summaryrefslogtreecommitdiff
path: root/examples/Kaleidoscope/Chapter4/toy.cpp
blob: 01b2af01ac4aed4e424b3ba439883844c03ffd49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2, tok_extern = -3,

  // primary
  tok_identifier = -4, tok_number = -5
};

static std::string IdentifierStr;  // Filled in if tok_identifier
static double NumVal;              // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();

  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def") return tok_def;
    if (IdentifierStr == "extern") return tok_extern;
    return tok_identifier;
  }

  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), 0);
    return tok_number;
  }

  if (LastChar == '#') {
    // Comment until end of line.
    do LastChar = getchar();
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    
    if (LastChar != EOF)
      return gettok();
  }
  
  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;

  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
  virtual ~ExprAST() {}
  virtual Value *Codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
  double Val;
public:
  NumberExprAST(double val) : Val(val) {}
  virtual Value *Codegen();
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
  std::string Name;
public:
  VariableExprAST(const std::string &name) : Name(name) {}
  virtual Value *Codegen();
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
  char Op;
  ExprAST *LHS, *RHS;
public:
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
    : Op(op), LHS(lhs), RHS(rhs) {}
  virtual Value *Codegen();
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
  std::string Callee;
  std::vector<ExprAST*> Args;
public:
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    : Callee(callee), Args(args) {}
  virtual Value *Codegen();
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
  std::string Name;
  std::vector<std::string> Args;
public:
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
    : Name(name), Args(args) {}
  
  Function *Codegen();
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
  PrototypeAST *Proto;
  ExprAST *Body;
public:
  FunctionAST(PrototypeAST *proto, ExprAST *body)
    : Proto(proto), Body(body) {}
  
  Function *Codegen();
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
  return CurTok = gettok();
}

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;
  
  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0) return -1;
  return TokPrec;
}

/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }

static ExprAST *ParseExpression();

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;
  
  getNextToken();  // eat identifier.
  
  if (CurTok != '(') // Simple variable ref.
    return new VariableExprAST(IdName);
  
  // Call.
  getNextToken();  // eat (
  std::vector<ExprAST*> Args;
  if (CurTok != ')') {
    while (1) {
      ExprAST *Arg = ParseExpression();
      if (!Arg) return 0;
      Args.push_back(Arg);

      if (CurTok == ')') break;

      if (CurTok != ',')
        return Error("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();
  
  return new CallExprAST(IdName, Args);
}

/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
  ExprAST *Result = new NumberExprAST(NumVal);
  getNextToken(); // consume the number
  return Result;
}

/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
  getNextToken();  // eat (.
  ExprAST *V = ParseExpression();
  if (!V) return 0;
  
  if (CurTok != ')')
    return Error("expected ')'");
  getNextToken();  // eat ).
  return V;
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
static ExprAST *ParsePrimary() {
  switch (CurTok) {
  default: return Error("unknown token when expecting an expression");
  case tok_identifier: return ParseIdentifierExpr();
  case tok_number:     return ParseNumberExpr();
  case '(':            return ParseParenExpr();
  }
}

/// binoprhs
///   ::= ('+' primary)*
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
  // If this is a binop, find its precedence.
  while (1) {
    int TokPrec = GetTokPrecedence();
    
    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;
    
    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken();  // eat binop
    
    // Parse the primary expression after the binary operator.
    ExprAST *RHS = ParsePrimary();
    if (!RHS) return 0;
    
    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
      if (RHS == 0) return 0;
    }
    
    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }
}

/// expression
///   ::= primary binoprhs
///
static ExprAST *ParseExpression() {
  ExprAST *LHS = ParsePrimary();
  if (!LHS) return 0;
  
  return ParseBinOpRHS(0, LHS);
}

/// prototype
///   ::= id '(' id* ')'
static PrototypeAST *ParsePrototype() {
  if (CurTok != tok_identifier)
    return ErrorP("Expected function name in prototype");

  std::string FnName = IdentifierStr;
  getNextToken();
  
  if (CurTok != '(')
    return ErrorP("Expected '(' in prototype");
  
  std::vector<std::string> ArgNames;
  while (getNextToken() == tok_identifier)
    ArgNames.push_back(IdentifierStr);
  if (CurTok != ')')
    return ErrorP("Expected ')' in prototype");
  
  // success.
  getNextToken();  // eat ')'.
  
  return new PrototypeAST(FnName, ArgNames);
}

/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
  getNextToken();  // eat def.
  PrototypeAST *Proto = ParsePrototype();
  if (Proto == 0) return 0;

  if (ExprAST *E = ParseExpression())
    return new FunctionAST(Proto, E);
  return 0;
}

/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
  if (ExprAST *E = ParseExpression()) {
    // Make an anonymous proto.
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    return new FunctionAST(Proto, E);
  }
  return 0;
}

/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
  getNextToken();  // eat extern.
  return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static Module *TheModule;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value*> NamedValues;
static FunctionPassManager *TheFPM;

Value *ErrorV(const char *Str) { Error(Str); return 0; }

Value *NumberExprAST::Codegen() {
  return ConstantFP::get(getGlobalContext(), APFloat(Val));
}

Value *VariableExprAST::Codegen() {
  // Look this variable up in the function.
  Value *V = NamedValues[Name];
  return V ? V : ErrorV("Unknown variable name");
}

Value *BinaryExprAST::Codegen() {
  Value *L = LHS->Codegen();
  Value *R = RHS->Codegen();
  if (L == 0 || R == 0) return 0;
  
  switch (Op) {
  case '+': return Builder.CreateFAdd(L, R, "addtmp");
  case '-': return Builder.CreateFSub(L, R, "subtmp");
  case '*': return Builder.CreateFMul(L, R, "multmp");
  case '<':
    L = Builder.CreateFCmpULT(L, R, "cmptmp");
    // Convert bool 0/1 to double 0.0 or 1.0
    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
                                "booltmp");
  default: return ErrorV("invalid binary operator");
  }
}

Value *CallExprAST::Codegen() {
  // Look up the name in the global module table.
  Function *CalleeF = TheModule->getFunction(Callee);
  if (CalleeF == 0)
    return ErrorV("Unknown function referenced");
  
  // If argument mismatch error.
  if (CalleeF->arg_size() != Args.size())
    return ErrorV("Incorrect # arguments passed");

  std::vector<Value*> ArgsV;
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    ArgsV.push_back(Args[i]->Codegen());
    if (ArgsV.back() == 0) return 0;
  }
  
  return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::Codegen() {
  // Make the function type:  double(double,double) etc.
  std::vector<Type*> Doubles(Args.size(),
                             Type::getDoubleTy(getGlobalContext()));
  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
                                       Doubles, false);
  
  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
  
  // If F conflicted, there was already something named 'Name'.  If it has a
  // body, don't allow redefinition or reextern.
  if (F->getName() != Name) {
    // Delete the one we just made and get the existing one.
    F->eraseFromParent();
    F = TheModule->getFunction(Name);
    
    // If F already has a body, reject this.
    if (!F->empty()) {
      ErrorF("redefinition of function");
      return 0;
    }
    
    // If F took a different number of args, reject.
    if (F->arg_size() != Args.size()) {
      ErrorF("redefinition of function with different # args");
      return 0;
    }
  }
  
  // Set names for all arguments.
  unsigned Idx = 0;
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
       ++AI, ++Idx) {
    AI->setName(Args[Idx]);
    
    // Add arguments to variable symbol table.
    NamedValues[Args[Idx]] = AI;
  }
  
  return F;
}

Function *FunctionAST::Codegen() {
  NamedValues.clear();
  
  Function *TheFunction = Proto->Codegen();
  if (TheFunction == 0)
    return 0;
  
  // Create a new basic block to start insertion into.
  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
  Builder.SetInsertPoint(BB);
  
  if (Value *RetVal = Body->Codegen()) {
    // Finish off the function.
    Builder.CreateRet(RetVal);

    // Validate the generated code, checking for consistency.
    verifyFunction(*TheFunction);

    // Optimize the function.
    TheFPM->run(*TheFunction);
    
    return TheFunction;
  }
  
  // Error reading body, remove function.
  TheFunction->eraseFromParent();
  return 0;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static ExecutionEngine *TheExecutionEngine;

static void HandleDefinition() {
  if (FunctionAST *F = ParseDefinition()) {
    if (Function *LF = F->Codegen()) {
      fprintf(stderr, "Read function definition:");
      LF->dump();
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleExtern() {
  if (PrototypeAST *P = ParseExtern()) {
    if (Function *F = P->Codegen()) {
      fprintf(stderr, "Read extern: ");
      F->dump();
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleTopLevelExpression() {
  // Evaluate a top-level expression into an anonymous function.
  if (FunctionAST *F = ParseTopLevelExpr()) {
    if (Function *LF = F->Codegen()) {
      // JIT the function, returning a function pointer.
      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
      
      // Cast it to the right type (takes no arguments, returns a double) so we
      // can call it as a native function.
      double (*FP)() = (double (*)())(intptr_t)FPtr;
      fprintf(stderr, "Evaluated to %f\n", FP());
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  while (1) {
    fprintf(stderr, "ready> ");
    switch (CurTok) {
    case tok_eof:    return;
    case ';':        getNextToken(); break;  // ignore top-level semicolons.
    case tok_def:    HandleDefinition(); break;
    case tok_extern: HandleExtern(); break;
    default:         HandleTopLevelExpression(); break;
    }
  }
}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

/// putchard - putchar that takes a double and returns 0.
extern "C" 
double putchard(double X) {
  putchar((char)X);
  return 0;
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
  InitializeNativeTarget();
  LLVMContext &Context = getGlobalContext();

  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['*'] = 40;  // highest.

  // Prime the first token.
  fprintf(stderr, "ready> ");
  getNextToken();

  // Make the module, which holds all the code.
  TheModule = new Module("my cool jit", Context);

  // Create the JIT.  This takes ownership of the module.
  std::string ErrStr;
  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
  if (!TheExecutionEngine) {
    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    exit(1);
  }

  FunctionPassManager OurFPM(TheModule);

  // Set up the optimizer pipeline.  Start with registering info about how the
  // target lays out data structures.
  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
  // Provide basic AliasAnalysis support for GVN.
  OurFPM.add(createBasicAliasAnalysisPass());
  // Do simple "peephole" optimizations and bit-twiddling optzns.
  OurFPM.add(createInstructionCombiningPass());
  // Reassociate expressions.
  OurFPM.add(createReassociatePass());
  // Eliminate Common SubExpressions.
  OurFPM.add(createGVNPass());
  // Simplify the control flow graph (deleting unreachable blocks, etc).
  OurFPM.add(createCFGSimplificationPass());

  OurFPM.doInitialization();

  // Set the global so the code gen can use this.
  TheFPM = &OurFPM;

  // Run the main "interpreter loop" now.
  MainLoop();

  TheFPM = 0;

  // Print out all of the generated code.
  TheModule->dump();

  return 0;
}