IC_64BIT_XS_OPSIZE: return false; case IC_64BIT_REXW_XD: case IC_64BIT_REXW_XS: case IC_64BIT_REXW_OPSIZE: return false; case IC_VEX: return inheritsFrom(child, IC_VEX_W) || (VEX_LIG && inheritsFrom(child, IC_VEX_L)); case IC_VEX_XS: return inheritsFrom(child, IC_VEX_W_XS) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS)); case IC_VEX_XD: return inheritsFrom(child, IC_VEX_W_XD) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD)); case IC_VEX_OPSIZE: return inheritsFrom(child, IC_VEX_W_OPSIZE) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE)); case IC_VEX_W: case IC_VEX_W_XS: case IC_VEX_W_XD: case IC_VEX_W_OPSIZE: return false; case IC_VEX_L: case IC_VEX_L_XS: case IC_VEX_L_XD: return false; case IC_VEX_L_OPSIZE: return inheritsFrom(child, IC_VEX_L_W_OPSIZE); case IC_VEX_L_W_OPSIZE: return false; default: llvm_unreachable("Unknown instruction class"); } } /// outranks - Indicates whether, if an instruction has two different applicable /// classes, which class should be preferred when performing decode. This /// imposes a total ordering (ties are resolved toward "lower") /// /// @param upper - The class that may be preferable /// @param lower - The class that may be less preferable /// @return - True if upper is to be preferred, false otherwise. static inline bool outranks(InstructionContext upper, InstructionContext lower) { assert(upper < IC_max); assert(lower < IC_max); #define ENUM_ENTRY(n, r, d) r, static int ranks[IC_max] = { INSTRUCTION_CONTEXTS }; #undef ENUM_ENTRY return (ranks[upper] > ranks[lower]); } /// stringForContext - Returns a string containing the name of a particular /// InstructionContext, usually for diagnostic purposes. /// /// @param insnContext - The instruction class to transform to a string. /// @return - A statically-allocated string constant that contains the /// name of the instruction class. static inline const char* stringForContext(InstructionContext insnContext) { switch (insnContext) { default: llvm_unreachable("Unhandled instruction class"); #define ENUM_ENTRY(n, r, d) case n: return #n; break; INSTRUCTION_CONTEXTS #undef ENUM_ENTRY } } /// stringForOperandType - Like stringForContext, but for OperandTypes. static inline const char* stringForOperandType(OperandType type) { switch (type) { default: llvm_unreachable("Unhandled type"); #define ENUM_ENTRY(i, d) case i: return #i; TYPES #undef ENUM_ENTRY } } /// stringForOperandEncoding - like stringForContext, but for /// OperandEncodings. static inline const char* stringForOperandEncoding(OperandEncoding encoding) { switch (encoding) { default: llvm_unreachable("Unhandled encoding"); #define ENUM_ENTRY(i, d) case i: return #i; ENCODINGS #undef ENUM_ENTRY } } void DisassemblerTables::emitOneID(raw_ostream &o, uint32_t &i, InstrUID id, bool addComma) const { if (id) o.indent(i * 2) << format("0x%hx", id); else o.indent(i * 2) << 0; if (addComma) o << ", "; else o << " "; o << "/* "; o << InstructionSpecifiers[id].name; o << "*/"; o << "\n"; } /// emitEmptyTable - Emits the modRMEmptyTable, which is used as a ID table by /// all ModR/M decisions for instructions that are invalid for all possible /// ModR/M byte values. /// /// @param o - The output stream on which to emit the table. /// @param i - The indentation level for that output stream. static void emitEmptyTable(raw_ostream &o, uint32_t &i) { o.indent(i * 2) << "0x0, /* EmptyTable */\n"; } /// getDecisionType - Determines whether a ModRM decision with 255 entries can /// be compacted by eliminating redundant information. /// /// @param decision - The decision to be compacted. /// @return - The compactest available representation for the decision. static ModRMDecisionType getDecisionType(ModRMDecision &decision) { bool satisfiesOneEntry = true; bool satisfiesSplitRM = true; bool satisfiesSplitReg = true; uint16_t index; for (index = 0; index < 256; ++index) { if (decision.instructionIDs[index] != decision.instructionIDs[0]) satisfiesOneEntry = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0xc0])) satisfiesSplitRM = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0x00])) satisfiesSplitRM = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8])) satisfiesSplitReg = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0x38])) satisfiesSplitReg = false; } if (satisfiesOneEntry) return MODRM_ONEENTRY; if (satisfiesSplitRM) return MODRM_SPLITRM; if (satisfiesSplitReg) return MODRM_SPLITREG; return MODRM_FULL; } /// stringForDecisionType - Returns a statically-allocated string corresponding /// to a particular decision type. /// /// @param dt - The decision type. /// @return - A pointer to the statically-allocated string (e.g., /// "MODRM_ONEENTRY" for MODRM_ONEENTRY). static const char* stringForDecisionType(ModRMDecisionType dt) { #define ENUM_ENTRY(n) case n: return #n; switch (dt) { default: llvm_unreachable("Unknown decision type"); MODRMTYPES }; #undef ENUM_ENTRY } /// stringForModifierType - Returns a statically-allocated string corresponding /// to an opcode modifier type. /// /// @param mt - The modifier type. /// @return - A pointer to the statically-allocated string (e.g., /// "MODIFIER_NONE" for MODIFIER_NONE). static const char* stringForModifierType(ModifierType mt) { #define ENUM_ENTRY(n) case n: return #n; switch(mt) { default: llvm_unreachable("Unknown modifier type"); MODIFIER_TYPES }; #undef ENUM_ENTRY } DisassemblerTables::DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) { Tables[i] = new ContextDecision; memset(Tables[i], 0, sizeof(ContextDecision)); } HasConflicts = false; } DisassemblerTables::~DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) delete Tables[i]; } void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2, uint32_t &i1, uint32_t &i2, ModRMDecision &decision) const { static uint64_t sTableNumber = 0; static uint64_t sEntryNumber = 1; ModRMDecisionType dt = getDecisionType(decision); uint16_t index; if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0) { o2.indent(i2) << "{ /* ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << 0 << " /* EmptyTable */\n"; i2--; o2.indent(i2) << "}"; return; } o1 << "/* Table" << sTableNumber << " */\n"; i1++; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: emitOneID(o1, i1, decision.instructionIDs[0], true); break; case MODRM_SPLITRM: emitOneID(o1, i1, decision.instructionIDs[0x00], true); // mod = 0b00 emitOneID(o1, i1, decision.instructionIDs[0xc0], true); // mod = 0b11 break; case MODRM_SPLITREG: for (index = 0; index < 64; index += 8) emitOneID(o1, i1, decision.instructionIDs[index], true); for (index = 0xc0; index < 256; index += 8) emitOneID(o1, i1, decision.instructionIDs[index], true); break; case MODRM_FULL: for (index = 0; index < 256; ++index) emitOneID(o1, i1, decision.instructionIDs[index], true); break; } i1--; o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << sEntryNumber << " /* Table" << sTableNumber << " */\n"; i2--; o2.indent(i2) << "}"; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: sEntryNumber += 1; break; case MODRM_SPLITRM: sEntryNumber += 2; break; case MODRM_SPLITREG: sEntryNumber += 16; break; case MODRM_FULL: sEntryNumber += 256; break; } ++sTableNumber; } void DisassemblerTables::emitOpcodeDecision( raw_ostream &o1, raw_ostream &o2, uint32_t &i1, uint32_t &i2, OpcodeDecision &decision) const { uint16_t index; o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n"; i2++; o2.indent(i2) << "{" << "\n"; i2++; for (index = 0; index < 256; ++index) { o2.indent(i2); o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n"; emitModRMDecision(o1, o2, i1, i2, decision.modRMDecisions[index]); if (index < 255) o2 << ","; o2 << "\n"; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "}" << "\n"; } void DisassemblerTables::emitContextDecision( raw_ostream &o1, raw_ostream &o2, uint32_t &i1, uint32_t &i2, ContextDecision &decision, const char* name) const { o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n"; i2++; o2.indent(i2) << "{ /* opcodeDecisions */" << "\n"; i2++; unsigned index; for (index = 0; index < IC_max; ++index) { o2.indent(i2) << "/* "; o2 << stringForContext((InstructionContext)index); o2 << " */"; o2 << "\n"; emitOpcodeDecision(o1, o2, i1, i2, decision.opcodeDecisions[index]); if (index + 1 < IC_max) o2 << ", "; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "};" << "\n"; } void DisassemblerTables::emitInstructionInfo(raw_ostream &o, uint32_t &i) const { o.indent(i * 2) << "static const struct InstructionSpecifier "; o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n"; i++; uint16_t numInstructions = InstructionSpecifiers.size(); uint16_t index, operandIndex; for (index = 0; index < numInstructions; ++index) { o.indent(i * 2) << "{ /* " << index << " */" << "\n"; i++; o.indent(i * 2) << stringForModifierType( (ModifierType)InstructionSpecifiers[index].modifierType); o << "," << "\n"; o.indent(i * 2) << "0x"; o << format("%02hhx", (uint16_t)InstructionSpecifiers[index].modifierBase); o << "," << "\n"; o.indent(i * 2) << "{" << "\n"; i++; for (operandIndex = 0; operandIndex < X86_MAX_OPERANDS; ++operandIndex) { o.indent(i * 2) << "{ "; o <