// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // The Google C++ Testing Framework (Google Test) #include #include #include #include #include #include #include #include #include #include #ifdef GTEST_OS_LINUX // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). #define GTEST_HAS_GETTIMEOFDAY #include #include #include // Declares vsnprintf(). This header is not available on Windows. #include #include #include #include #include #include #elif defined(GTEST_OS_SYMBIAN) #define GTEST_HAS_GETTIMEOFDAY #include // NOLINT #elif defined(GTEST_OS_ZOS) #define GTEST_HAS_GETTIMEOFDAY #include // NOLINT // On z/OS we additionally need strings.h for strcasecmp. #include #elif defined(_WIN32_WCE) // We are on Windows CE. #include // NOLINT #elif defined(GTEST_OS_WINDOWS) // We are on Windows proper. #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #if defined(__MINGW__) || defined(__MINGW32__) // MinGW has gettimeofday() but not _ftime64(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). // TODO(kenton@google.com): There are other ways to get the time on // Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW // supports these. consider using them instead. #define GTEST_HAS_GETTIMEOFDAY #include // NOLINT #endif // cpplint thinks that the header is already included, so we want to // silence it. #include // NOLINT #else // Assume other platforms have gettimeofday(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). #define GTEST_HAS_GETTIMEOFDAY // cpplint thinks that the header is already included, so we want to // silence it. #include // NOLINT #include // NOLINT #endif // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION #include "gtest/internal/gtest-internal-inl.h" #undef GTEST_IMPLEMENTATION #ifdef GTEST_OS_WINDOWS #define fileno _fileno #define isatty _isatty #define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS namespace testing { // Constants. // A test whose test case name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test case whose name matches this filter is considered a death // test case and will be run before test cases whose name doesn't // match this filter. static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output file for XML output. static const char kDefaultOutputFile[] = "test_detail.xml"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; } // namespace internal GTEST_DEFINE_bool_( break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false), "True iff a failed assertion should be a debugger break-point."); GTEST_DEFINE_bool_( catch_exceptions, internal::BoolFromGTestEnv("catch_exceptions", false), "True iff " GTEST_NAME " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to xterm or xterm-color."); GTEST_DEFINE_string_( filter, internal::StringFromGTestEnv("filter", kUniversalFilter), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); GTEST_DEFINE_string_( output, internal::StringFromGTestEnv("output", ""), "A format (currently must be \"xml\"), optionally followed " "by a colon and an output file name or directory. A directory " "is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_( print_time, internal::BoolFromGTestEnv("print_time", false), "True iff " GTEST_NAME " should display elapsed time in text output."); GTEST_DEFINE_int32_( repeat, internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_int32_( stack_trace_depth, internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_bool_( show_internal_stack_frames, false, "True iff " GTEST_NAME " should include internal stack frames when " "printing test failure stack traces."); namespace internal { // GTestIsInitialized() returns true iff the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). // // A user must call testing::InitGoogleTest() to initialize Google // Test. g_init_gtest_count is set to the number of times // InitGoogleTest() has been called. We don't protect this variable // under a mutex as it is only accessed in the main thread. int g_init_gtest_count = 0; static bool GTestIsInitialized() { return g_init_gtest_count != 0; } // Iterates over a list of TestCases, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestCaseList(const internal::List& case_list, int (TestCase::*method)() const) { int sum = 0; for (const internal::ListNode* node = case_list.Head(); node != NULL; node = node->next()) { sum += (node->element()->*method)(); } return sum; } // Returns true iff the test case passed. static bool TestCasePassed(const TestCase* test_case) { return test_case->should_run() && test_case->Passed(); } // Returns true iff the test case failed. static bool TestCaseFailed(const TestCase* test_case) { return test_case->should_run() && test_case->Failed(); } // Returns true iff test_case contains at least one test that should // run. static bool ShouldRunTestCase(const TestCase* test_case) { return test_case->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResultType type, const char* file, int line, const char* message) : type_(type), file_(file), line_(line), message_(message) { } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()-> AddTestPartResult(type_, file_, line_, AppendUserMessage(message_, message), UnitTest::GetInstance()->impl() ->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } // Mutex for linked pointers. Mutex g_linked_ptr_mutex(Mutex::NO_CONSTRUCTOR_NEEDED_FOR_STATIC_MUTEX); // Application pathname gotten in InitGoogleTest. String g_executable_path; // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if defined(_WIN32_WCE) || defined(GTEST_OS_WINDOWS) result.Set(FilePath(g_executable_path).RemoveExtension("exe")); #else result.Set(FilePath(g_executable_path)); #endif // _WIN32_WCE || GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. String UnitTestOptions::GetOutputFormat() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return String(""); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == NULL) ? String(gtest_output_flag) : String(gtest_output_flag, colon - gtest_output_flag); } // Returns the name of the requested output file, or the default if none // was explicitly specified. String UnitTestOptions::GetOutputFile() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return String(""); const char* const colon = strchr(gtest_output_flag, ':'); if (colon == NULL) return String(kDefaultOutputFile); internal::FilePath output_name(colon + 1); if (!output_name.IsDirectory()) return output_name.ToString(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.ToString(); } // Returns true iff the wildcard pattern matches the string. The // first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. bool UnitTestOptions::PatternMatchesString(const char *pattern, const char *str) { switch (*pattern) { case '\0': case ':': // Either ':' or '\0' marks the end of the pattern. return *str == '\0'; case '?': // Matches any single character. return *str != '\0' && PatternMatchesString(pattern + 1, str + 1); case '*': // Matches any string (possibly empty) of characters. return (*str != '\0' && PatternMatchesString(pattern, str + 1)) || PatternMatchesString(pattern + 1, str); default: // Non-special character. Matches itself. return *pattern == *str && PatternMatchesString(pattern + 1, str + 1); } } bool UnitTestOptions::MatchesFilter(const String& name, const char* filter) { const char *cur_pattern = filter; while (true) { if (PatternMatchesString(cur_pattern, name.c_str())) { return true; } // Finds the next pattern in the filter. cur_pattern = strchr(cur_pattern, ':'); // Returns if no more pattern can be found. if (cur_pattern == NULL) { return false; } // Skips the pattern separater (the ':' character). cur_pattern++; } } // TODO(keithray): move String function implementations to gtest-string.cc. // Returns true iff the user-specified filter matches the test case // name and the test name. bool UnitTestOptions::FilterMatchesTest(const String &test_case_name, const String &test_name) { const String& full_name = String::Format("%s.%s", test_case_name.c_str(), test_name.c_str()); // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions const char* const p = GTEST_FLAG(filter).c_str(); const char* const dash = strchr(p, '-'); String positive; String negative; if (dash == NULL) { positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter negative = String(""); } else { positive.Set(p, dash - p); // Everything up to the dash negative = String(dash+1); // Everything after the dash if (positive.empty()) { // Treat '-test1' as the same as '*-test1' positive = kUniversalFilter; } } // A filter is a colon-separated list of patterns. It matches a // test if any pattern in it matches the test. return (MatchesFilter(full_name, positive.c_str()) && !MatchesFilter(full_name, negative.c_str())); } #ifdef GTEST_OS_WINDOWS // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { // Google Test should handle an exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception. return (GTEST_FLAG(catch_exceptions) && exception_code != EXCEPTION_BREAKPOINT) ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; } #endif // GTEST_OS_WINDOWS } // namespace internal // The interface for printing the result of a UnitTest class UnitTestEventListenerInterface { public: // The d'tor is pure virtual as this is an abstract class. virtual ~UnitTestEventListenerInterface() = 0; // Called before the unit test starts. virtual void OnUnitTestStart(const UnitTest*) {} // Called after the unit test ends. virtual void OnUnitTestEnd(const UnitTest*) {} // Called before the test case starts. virtual void OnTestCaseStart(const TestCase*) {} // Called after the test case ends. virtual void OnTestCaseEnd(const TestCase*) {} // Called before the global set-up starts. virtual void OnGlobalSetUpStart(const UnitTest*) {} // Called after the global set-up ends. virtual void OnGlobalSetUpEnd(const UnitTest*) {} // Called before the global tear-down starts. virtual void OnGlobalTearDownStart(const UnitTest*) {} // Called after the global tear-down ends. virtual void OnGlobalTearDownEnd(const UnitTest*) {} // Called before the test starts. virtual void OnTestStart(const TestInfo*) {} // Called after the test ends. virtual void OnTestEnd(const TestInfo*) {} // Called after an assertion. virtual void OnNewTestPartResult(const TestPartResult*) {} }; // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = UnitTest::GetInstance()->impl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = UnitTest::GetInstance()->impl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResultType type, const char* substr) { const String expected( type == TPRT_FATAL_FAILURE ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure(msg); } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { msg << "Expected: " << expected << "\n" << " Actual:\n" << r; return AssertionFailure(msg); } if (strstr(r.message(), substr) == NULL) { msg << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; return AssertionFailure(msg); } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker:: SingleFailureChecker( const TestPartResultArray* results, TestPartResultType type, const char* substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_.c_str()); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->result_printer()->OnNewTestPartResult(&result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_repoter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_repoter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test cases. int UnitTestImpl::successful_test_case_count() const { return test_cases_.CountIf(TestCasePassed); } // Gets the number of failed test cases. int UnitTestImpl::failed_test_case_count() const { return test_cases_.CountIf(TestCaseFailed); } // Gets the number of all test cases. int UnitTestImpl::total_test_case_count() const { return test_cases_.size(); } // Gets the number of all test cases that contain at least one test // that should run. int UnitTestImpl::test_case_to_run_count() const { return test_cases_.CountIf(ShouldRunTestCase); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count); } // Returns the current OS stack trace as a String. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. String UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { (void)skip_count; return String(""); } static TimeInMillis GetTimeInMillis() { #ifdef _WIN32_WCE // We are on Windows CE // Difference between 1970-01-01 and 1601-01-01 in miliseconds. // http://analogous.blogspot.com/2005/04/epoch.html const TimeInMillis kJavaEpochToWinFileTimeDelta = 11644473600000UL; const DWORD kTenthMicrosInMilliSecond = 10000; SYSTEMTIME now_systime; FILETIME now_filetime; ULARGE_INTEGER now_int64; // TODO(kenton@google.com): Shouldn't this just use // GetSystemTimeAsFileTime()? GetSystemTime(&now_systime); if (SystemTimeToFileTime(&now_systime, &now_filetime)) { now_int64.LowPart = now_filetime.dwLowDateTime; now_int64.HighPart = now_filetime.dwHighDateTime; now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) - kJavaEpochToWinFileTimeDelta; return now_int64.QuadPart; } return 0; #elif defined(GTEST_OS_WINDOWS) && !defined(GTEST_HAS_GETTIMEOFDAY) __timeb64 now; #ifdef _MSC_VER // MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996 // (deprecated function) there. // TODO(kenton@google.com): Use GetTickCount()? Or use // SystemTimeToFileTime() #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4996) // Temporarily disables warning 4996. _ftime64(&now); #pragma warning(pop) // Restores the warning state. #else _ftime64(&now); #endif // _MSC_VER return static_cast(now.time) * 1000 + now.millitm; #elif defined(GTEST_HAS_GETTIMEOFDAY) struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000 + now.tv_usec / 1000; #else #error "Don't know how to get the current time on your system." #endif } // Utilities // class String // Returns the input enclosed in double quotes if it's not NULL; // otherwise returns "(null)". For example, "\"Hello\"" is returned // for input "Hello". // // This is useful for printing a C string in the syntax of a literal. // // Known issue: escape sequences are not handled yet. String String::ShowCStringQuoted(const char* c_str) { return c_str ? String::Format("\"%s\"", c_str) : String("(null)"); } // Copies at most length characters from str into a newly-allocated // piece of memory of size length+1. The memory is allocated with new[]. // A terminating null byte is written to the memory, and a pointer to it // is returned. If str is NULL, NULL is returned. static char* CloneString(const char* str, size_t length) { if (str == NULL) { return NULL; } else { char* const clone = new char[length + 1]; // MSVC 8 deprecates strncpy(), so we want to suppress warning // 4996 (deprecated function) there. #ifdef GTEST_OS_WINDOWS // We are on Windows. #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4996) // Temporarily disables warning 4996. strncpy(clone, str, length); #pragma warning(pop) // Restores the warning state. #else // We are on Linux or Mac OS. strncpy(clone, str, length); #endif // GTEST_OS_WINDOWS clone[length] = '\0'; return clone; } } // Clones a 0-terminated C string, allocating memory using new. The // caller is responsible for deleting[] the return value. Returns the // cloned string, or NULL if the input is NULL. const char * String::CloneCString(const char* c_str) { return (c_str == NULL) ? NULL : CloneString(c_str, strlen(c_str)); } #ifdef _WIN32_WCE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return NULL; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, NULL, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return NULL; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, NULL, 0, NULL, NULL); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, NULL, NULL); ansi[ansi_length] = 0; return ansi; } #endif // _WIN32_WCE // Compares two C strings. Returns true iff they have the same content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char * lhs, const char * rhs) { if ( lhs == NULL ) return rhs == NULL; if ( rhs == NULL ) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t len, Message* msg) { // TODO(wan): consider allowing a testing::String object to // contain '\0'. This will make it behave more like std::string, // and will allow ToUtf8String() to return the correct encoding // for '\0' s.t. we can get rid of the conditional here (and in // several other places). for (size_t i = 0; i != len; ) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast(len - i)); while (i != len && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING } // namespace internal #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_GLOBAL_WSTRING namespace internal { // Formats a value to be used in a failure message. // For a char value, we print it as a C++ char literal and as an // unsigned integer (both in decimal and in hexadecimal). String FormatForFailureMessage(char ch) { const unsigned int ch_as_uint = ch; // A String object cannot contain '\0', so we print "\\0" when ch is // '\0'. return String::Format("'%s' (%u, 0x%X)", ch ? String::Format("%c", ch).c_str() : "\\0", ch_as_uint, ch_as_uint); } // For a wchar_t value, we print it as a C++ wchar_t literal and as an // unsigned integer (both in decimal and in hexidecimal). String FormatForFailureMessage(wchar_t wchar) { // The C++ standard doesn't specify the exact size of the wchar_t // type. It just says that it shall have the same size as another // integral type, called its underlying type. // // Therefore, in order to print a wchar_t value in the numeric form, // we first convert it to the largest integral type (UInt64) and // then print the converted value. // // We use streaming to print the value as "%llu" doesn't work // correctly with MSVC 7.1. const UInt64 wchar_as_uint64 = wchar; Message msg; // A String object cannot contain '\0', so we print "\\0" when wchar is // L'\0'. char buffer[32]; // CodePointToUtf8 requires a buffer that big. msg << "L'" << (wchar ? CodePointToUtf8(static_cast(wchar), buffer) : "\\0") << "' (" << wchar_as_uint64 << ", 0x" << ::std::setbase(16) << wchar_as_uint64 << ")"; return msg.GetString(); } } // namespace internal // AssertionResult constructor. AssertionResult::AssertionResult(const internal::String& failure_message) : failure_message_(failure_message) { } // Makes a successful assertion result. AssertionResult AssertionSuccess() { return AssertionResult(); } // Makes a failed assertion result with the given failure message. AssertionResult AssertionFailure(const Message& message) { return AssertionResult(message.GetString()); } namespace internal { // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const String& expected_value, const String& actual_value, bool ignoring_case) { Message msg; msg << "Value of: " << actual_expression; if (actual_value != actual_expression) { msg << "\n Actual: " << actual_value; } msg << "\nExpected: " << expected_expression; if (ignoring_case) { msg << " (ignoring case)"; } if (expected_value != expected_expression) { msg << "\nWhich is: " << expected_value; } return AssertionFailure(msg); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); // TODO(wan): do not print the value of an expression if it's // already a literal. Message msg; msg << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; return AssertionFailure(msg); } // Helper template for implementing FloatLE() and DoubleLE(). template AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. StrStream val1_ss; val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val1; StrStream val2_ss; val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val2; Message msg; msg << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StrStreamToString(&val1_ss) << " vs " << StrStreamToString(&val2_ss); return AssertionFailure(msg); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_EQ with int or enum // arguments. AssertionResult CmpHelperEQ(const char* expected_expression, const char* actual_expression, BiggestInt expected, BiggestInt actual) { if (expected == actual) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, FormatForComparisonFailureMessage(expected, actual), FormatForComparisonFailureMessage(actual, expected), false); } // A macro for implementing the helper functions needed to implement // ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here // just to avoid copy-and-paste of similar code. #define GTEST_IMPL_CMP_HELPER_(op_name, op)\ AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ BiggestInt val1, BiggestInt val2) {\ if (val1 op val2) {\ return AssertionSuccess();\ } else {\ Message msg;\ msg << "Expected: (" << expr1 << ") " #op " (" << expr2\ << "), actual: " << FormatForComparisonFailureMessage(val1, val2)\ << " vs " << FormatForComparisonFailureMessage(val2, val1);\ return AssertionFailure(msg);\ }\ } // Implements the helper function for {ASSERT|EXPECT}_NE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(NE, !=) // Implements the helper function for {ASSERT|EXPECT}_LE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LE, <=) // Implements the helper function for {ASSERT|EXPECT}_LT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LT, < ) // Implements the helper function for {ASSERT|EXPECT}_GE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GE, >=) // Implements the helper function for {ASSERT|EXPECT}_GT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GT, > ) #undef GTEST_IMPL_CMP_HELPER_ // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, String::ShowCStringQuoted(expected), String::ShowCStringQuoted(actual), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CaseInsensitiveCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, String::ShowCStringQuoted(expected), String::ShowCStringQuoted(actual), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { Message msg; msg << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; return AssertionFailure(msg); } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { Message msg; msg << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; return AssertionFailure(msg); } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true iff needle is a // substring of haystack. NULL is considered a substring of itself // only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return strstr(haystack, needle) != NULL; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return wcsstr(haystack, needle) != NULL; } // StringType here can be either ::std::string or ::std::wstring. template bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template AssertionResult IsSubstringImpl( bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure( Message() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""); } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_STRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_STRING #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #ifdef GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT #ifdef _WIN32_WCE // Windows CE doesn't support FormatMessage. const char error_text[] = ""; #else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // String::Format can't exceed this length. // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = { '\0' }; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system hr, // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size NULL); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing cr-lf) for (; message_length && isspace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } #endif // _WIN32_WCE const String error_hex(String::Format("0x%08X ", hr)); Message msg; msg << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << error_text << "\n"; return ::testing::AssertionFailure(msg); } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have upto 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint1 = (static_cast(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint3 = (static_cast(1) << (4 + 2*6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint4 = (static_cast(1) << (3 + 3*6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline UInt32 ChopLowBits(UInt32* bits, int n) { const UInt32 low_bits = *bits & ((static_cast(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // The output buffer str must containt at least 32 characters. // The function returns the address of the output buffer. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be output // as '(Invalid Unicode 0xXXXXXXXX)'. char* CodePointToUtf8(UInt32 code_point, char* str) { if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xE0 | code_point); // 1110xxxx } else if (code_point <= kMaxCodePoint4) { str[4] = '\0'; str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xF0 | code_point); // 11110xxx } else { // The longest string String::Format can produce when invoked // with these parameters is 28 character long (not including // the terminating nul character). We are asking for 32 character // buffer just in case. This is also enough for strncpy to // null-terminate the destination string. // MSVC 8 deprecates strncpy(), so we want to suppress warning // 4996 (deprecated function) there. #ifdef GTEST_OS_WINDOWS // We are on Windows. #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4996) // Temporarily disables warning 4996. #endif strncpy(str, String::Format("(Invalid Unicode 0x%X)", code_point).c_str(), 32); #ifdef GTEST_OS_WINDOWS // We are on Windows. #pragma warning(pop) // Restores the warning state. #endif str[31] = '\0'; // Makes sure no change in the format to strncpy leaves // the result unterminated. } return str; } // The following two functions only make sense if the the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { if (sizeof(wchar_t) == 2) return (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; else return false; } // Creates a Unicode code point from UTF16 surrogate pair. inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { if (sizeof(wchar_t) == 2) { const UInt32 mask = (1 << 10) - 1; return (((first & mask) << 10) | (second & mask)) + 0x10000; } else { // This should not be called, but we provide a sensible default // in case it is. return static_cast(first); } } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. String WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast(wcslen(str)); StrStream stream; for (int i = 0; i < num_chars; ++i) { UInt32 unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast(str[i]); } char buffer[32]; // CodePointToUtf8 requires a buffer this big. stream << CodePointToUtf8(unicode_code_point, buffer); } return StrStreamToString(&stream); } // Converts a wide C string to a String using the UTF-8 encoding. // NULL will be converted to "(null)". String String::ShowWideCString(const wchar_t * wide_c_str) { if (wide_c_str == NULL) return String("(null)"); return String(internal::WideStringToUtf8(wide_c_str, -1).c_str()); } // Similar to ShowWideCString(), except that this function encloses // the converted string in double quotes. String String::ShowWideCStringQuoted(const wchar_t* wide_c_str) { if (wide_c_str == NULL) return String("(null)"); return String::Format("L\"%s\"", String::ShowWideCString(wide_c_str).c_str()); } // Compares two wide C strings. Returns true iff they have the same // content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const wchar_t* expected, const wchar_t* actual) { if (String::WideCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, String::ShowWideCStringQuoted(expected), String::ShowWideCStringQuoted(actual), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } Message msg; msg << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << String::ShowWideCStringQuoted(s1) << " vs " << String::ShowWideCStringQuoted(s2); return AssertionFailure(msg); } // Compares two C strings, ignoring case. Returns true iff they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { if ( lhs == NULL ) return rhs == NULL; if ( rhs == NULL ) return false; #ifdef GTEST_OS_WINDOWS return _stricmp(lhs, rhs) == 0; #else // GTEST_OS_WINDOWS return strcasecmp(lhs, rhs) == 0; #endif // GTEST_OS_WINDOWS } // Compares two wide C strings, ignoring case. Returns true iff they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if ( lhs == NULL ) return rhs == NULL; if ( rhs == NULL ) return false; #ifdef GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif defined(GTEST_OS_LINUX) return wcscasecmp(lhs, rhs) == 0; #else // Mac OS X and Cygwin don't define wcscasecmp. Other unknown OSes // may not define it either. wint_t left, right; do { left = towlower(*lhs++); right = towlower(*rhs++); } while (left && left == right); return left == right; #endif // OS selector } // Constructs a String by copying a given number of chars from a // buffer. E.g. String("hello", 3) will create the string "hel". String::String(const char * buffer, size_t len) { char * const temp = new char[ len + 1 ]; memcpy(temp, buffer, len); temp[ len ] = '\0'; c_str_ = temp; } // Compares this with another String. // Returns < 0 if this is less than rhs, 0 if this is equal to rhs, or > 0 // if this is greater than rhs. int String::Compare(const String & rhs) const { if ( c_str_ == NULL ) { return rhs.c_str_ == NULL ? 0 : -1; // NULL < anything except NULL } return rhs.c_str_ == NULL ? 1 : strcmp(c_str_, rhs.c_str_); } // Returns true iff this String ends with the given suffix. *Any* // String is considered to end with a NULL or empty suffix. bool String::EndsWith(const char* suffix) const { if (suffix == NULL || CStringEquals(suffix, "")) return true; if (c_str_ == NULL) return false; const size_t this_len = strlen(c_str_); const size_t suffix_len = strlen(suffix); return (this_len >= suffix_len) && CStringEquals(c_str_ + this_len - suffix_len, suffix); } // Returns true iff this String ends with the given suffix, ignoring case. // Any String is considered to end with a NULL or empty suffix. bool String::EndsWithCaseInsensitive(const char* suffix) const { if (suffix == NULL || CStringEquals(suffix, "")) return true; if (c_str_ == NULL) return false; const size_t this_len = strlen(c_str_); const size_t suffix_len = strlen(suffix); return (this_len >= suffix_len) && CaseInsensitiveCStringEquals(c_str_ + this_len - suffix_len, suffix); } // Sets the 0-terminated C string this String object represents. The // old string in this object is deleted, and this object will own a // clone of the input string. This function copies only up to length // bytes (plus a terminating null byte), or until the first null byte, // whichever comes first. // // This function works even when the c_str parameter has the same // value as that of the c_str_ field. void String::Set(const char * c_str, size_t length) { // Makes sure this works when c_str == c_str_ const char* const temp = CloneString(c_str, length); delete[] c_str_; c_str_ = temp; } // Assigns a C string to this object. Self-assignment works. const String& String::operator=(const char* c_str) { // Makes sure this works when c_str == c_str_ if (c_str != c_str_) { delete[] c_str_; c_str_ = CloneCString(c_str); } return *this; } // Formats a list of arguments to a String, using the same format // spec string as for printf. // // We do not use the StringPrintf class as it is not universally // available. // // The result is limited to 4096 characters (including the tailing 0). // If 4096 characters are not enough to format the input, // "" is returned. String String::Format(const char * format, ...) { va_list args; va_start(args, format); char buffer[4096]; // MSVC 8 deprecates vsnprintf(), so we want to suppress warning // 4996 (deprecated function) there. #ifdef GTEST_OS_WINDOWS // We are on Windows. #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4996) // Temporarily disables warning 4996. const int size = vsnprintf(buffer, sizeof(buffer)/sizeof(buffer[0]) - 1, format, args); #pragma warning(pop) // Restores the warning state. #else // We are on Linux or Mac OS. const int size = vsnprintf(buffer, sizeof(buffer)/sizeof(buffer[0]) - 1, format, args); #endif // GTEST_OS_WINDOWS va_end(args); return String(size >= 0 ? buffer : ""); } // Converts the buffer in a StrStream to a String, converting NUL // bytes to "\\0" along the way. String StrStreamToString(StrStream* ss) { #if GTEST_HAS_STD_STRING const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); #else const char* const start = ss->str(); const char* const end = start + ss->pcount(); #endif // GTEST_HAS_STD_STRING // We need to use a helper StrStream to do this transformation // because String doesn't support push_back(). StrStream helper; for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { helper << "\\0"; // Replaces NUL with "\\0"; } else { helper.put(*ch); } } #if GTEST_HAS_STD_STRING return String(helper.str().c_str()); #else const String str(helper.str(), helper.pcount()); helper.freeze(false); ss->freeze(false); return str; #endif // GTEST_HAS_STD_STRING } // Appends the user-supplied message to the Google-Test-generated message. String AppendUserMessage(const String& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const String user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } Message msg; msg << gtest_msg << "\n" << user_msg_string; return msg.GetString(); } // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), elapsed_time_(0) { } // D'tor. TestResult::~TestResult() { } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.PushBack(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const TestProperty& test_property) { if (!ValidateTestProperty(test_property)) { return; } MutexLock lock(&test_properites_mutex_); ListNode* const node_with_matching_key = test_properties_.FindIf(TestPropertyKeyIs(test_property.key())); if (node_with_matching_key == NULL) { test_properties_.PushBack(test_property); return; } TestProperty& property_with_matching_key = node_with_matching_key->element(); property_with_matching_key.SetValue(test_property.value()); } // Adds a failure if the key is a reserved attribute of Google Test // testcase tags. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const TestProperty& test_property) { String key(test_property.key()); if (key == "name" || key == "status" || key == "time" || key == "classname") { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << key << " ('name', 'status', 'time', and 'classname' are reserved by " << GTEST_NAME << ")"; return false; } return true; } // Clears the object. void TestResult::Clear() { test_part_results_.Clear(); test_properties_.Clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true iff the test part passed. static bool TestPartPassed(const TestPartResult & result) { return result.passed(); } // Gets the number of successful test parts. int TestResult::successful_part_count() const { return test_part_results_.CountIf(TestPartPassed); } // Returns true iff the test part failed. static bool TestPartFailed(const TestPartResult & result) { return result.failed(); } // Gets the number of failed test parts. int TestResult::failed_part_count() const { return test_part_results_.CountIf(TestPartFailed); } // Returns true iff the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult & result) { return result.fatally_failed(); } // Returns true iff the test fatally failed. bool TestResult::HasFatalFailure() const { return test_part_results_.CountIf(TestPartFatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return test_part_results_.size(); } } // namespace internal // class Test // Creates a Test object. // The c'tor saves the values of all Google Test flags. Test::Test() : gtest_flag_saver_(new internal::GTestFlagSaver) { } // The d'tor restores the values of all Google Test flags. Test::~Test() { delete gtest_flag_saver_; } // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() { } // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() { } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const char* key, const char* value) { UnitTest::GetInstance()->RecordPropertyForCurrentTest(key, value); } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const char* key, int value) { Message value_message; value_message << value; RecordProperty(key, value_message.GetString().c_str()); } #ifdef GTEST_OS_WINDOWS // We are on Windows. // Adds an "exception thrown" fatal failure to the current test. static void AddExceptionThrownFailure(DWORD exception_code, const char* location) { Message message; message << "Exception thrown with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " in " << location << "."; UnitTest* const unit_test = UnitTest::GetInstance(); unit_test->AddTestPartResult( TPRT_FATAL_FAILURE, static_cast(NULL), // We have no info about the source file where the exception // occurred. -1, // We have no info on which line caused the exception. message.GetString(), internal::String("")); } #endif // GTEST_OS_WINDOWS // Google Test requires all tests in the same test case to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test case. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestCase* const test_case = impl->current_test_case(); // Info about the first test in the current test case. const internal::TestInfoImpl* const first_test_info = test_case->test_info_list().Head()->element()->impl(); const internal::TypeId first_fixture_id = first_test_info->fixture_class_id(); const char* const first_test_name = first_test_info->name(); // Info about the current test. const internal::TestInfoImpl* const this_test_info = impl->current_test_info()->impl(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id(); const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // The user mixed TEST and TEST_F in this test case - we'll tell // him/her how to fix it. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test case is\n" << "illegal. In test case " << this_test_info->test_case_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // The user defined two fixture classes with the same name in // two namespaces - we'll tell him/her how to fix it. ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << this_test_info->test_case_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test cases."; } return false; } return true; } // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); #if defined(GTEST_OS_WINDOWS) && !defined(__MINGW32__) // We are on Windows. impl->os_stack_trace_getter()->UponLeavingGTest(); __try { SetUp(); } __except(internal::UnitTestOptions::GTestShouldProcessSEH( GetExceptionCode())) { AddExceptionThrownFailure(GetExceptionCode(), "SetUp()"); } // We will run the test only if SetUp() had no fatal failure. if (!HasFatalFailure()) { impl->os_stack_trace_getter()->UponLeavingGTest(); __try { TestBody(); } __except(internal::UnitTestOptions::GTestShouldProcessSEH( GetExceptionCode())) { AddExceptionThrownFailure(GetExceptionCode(), "the test body"); } } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); __try { TearDown(); } __except(internal::UnitTestOptions::GTestShouldProcessSEH( GetExceptionCode())) { AddExceptionThrownFailure(GetExceptionCode(), "TearDown()"); } #else // We are on Linux, Mac or MingW - exceptions are disabled. impl->os_stack_trace_getter()->UponLeavingGTest(); SetUp(); // We will run the test only if SetUp() was successful. if (!HasFatalFailure()) { impl->os_stack_trace_getter()->UponLeavingGTest(); TestBody(); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); TearDown(); #endif // GTEST_OS_WINDOWS } // Returns true iff the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object via impl_. TestInfo::TestInfo(const char* test_case_name, const char* name, const char* test_case_comment, const char* comment, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) { impl_ = new internal::TestInfoImpl(this, test_case_name, name, test_case_comment, comment, fixture_class_id, factory); } // Destructs a TestInfo object. TestInfo::~TestInfo() { delete impl_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_case_name: name of the test case // name: name of the test // test_case_comment: a comment on the test case that will be included in // the test output // comment: a comment on the test that will be included in the // test output // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_case_name, const char* name, const char* test_case_comment, const char* comment, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_case_name, name, test_case_comment, comment, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } #ifdef GTEST_HAS_PARAM_TEST void ReportInvalidTestCaseType(const char* test_case_name, const char* file, int line) { Message errors; errors << "Attempted redefinition of test case " << test_case_name << ".\n" << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << test_case_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test cases."; fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors.GetString().c_str()); } #endif // GTEST_HAS_PARAM_TEST } // namespace internal // Returns the test case name. const char* TestInfo::test_case_name() const { return impl_->test_case_name(); } // Returns the test name. const char* TestInfo::name() const { return impl_->name(); } // Returns the test case comment. const char* TestInfo::test_case_comment() const { return impl_->test_case_comment(); } // Returns the test comment. const char* TestInfo::comment() const { return impl_->comment(); } // Returns true if this test should run. bool TestInfo::should_run() const { return impl_->should_run(); } // Returns the result of the test. const internal::TestResult* TestInfo::result() const { return impl_->result(); } // Increments the number of death tests encountered in this test so // far. int TestInfo::increment_death_test_count() { return impl_->result()->increment_death_test_count(); } namespace { // A predicate that checks the test name of a TestInfo against a known // value. // // This is used for implementation of the TestCase class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestNameIs is copyable. class TestNameIs { public: // Constructor. // // TestNameIs has NO default constructor. explicit TestNameIs(const char* name) : name_(name) {} // Returns true iff the test name of test_info matches name_. bool operator()(const TestInfo * test_info) const { return test_info && internal::String(test_info->name()).Compare(name_) == 0; } private: internal::String name_; }; } // namespace // Finds and returns a TestInfo with the given name. If one doesn't // exist, returns NULL. TestInfo * TestCase::GetTestInfo(const char* test_name) { // Can we find a TestInfo with the given name? internal::ListNode * const node = test_info_list_->FindIf( TestNameIs(test_name)); // Returns the TestInfo found. return node ? node->element() : NULL; } namespace internal { // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_CASE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { #ifdef GTEST_HAS_PARAM_TEST if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); parameterized_tests_registered_ = true; } #endif } // Creates the test object, runs it, records its result, and then // deletes it. void TestInfoImpl::Run() { if (!should_run_) return; // Tells UnitTest where to store test result. UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(parent_); // Notifies the unit test event listener that a test is about to // start. UnitTestEventListenerInterface* const result_printer = impl->result_printer(); result_printer->OnTestStart(parent_); const TimeInMillis start = GetTimeInMillis(); impl->os_stack_trace_getter()->UponLeavingGTest(); #if defined(GTEST_OS_WINDOWS) && !defined(__MINGW32__) // We are on Windows. Test* test = NULL; __try { // Creates the test object. test = factory_->CreateTest(); } __except(internal::UnitTestOptions::GTestShouldProcessSEH( GetExceptionCode())) { AddExceptionThrownFailure(GetExceptionCode(), "the test fixture's constructor"); return; } #else // We are on Linux, Mac OS or MingW - exceptions are disabled. // TODO(wan): If test->Run() throws, test won't be deleted. This is // not a problem now as we don't use exceptions. If we were to // enable exceptions, we should revise the following to be // exception-safe. // Creates the test object. Test* test = factory_->CreateTest(); #endif // GTEST_OS_WINDOWS // Runs the test only if the constructor of the test fixture didn't // generate a fatal failure. if (!Test::HasFatalFailure()) { test->Run(); } // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); delete test; test = NULL; result_.set_elapsed_time(GetTimeInMillis() - start); // Notifies the unit test event listener that a test has just finished. result_printer->OnTestEnd(parent_); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(NULL); } } // namespace internal // class TestCase // Gets the number of successful tests in this test case. int TestCase::successful_test_count() const { return test_info_list_->CountIf(TestPassed); } // Gets the number of failed tests in this test case. int TestCase::failed_test_count() const { return test_info_list_->CountIf(TestFailed); } int TestCase::disabled_test_count() const { return test_info_list_->CountIf(TestDisabled); } // Get the number of tests in this test case that should run. int TestCase::test_to_run_count() const { return test_info_list_->CountIf(ShouldRunTest); } // Gets the number of all tests. int TestCase::total_test_count() const { return test_info_list_->size(); } // Creates a TestCase with the given name. // // Arguments: // // name: name of the test case // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase::TestCase(const char* name, const char* comment, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) : name_(name), comment_(comment), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), elapsed_time_(0) { test_info_list_ = new internal::List; } // Destructor of TestCase. TestCase::~TestCase() { // Deletes every Test in the collection. test_info_list_->ForEach(internal::Delete); // Then deletes the Test collection. delete test_info_list_; test_info_list_ = NULL; } // Adds a test to this test case. Will delete the test upon // destruction of the TestCase object. void TestCase::AddTestInfo(TestInfo * test_info) { test_info_list_->PushBack(test_info); } // Runs every test in this TestCase. void TestCase::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_case(this); UnitTestEventListenerInterface * const result_printer = impl->result_printer(); result_printer->OnTestCaseStart(this); impl->os_stack_trace_getter()->UponLeavingGTest(); set_up_tc_(); const internal::TimeInMillis start = internal::GetTimeInMillis(); test_info_list_->ForEach(internal::TestInfoImpl::RunTest); elapsed_time_ = internal::GetTimeInMillis() - start; impl->os_stack_trace_getter()->UponLeavingGTest(); tear_down_tc_(); result_printer->OnTestCaseEnd(this); impl->set_current_test_case(NULL); } // Clears the results of all tests in this test case. void TestCase::ClearResult() { test_info_list_->ForEach(internal::TestInfoImpl::ClearTestResult); } // class UnitTestEventListenerInterface // The virtual d'tor. UnitTestEventListenerInterface::~UnitTestEventListenerInterface() { } // A result printer that never prints anything. Used in the child process // of an exec-style death test to avoid needless output clutter. class NullUnitTestResultPrinter : public UnitTestEventListenerInterface {}; // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static internal::String FormatCountableNoun(int count, const char * singular_form, const char * plural_form) { return internal::String::Format("%d %s", count, count == 1 ? singular_form : plural_form); } // Formats the count of tests. static internal::String FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test cases. static internal::String FormatTestCaseCount(int test_case_count) { return FormatCountableNoun(test_case_count, "test case", "test cases"); } // Converts a TestPartResultType enum to human-friendly string // representation. Both TPRT_NONFATAL_FAILURE and TPRT_FATAL_FAILURE // are translated to "Failure", as the user usually doesn't care about // the difference between the two when viewing the test result. static const char * TestPartResultTypeToString(TestPartResultType type) { switch (type) { case TPRT_SUCCESS: return "Success"; case TPRT_NONFATAL_FAILURE: case TPRT_FATAL_FAILURE: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif } return "Unknown result type"; } // Prints a TestPartResult. static void PrintTestPartResult( const TestPartResult & test_part_result) { printf("%s %s%s\n", internal::FormatFileLocation(test_part_result.file_name(), test_part_result.line_number()).c_str(), TestPartResultTypeToString(test_part_result.type()), test_part_result.message()); fflush(stdout); } // class PrettyUnitTestResultPrinter namespace internal { enum GTestColor { COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; #if defined(GTEST_OS_WINDOWS) && !defined(_WIN32_WCE) // Returns the character attribute for the given color. WORD GetColorAttribute(GTestColor color) { switch (color) { case COLOR_RED: return FOREGROUND_RED; case COLOR_GREEN: return FOREGROUND_GREEN; case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; } return 0; } #else // Returns the ANSI color code for the given color. const char* GetAnsiColorCode(GTestColor color) { switch (color) { case COLOR_RED: return "1"; case COLOR_GREEN: return "2"; case COLOR_YELLOW: return "3"; }; return NULL; } #endif // GTEST_OS_WINDOWS && !_WIN32_WCE // Returns true iff Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { const char* const gtest_color = GTEST_FLAG(color).c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #ifdef GTEST_OS_WINDOWS // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = GetEnv("TERM"); const bool term_supports_color = String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "cygwin"); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. void ColoredPrintf(GTestColor color, const char* fmt, ...) { va_list args; va_start(args, fmt); #if defined(_WIN32_WCE) || defined(GTEST_OS_SYMBIAN) || defined(GTEST_OS_ZOS) static const bool use_color = false; #else static const bool use_color = ShouldUseColor(isatty(fileno(stdout)) != 0); #endif // !_WIN32_WCE // The '!= 0' comparison is necessary to satisfy MSVC 7.1. if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if defined(GTEST_OS_WINDOWS) && !defined(_WIN32_WCE) const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; SetConsoleTextAttribute(stdout_handle, GetColorAttribute(color) | FOREGROUND_INTENSITY); vprintf(fmt, args); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !_WIN32_WCE va_end(args); } } // namespace internal using internal::ColoredPrintf; using internal::COLOR_RED; using internal::COLOR_GREEN; using internal::COLOR_YELLOW; // This class implements the UnitTestEventListenerInterface interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public UnitTestEventListenerInterface { public: PrettyUnitTestResultPrinter() {} static void PrintTestName(const char * test_case, const char * test) { printf("%s.%s", test_case, test); } // The following methods override what's in the // UnitTestEventListenerInterface class. virtual void OnUnitTestStart(const UnitTest * unit_test); virtual void OnGlobalSetUpStart(const UnitTest*); virtual void OnTestCaseStart(const TestCase * test_case); virtual void OnTestCaseEnd(const TestCase * test_case); virtual void OnTestStart(const TestInfo * test_info); virtual void OnNewTestPartResult(const TestPartResult * result); virtual void OnTestEnd(const TestInfo * test_info); virtual void OnGlobalTearDownStart(const UnitTest*); virtual void OnUnitTestEnd(const UnitTest * unit_test); private: internal::String test_case_name_; }; // Called before the unit test starts. void PrettyUnitTestResultPrinter::OnUnitTestStart( const UnitTest * unit_test) { const char * const filter = GTEST_FLAG(filter).c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!internal::String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(COLOR_YELLOW, "Note: %s filter = %s\n", GTEST_NAME, filter); } const internal::UnitTestImpl* const impl = unit_test->impl(); ColoredPrintf(COLOR_GREEN, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(impl->test_to_run_count()).c_str(), FormatTestCaseCount(impl->test_case_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnGlobalSetUpStart(const UnitTest*) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseStart( const TestCase * test_case) { test_case_name_ = test_case->name(); const internal::String counts = FormatCountableNoun(test_case->test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s", counts.c_str(), test_case_name_.c_str()); if (test_case->comment()[0] == '\0') { printf("\n"); } else { printf(", where %s\n", test_case->comment()); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseEnd( const TestCase * test_case) { if (!GTEST_FLAG(print_time)) return; test_case_name_ = test_case->name(); const internal::String counts = FormatCountableNoun(test_case->test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case_name_.c_str(), internal::StreamableToString(test_case->elapsed_time()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo * test_info) { ColoredPrintf(COLOR_GREEN, "[ RUN ] "); PrintTestName(test_case_name_.c_str(), test_info->name()); if (test_info->comment()[0] == '\0') { printf("\n"); } else { printf(", where %s\n", test_info->comment()); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo * test_info) { if (test_info->result()->Passed()) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } PrintTestName(test_case_name_.c_str(), test_info->name()); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString( test_info->result()->elapsed_time()).c_str()); } else { printf("\n"); } fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnNewTestPartResult( const TestPartResult * result) { // If the test part succeeded, we don't need to do anything. if (result->type() == TPRT_SUCCESS) return; // Print failure message from the assertion (e.g. expected this and got that). PrintTestPartResult(*result); fflush(stdout); } void PrettyUnitTestResultPrinter::OnGlobalTearDownStart(const UnitTest*) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } namespace internal { // Internal helper for printing the list of failed tests. static void PrintFailedTestsPretty(const UnitTestImpl* impl) { const int failed_test_count = impl->failed_test_count(); if (failed_test_count == 0) { return; } for (const internal::ListNode* node = impl->test_cases()->Head(); node != NULL; node = node->next()) { const TestCase* const tc = node->element(); if (!tc->should_run() || (tc->failed_test_count() == 0)) { continue; } for (const internal::ListNode* tinode = tc->test_info_list().Head(); tinode != NULL; tinode = tinode->next()) { const TestInfo* const ti = tinode->element(); if (!tc->ShouldRunTest(ti) || tc->TestPassed(ti)) { continue; } ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s.%s", ti->test_case_name(), ti->name()); if (ti->test_case_comment()[0] != '\0' || ti->comment()[0] != '\0') { printf(", where %s", ti->test_case_comment()); if (ti->test_case_comment()[0] != '\0' && ti->comment()[0] != '\0') { printf(" and "); } } printf("%s\n", ti->comment()); } } } } // namespace internal void PrettyUnitTestResultPrinter::OnUnitTestEnd( const UnitTest * unit_test) { const internal::UnitTestImpl* const impl = unit_test->impl(); ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%s from %s ran.", FormatTestCount(impl->test_to_run_count()).c_str(), FormatTestCaseCount(impl->test_case_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(impl->elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); printf("%s.\n", FormatTestCount(impl->successful_test_count()).c_str()); int num_failures = impl->failed_test_count(); if (!impl->Passed()) { const int failed_test_count = impl->failed_test_count(); ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); internal::PrintFailedTestsPretty(impl); printf("\n%2d FAILED %s\n", num_failures, num_failures == 1 ? "TEST" : "TESTS"); } int num_disabled = impl->disabled_test_count(); if (num_disabled) { if (!num_failures) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(COLOR_YELLOW, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // class UnitTestEventsRepeater // // This class forwards events to other event listeners. class UnitTestEventsRepeater : public UnitTestEventListenerInterface { public: typedef internal::List Listeners; typedef internal::ListNode ListenersNode; UnitTestEventsRepeater() {} virtual ~UnitTestEventsRepeater(); void AddListener(UnitTestEventListenerInterface *listener); virtual void OnUnitTestStart(const UnitTest* unit_test); virtual void OnUnitTestEnd(const UnitTest* unit_test); virtual void OnGlobalSetUpStart(const UnitTest* unit_test); virtual void OnGlobalSetUpEnd(const UnitTest* unit_test); virtual void OnGlobalTearDownStart(const UnitTest* unit_test); virtual void OnGlobalTearDownEnd(const UnitTest* unit_test); virtual void OnTestCaseStart(const TestCase* test_case); virtual void OnTestCaseEnd(const TestCase* test_case); virtual void OnTestStart(const TestInfo* test_info); virtual void OnTestEnd(const TestInfo* test_info); virtual void OnNewTestPartResult(const TestPartResult* result); private: Listeners listeners_; GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestEventsRepeater); }; UnitTestEventsRepeater::~UnitTestEventsRepeater() { for (ListenersNode* listener = listeners_.Head(); listener != NULL; listener = listener->next()) { delete listener->element(); } } void UnitTestEventsRepeater::AddListener( UnitTestEventListenerInterface *listener) { listeners_.PushBack(listener); } // Since the methods are identical, use a macro to reduce boilerplate. // This defines a member that repeats the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void UnitTestEventsRepeater::Name(const Type* parameter) { \ for (ListenersNode* listener = listeners_.Head(); \ listener != NULL; \ listener = listener->next()) { \ listener->element()->Name(parameter); \ } \ } GTEST_REPEATER_METHOD_(OnUnitTestStart, UnitTest) GTEST_REPEATER_METHOD_(OnUnitTestEnd, UnitTest) GTEST_REPEATER_METHOD_(OnGlobalSetUpStart, UnitTest) GTEST_REPEATER_METHOD_(OnGlobalSetUpEnd, UnitTest) GTEST_REPEATER_METHOD_(OnGlobalTearDownStart, UnitTest) GTEST_REPEATER_METHOD_(OnGlobalTearDownEnd, UnitTest) GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase) GTEST_REPEATER_METHOD_(OnTestCaseEnd, TestCase) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestEnd, TestInfo) GTEST_REPEATER_METHOD_(OnNewTestPartResult, TestPartResult) #undef GTEST_REPEATER_METHOD_ // End PrettyUnitTestResultPrinter // This class generates an XML output file. class XmlUnitTestResultPrinter : public UnitTestEventListenerInterface { public: explicit XmlUnitTestResultPrinter(const char* output_file); virtual void OnUnitTestEnd(const UnitTest* unit_test); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(char c) { return c == 0x9 || c == 0xA || c == 0xD; } // May c appear in a well-formed XML document? static bool IsValidXmlCharacter(char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static internal::String EscapeXml(const char* str, bool is_attribute); // Convenience wrapper around EscapeXml when str is an attribute value. static internal::String EscapeXmlAttribute(const char* str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static internal::String EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Prints an XML representation of a TestInfo object. static void PrintXmlTestInfo(FILE* out, const char* test_case_name, const TestInfo* test_info); // Prints an XML representation of a TestCase object static void PrintXmlTestCase(FILE* out, const TestCase* test_case); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(FILE* out, const UnitTest* unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the String is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static internal::String TestPropertiesAsXmlAttributes( const internal::TestResult* result); // The output file. const internal::String output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.c_str() == NULL || output_file_.empty()) { fprintf(stderr, "XML output file may not be null\n"); fflush(stderr); exit(EXIT_FAILURE); } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnUnitTestEnd(const UnitTest* unit_test) { FILE* xmlout = NULL; internal::FilePath output_file(output_file_); internal::FilePath output_dir(output_file.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { // MSVC 8 deprecates fopen(), so we want to suppress warning 4996 // (deprecated function) there. #ifdef GTEST_OS_WINDOWS // We are on Windows. #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4996) // Temporarily disables warning 4996. xmlout = fopen(output_file_.c_str(), "w"); #pragma warning(pop) // Restores the warning state. #else // We are on Linux or Mac OS. xmlout = fopen(output_file_.c_str(), "w"); #endif // GTEST_OS_WINDOWS } if (xmlout == NULL) { // TODO(wan): report the reason of the failure. // // We don't do it for now as: // // 1. There is no urgent need for it. // 2. It's a bit involved to make the errno variable thread-safe on // all three operating systems (Linux, Windows, and Mac OS). // 3. To interpret the meaning of errno in a thread-safe way, // we need the strerror_r() function, which is not available on // Windows. fprintf(stderr, "Unable to open file \"%s\"\n", output_file_.c_str()); fflush(stderr); exit(EXIT_FAILURE); } PrintXmlUnitTest(xmlout, unit_test); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. // TODO(wan): It might be nice to have a minimally invasive, human-readable // escaping scheme for invalid characters, rather than dropping them. internal::String XmlUnitTestResultPrinter::EscapeXml(const char* str, bool is_attribute) { Message m; if (str != NULL) { for (const char* src = str; *src; ++src) { switch (*src) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(*src)) { if (is_attribute && IsNormalizableWhitespace(*src)) m << internal::String::Format("&#x%02X;", unsigned(*src)); else m << *src; } break; } } } return m.GetString(); } // The following routines generate an XML representation of a UnitTest // object. // // This is how Google Test concepts map to the DTD: // // <-- corresponds to a UnitTest object // <-- corresponds to a TestCase object // <-- corresponds to a TestInfo object // ... // ... // ... // <-- individual assertion failures // // // namespace internal { // Formats the given time in milliseconds as seconds. The returned // C-string is owned by this function and cannot be released by the // caller. Calling the function again invalidates the previous // result. const char* FormatTimeInMillisAsSeconds(TimeInMillis ms) { static String str; str = (Message() << (ms/1000.0)).GetString(); return str.c_str(); } } // namespace internal // Prints an XML representation of a TestInfo object. // TODO(wan): There is also value in printing properties with the plain printer. void XmlUnitTestResultPrinter::PrintXmlTestInfo(FILE* out, const char* test_case_name, const TestInfo* test_info) { const internal::TestResult * const result = test_info->result(); const internal::List &results = result->test_part_results(); fprintf(out, " name()).c_str(), test_info->should_run() ? "run" : "notrun", internal::FormatTimeInMillisAsSeconds(result->elapsed_time()), EscapeXmlAttribute(test_case_name).c_str(), TestPropertiesAsXmlAttributes(result).c_str()); int failures = 0; for (const internal::ListNode* part_node = results.Head(); part_node != NULL; part_node = part_node->next()) { const TestPartResult& part = part_node->element(); if (part.failed()) { const internal::String message = internal::String::Format("%s:%d\n%s", part.file_name(), part.line_number(), part.message()); if (++failures == 1) fprintf(out, ">\n"); fprintf(out, " " "\n", EscapeXmlAttribute(part.summary()).c_str(), message.c_str()); } } if (failures == 0) fprintf(out, " />\n"); else fprintf(out, " \n"); } // Prints an XML representation of a TestCase object void XmlUnitTestResultPrinter::PrintXmlTestCase(FILE* out, const TestCase* test_case) { fprintf(out, " name()).c_str(), test_case->total_test_count(), test_case->failed_test_count(), test_case->disabled_test_count()); fprintf(out, "errors=\"0\" time=\"%s\">\n", internal::FormatTimeInMillisAsSeconds(test_case->elapsed_time())); for (const internal::ListNode* info_node = test_case->test_info_list().Head(); info_node != NULL; info_node = info_node->next()) { PrintXmlTestInfo(out, test_case->name(), info_node->element()); } fprintf(out, " \n"); } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(FILE* out, const UnitTest* unit_test) { const internal::UnitTestImpl* const impl = unit_test->impl(); fprintf(out, "\n"); fprintf(out, "total_test_count(), impl->failed_test_count(), impl->disabled_test_count(), internal::FormatTimeInMillisAsSeconds(impl->elapsed_time())); fprintf(out, "name=\"AllTests\">\n"); for (const internal::ListNode* case_node = impl->test_cases()->Head(); case_node != NULL; case_node = case_node->next()) { PrintXmlTestCase(out, case_node->element()); } fprintf(out, "\n"); } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. internal::String XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const internal::TestResult* result) { using internal::TestProperty; Message attributes; const internal::List& properties = result->test_properties(); for (const internal::ListNode* property_node = properties.Head(); property_node != NULL; property_node = property_node->next()) { const TestProperty& property = property_node->element(); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } // End XmlUnitTestResultPrinter namespace internal { // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. // L < UnitTest::mutex_ ScopedTrace::ScopedTrace(const char* file, int line, const Message& message) { TraceInfo trace; trace.file = file; trace.line = line; trace.message = message.GetString(); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. // L < UnitTest::mutex_ ScopedTrace::~ScopedTrace() { UnitTest::GetInstance()->PopGTestTrace(); } // class OsStackTraceGetter // Returns the current OS stack trace as a String. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. // // L < mutex_ // We use "L < mutex_" to denote that the function may acquire mutex_. String OsStackTraceGetter::CurrentStackTrace(int, int) { return String(""); } // L < mutex_ void OsStackTraceGetter::UponLeavingGTest() { } const char* const OsStackTraceGetter::kElidedFramesMarker = "... " GTEST_NAME " internal frames ..."; } // namespace internal // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest * UnitTest::GetInstance() { // When compiled with MSVC 7.1 in optimized mode, destroying the // UnitTest object upon exiting the program messes up the exit code, // causing successful tests to appear failed. We have to use a // different implementation in this case to bypass the compiler bug. // This implementation makes the compiler happy, at the cost of // leaking the UnitTest object. #if _MSC_VER == 1310 && !defined(_DEBUG) // MSVC 7.1 and optimized build. static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // _MSC_VER==1310 && !defined(_DEBUG) } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == NULL) { return NULL; } impl_->environments()->PushBack(env); impl_->environments_in_reverse_order()->PushFront(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. // L < mutex_ void UnitTest::AddTestPartResult(TestPartResultType result_type, const char* file_name, int line_number, const internal::String& message, const internal::String& os_stack_trace) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (impl_->gtest_trace_stack()->size() > 0) { msg << "\n" << GTEST_NAME << " trace:"; for (internal::ListNode* node = impl_->gtest_trace_stack()->Head(); node != NULL; node = node->next()) { const internal::TraceInfo& trace = node->element(); msg << "\n" << trace.file << ":" << trace.line << ": " << trace.message; } } if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } const TestPartResult result = TestPartResult(result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()-> ReportTestPartResult(result); // If this is a failure and the user wants the debugger to break on // failures ... if (result_type != TPRT_SUCCESS && GTEST_FLAG(break_on_failure)) { // ... then we generate a seg fault. *static_cast(NULL) = 1; } } // Creates and adds a property to the current TestResult. If a property matching // the supplied value already exists, updates its value instead. void UnitTest::RecordPropertyForCurrentTest(const char* key, const char* value) { const internal::TestProperty test_property(key, value); impl_->current_test_result()->RecordProperty(test_property); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { #if defined(GTEST_OS_WINDOWS) && !defined(__MINGW32__) #if !defined(_WIN32_WCE) // SetErrorMode doesn't exist on CE. if (GTEST_FLAG(catch_exceptions)) { // The user wants Google Test to catch exceptions thrown by the tests. // This lets fatal errors be handled by us, instead of causing pop-ups. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); } #endif // _WIN32_WCE __try { return impl_->RunAllTests(); } __except(internal::UnitTestOptions::GTestShouldProcessSEH( GetExceptionCode())) { printf("Exception thrown with code 0x%x.\nFAIL\n", GetExceptionCode()); fflush(stdout); return 1; } #else // We are on Linux, Mac OS or MingW. There is no exception of any kind. return impl_->RunAllTests(); #endif // GTEST_OS_WINDOWS } // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } // Returns the TestCase object for the test that's currently running, // or NULL if no test is running. // L < mutex_ const TestCase* UnitTest::current_test_case() const { internal::MutexLock lock(&mutex_); return impl_->current_test_case(); } // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. // L < mutex_ const TestInfo* UnitTest::current_test_info() const { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } #ifdef GTEST_HAS_PARAM_TEST // Returns ParameterizedTestCaseRegistry object used to keep track of // value-parameterized tests and instantiate and register them. // L < mutex_ internal::ParameterizedTestCaseRegistry& UnitTest::parameterized_test_registry() { return impl_->parameterized_test_registry(); } #endif // GTEST_HAS_PARAM_TEST // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. // L < mutex_ void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack()->PushFront(trace); } // Pops a trace from the per-thread Google Test trace stack. // L < mutex_ void UnitTest::PopGTestTrace() { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack()->PopFront(NULL); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), #ifdef _MSC_VER #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4355) // Temporarily disables warning 4355 // (using this in initializer). default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), #pragma warning(pop) // Restores the warning state again. #else default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), #endif // _MSC_VER global_test_part_result_repoter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), test_cases_(), #ifdef GTEST_HAS_PARAM_TEST parameterized_test_registry_(), parameterized_tests_registered_(false), #endif // GTEST_HAS_PARAM_TEST last_death_test_case_(NULL), current_test_case_(NULL), current_test_info_(NULL), ad_hoc_test_result_(), result_printer_(NULL), os_stack_trace_getter_(NULL), #ifdef GTEST_HAS_DEATH_TEST elapsed_time_(0), internal_run_death_test_flag_(NULL), death_test_factory_(new DefaultDeathTestFactory) { #else elapsed_time_(0) { #endif // GTEST_HAS_DEATH_TEST } UnitTestImpl::~UnitTestImpl() { // Deletes every TestCase. test_cases_.ForEach(internal::Delete); // Deletes every Environment. environments_.ForEach(internal::Delete); // Deletes the current test result printer. delete result_printer_; delete os_stack_trace_getter_; } // A predicate that checks the name of a TestCase against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestCaseNameIs is copyable. class TestCaseNameIs { public: // Constructor. explicit TestCaseNameIs(const String& name) : name_(name) {} // Returns true iff the name of test_case matches name_. bool operator()(const TestCase* test_case) const { return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0; } private: String name_; }; // Finds and returns a TestCase with the given name. If one doesn't // exist, creates one and returns it. // // Arguments: // // test_case_name: name of the test case // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase* UnitTestImpl::GetTestCase(const char* test_case_name, const char* comment, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) { // Can we find a TestCase with the given name? internal::ListNode* node = test_cases_.FindIf( TestCaseNameIs(test_case_name)); if (node == NULL) { // No. Let's create one. TestCase* const test_case = new TestCase(test_case_name, comment, set_up_tc, tear_down_tc); // Is this a death test case? if (internal::UnitTestOptions::MatchesFilter(String(test_case_name), kDeathTestCaseFilter)) { // Yes. Inserts the test case after the last death test case // defined so far. node = test_cases_.InsertAfter(last_death_test_case_, test_case); last_death_test_case_ = node; } else { // No. Appends to the end of the list. test_cases_.PushBack(test_case); node = test_cases_.Last(); } } // Returns the TestCase found. return node->element(); } // Helpers for setting up / tearing down the given environment. They // are for use in the List::ForEach() method. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns 0 if all tests are successful, or 1 otherwise. If any // exception is thrown during a test on Windows, this test is // considered to be failed, but the rest of the tests will still be // run. (We disable exceptions on Linux and Mac OS X, so the issue // doesn't apply there.) // When parameterized tests are enabled, it explands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. int UnitTestImpl::RunAllTests() { // Makes sure InitGoogleTest() was called. if (!GTestIsInitialized()) { printf("%s", "\nThis test program did NOT call ::testing::InitGoogleTest " "before calling RUN_ALL_TESTS(). Please fix it.\n"); return 1; } RegisterParameterizedTests(); // Lists all the tests and exits if the --gtest_list_tests // flag was specified. if (GTEST_FLAG(list_tests)) { ListAllTests(); return 0; } // True iff we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #ifdef GTEST_HAS_DEATH_TEST internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag()); in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL); #endif // GTEST_HAS_DEATH_TEST UnitTestEventListenerInterface * const printer = result_printer(); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests() > 0; // True iff at least one test has failed. bool failed = false; // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); // Repeats forever if the repeat count is negative. const bool forever = repeat < 0; for (int i = 0; forever || i != repeat; i++) { if (repeat != 1) { printf("\nRepeating all tests (iteration %d) . . .\n\n", i + 1); } // Tells the unit test event listener that the tests are about to // start. printer->OnUnitTestStart(parent_); const TimeInMillis start = GetTimeInMillis(); // Runs each test case if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. printer->OnGlobalSetUpStart(parent_); environments_.ForEach(SetUpEnvironment); printer->OnGlobalSetUpEnd(parent_); // Runs the tests only if there was no fatal failure during global // set-up. if (!Test::HasFatalFailure()) { test_cases_.ForEach(TestCase::RunTestCase); } // Tears down all environments in reverse order afterwards. printer->OnGlobalTearDownStart(parent_); environments_in_reverse_order_.ForEach(TearDownEnvironment); printer->OnGlobalTearDownEnd(parent_); } elapsed_time_ = GetTimeInMillis() - start; // Tells the unit test event listener that the tests have just // finished. printer->OnUnitTestEnd(parent_); // Gets the result and clears it. if (!Passed()) { failed = true; } ClearResult(); } // Returns 0 if all tests passed, or 1 other wise. return failed ? 1 : 0; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestCase and TestInfo object. // Returns the number of tests that should run. int UnitTestImpl::FilterTests() { int num_runnable_tests = 0; for (const internal::ListNode *test_case_node = test_cases_.Head(); test_case_node != NULL; test_case_node = test_case_node->next()) { TestCase * const test_case = test_case_node->element(); const String &test_case_name = test_case->name(); test_case->set_should_run(false); for (const internal::ListNode *test_info_node = test_case->test_info_list().Head(); test_info_node != NULL; test_info_node = test_info_node->next()) { TestInfo * const test_info = test_info_node->element(); const String test_name(test_info->name()); // A test is disabled if test case name or test name matches // kDisableTestFilter. const bool is_disabled = internal::UnitTestOptions::MatchesFilter(test_case_name, kDisableTestFilter) || internal::UnitTestOptions::MatchesFilter(test_name, kDisableTestFilter); test_info->impl()->set_is_disabled(is_disabled); const bool should_run = !is_disabled && internal::UnitTestOptions::FilterMatchesTest(test_case_name, test_name); test_info->impl()->set_should_run(should_run); test_case->set_should_run(test_case->should_run() || should_run); if (should_run) { num_runnable_tests++; } } } return num_runnable_tests; } // Lists all tests by name. void UnitTestImpl::ListAllTests() { for (const internal::ListNode* test_case_node = test_cases_.Head(); test_case_node != NULL; test_case_node = test_case_node->next()) { const TestCase* const test_case = test_case_node->element(); // Prints the test case name following by an indented list of test nodes. printf("%s.\n", test_case->name()); for (const internal::ListNode* test_info_node = test_case->test_info_list().Head(); test_info_node != NULL; test_info_node = test_info_node->next()) { const TestInfo* const test_info = test_info_node->element(); printf(" %s\n", test_info->name()); } } fflush(stdout); } // Sets the unit test result printer. // // Does nothing if the input and the current printer object are the // same; otherwise, deletes the old printer object and makes the // input the current printer. void UnitTestImpl::set_result_printer( UnitTestEventListenerInterface* result_printer) { if (result_printer_ != result_printer) { delete result_printer_; result_printer_ = result_printer; } } // Returns the current unit test result printer if it is not NULL; // otherwise, creates an appropriate result printer, makes it the // current printer, and returns it. UnitTestEventListenerInterface* UnitTestImpl::result_printer() { if (result_printer_ != NULL) { return result_printer_; } #ifdef GTEST_HAS_DEATH_TEST if (internal_run_death_test_flag_.get() != NULL) { result_printer_ = new NullUnitTestResultPrinter; return result_printer_; } #endif // GTEST_HAS_DEATH_TEST UnitTestEventsRepeater *repeater = new UnitTestEventsRepeater; const String& output_format = internal::UnitTestOptions::GetOutputFormat(); if (output_format == "xml") { repeater->AddListener(new XmlUnitTestResultPrinter( internal::UnitTestOptions::GetOutputFile().c_str())); } else if (output_format != "") { printf("WARNING: unrecognized output format \"%s\" ignored.\n", output_format.c_str()); fflush(stdout); } repeater->AddListener(new PrettyUnitTestResultPrinter); result_printer_ = repeater; return result_printer_; } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == NULL) { os_stack_trace_getter_ = new OsStackTraceGetter; } return os_stack_trace_getter_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. internal::TestResult* UnitTestImpl::current_test_result() { return current_test_info_ ? current_test_info_->impl()->result() : &ad_hoc_test_result_; } // TestInfoImpl constructor. The new instance assumes ownership of the test // factory object. TestInfoImpl::TestInfoImpl(TestInfo* parent, const char* test_case_name, const char* name, const char* test_case_comment, const char* comment, TypeId fixture_class_id, internal::TestFactoryBase* factory) : parent_(parent), test_case_name_(String(test_case_name)), name_(String(name)), test_case_comment_(String(test_case_comment)), comment_(String(comment)), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), factory_(factory) { } // TestInfoImpl destructor. TestInfoImpl::~TestInfoImpl() { delete factory_; } // Returns the current OS stack trace as a String. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test, int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return unit_test->impl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Returns the number of failed test parts in the given test result object. int GetFailedPartCount(const TestResult* result) { return result->failed_part_count(); } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. const char* ParseFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == NULL || flag == NULL) return NULL; // The flag must start with "--" followed by GTEST_FLAG_PREFIX. const String flag_str = String::Format("--%s%s", GTEST_FLAG_PREFIX, flag); const size_t flag_len = flag_str.GetLength(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return NULL; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == NULL) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an Int32 flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseInt32Flag(const char* str, const char* flag, Int32* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // Parses a string for a string flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseStringFlag(const char* str, const char* flag, String* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { for (int i = 1; i < *argc; i++) { const String arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseBoolFlag; using internal::ParseInt32Flag; using internal::ParseStringFlag; // Do we see a Google Test flag? if (ParseBoolFlag(arg, kBreakOnFailureFlag, >EST_FLAG(break_on_failure)) || ParseBoolFlag(arg, kCatchExceptionsFlag, >EST_FLAG(catch_exceptions)) || ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || ParseStringFlag(arg, kDeathTestStyleFlag, >EST_FLAG(death_test_style)) || ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || ParseStringFlag(arg, kInternalRunDeathTestFlag, >EST_FLAG(internal_run_death_test)) || ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) ) { // Yes. Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleTestImpl(int* argc, CharType** argv) { g_init_gtest_count++; // We don't want to run the initialization code twice. if (g_init_gtest_count != 1) return; if (*argc <= 0) return; internal::g_executable_path = internal::StreamableToString(argv[0]); #ifdef GTEST_HAS_DEATH_TEST g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #endif // GTEST_HAS_DEATH_TEST ParseGoogleTestFlagsOnly(argc, argv); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { internal::InitGoogleTestImpl(argc, argv); } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { internal::InitGoogleTestImpl(argc, argv); } } // namespace testing